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Abstract

The present thesis is devoted to transport in magnetic nanostructures with
Coulomb blockade. In the first part spin-polarized transport in ferromagnetic
single-electron transistors and double-island devices is analyzed in the sequential
tunneling regime. The considerations are based on the master equation method.
In calculations nonequilibrium spin accumulation is also taken into account. In
the case of nonmagnetic islands it is shown that spin accumulation is crucial
for occurrence of nonzero tunnel magnetoresistance. Nonequilibrium spin accu-
mulation is also responsible for existence of negative differential conductance in
transport characteristics of double-island devices. Furthermore, it is shown that
the numerical results are in good agreement with experimental data.

In the second part transport through quantum dots coupled to ferromagnetic
leads is analyzed by means of the real-time diagrammatic technique in the whole
range of parameters. In calculations both the first-order and second-order tun-
neling processes are taken into account. It is shown that the behavior of tunnel
magnetoresistance depends strongly on transport regimes, indicating different
spin accumulation mechanisms. Moreover, a new zero-bias anomaly in differ-
ential conductance for antiparallel alignment of leads’ magnetizations is found
in the cotunneling regime for quantum dots occupied by a single electron. The
anomalous behavior of conductance leads in turn to minimum in tunnel mag-
netoresistance at low bias voltage. The influence of intrinsic spin relaxation on
the dot on transport characteristics in the cotunneling regime is also analyzed.
Furthermore, the cotunneling transport in the case of quantum dot coupled to
ferromagnetic leads with magnetic moments aligned arbitrarily with respect to
each other is analyzed by means of the second-order perturbation theory.
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Chapter 1

Introduction

1.1 Motivation

More than one century has elapsed since the discovery of a small negatively
charged corpuscule by Joseph John Thomson [1] in 1897. The corpuscule, after-
wards called an electron, carries an elementary charge of −e, with e = 1.6019×
10−19 C, measured for the first time by Robert Millikan [2] in 1911. This property
of electrons is permanently used in all conventional electronic devices, regardless
of their size.

Recently, one can observe a common pursuit towards the miniaturization of
electronic systems. According to the Moore’s law the number of transistors per
microchip is doubled every three years. It is however expected that the possibil-
ity of further miniaturization will be stopped due to the loss of chips’ stability
when the device components achieve critical dimensions in the nanometer range.
Thus, the most challenging task facing contemporary science and technology is
to implement structures, alternative to the silicon-based devices, whose exten-
sions could be reduced substantially. Mesoscopic physics is a field of physics
dealing with such nanostructures [3, 4, 5, 6, 7, 8, 9, 10]. This field is governed
by a sensitive balance between the macroscopic physics described by classical
mechanics and the microscopic physics, to which quantum mechanics is applied.
The nanostructures consist generally of a central mesoscopic part coupled through
tunnel barriers to external reservoirs. The central part can be molecules, metallic
nanograins, metallic islands or quantum dots.

Electrons, fortunately, carry not only the elementary charge but also the spin.
The concept of spinning electrons was first introduced by George Uhlenbeck and
Abraham Goudsmit [11] in 1925. Whereas, in 1927 Paul Dirac [12] included
systematically the electron spin in quantum mechanics. The electron spin pro-
vides an additional degree of freedom, which considerably broadens the range of
applications and novel device proposals. This is especially promising for nanos-
tructures in which some of the electrodes are made of ferromagnetic material.

1



1 Introduction 1.2 Basic Concepts

The spin-based nanoelectronics – spintronics concerns a relatively new area of
mesoscopic physics dealing with the interplay of charge and spin degrees of free-
dom [13, 14, 15, 16, 17, 18]. Although there is a great number of both theoretical
and experimental works on the spintronic properties of mesoscopic systems, this
flied is still not fully explored.

The goal of the present thesis is therefore to broaden the insight and gain the
comprehension of transport properties of magnetic nanostructures with Coulomb
blockade, in principal, ferromagnetic single-electron tunneling devices and quan-
tum dots coupled to ferromagnetic leads.

1.2 Basic Concepts

In this dissertation the nanostructures in which transport takes place by tunneling
processes are considered. Furthermore, because of extremely small dimensions of
the central electrode, some novel effects can be observed in the corresponding
transport characteristics.

1.2.1 Single-Electron Charging Effects

The central part is characterized by its charging energy, which corresponds to
the energy needed for adding a single electron on it. If the charging energy is the
most relevant energy scale, the system exhibits the single-electron charging effects
[4, 19, 20, 21, 22, 23, 24, 25]. An electron can tunnel on the central electrode
only when the energy provided by the transport voltage surpasses the correspond-
ing charging energy. Otherwise, the current is exponentially suppressed and the
system is in the Coulomb blockade regime [3, 26, 27]. Once the bias voltage is
larger than the threshold voltage, the electrons can tunnel one by one through the
system leading to the step-like current-voltage characteristics – Coulomb stair-
case, or the sawtooth-like gate voltage dependence of electric current – Coulomb
oscillations [4, 19, 20, 23, 28].

In the considerations, henceforth, it is assumed that the electron charge is −e
(e is positive) and that the positive bias voltage corresponds to current flowing
from the left to right junctions, whereas electrons flow in the opposite direction.

1.2.2 Sequential Tunneling and Cotunneling

Out of the Coulomb blockade regime the electric current is dominated by first-
order tunneling processes, when electrons tunnel by consecutive tunneling events.
This transport regime is known as sequential tunneling regime [3, 4]. An example
of first-order process is sketched in Fig. 1.1a. Although in the Coulomb blockade
regime the sequential tunneling is exponentially suppressed, the current can still
be mediated by higher-order tunneling processes involving correlated tunneling
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1 Introduction 1.2 Basic Concepts

first-order tunneling second-order tunneling

a b

Figure 1.1: A sketch illustrating process of (a) sequential tunneling and (b)
cotunneling.

of two or more electrons via intermediate virtual states [29, 30, 31]. The for-
mer processes are known as cotunneling. An exemplary cotunneling process is
illustrated in Fig. 1.1b.

1.2.3 Tunnel Magnetoresistance

When the electrodes are made of ferromagnetic material, the system exhibits
further interesting phenomena resulting from the interplay of charge and spin
degrees of freedom [32, 33]. In particular, the tunneling current flowing through
the system depends on the mutual alignment of magnetic moments of ferromag-
netic electrodes, giving rise to the spin-valve effect or, more commonly, the tunnel
magnetoresistance (TMR) effect [34, 35]. A simple theoretical model of TMR was
introduced by M. Jullière [36] in 1975. Jullière considered a single ferromagnetic
tunnel junction and assumed that the magnetic moments of the leads can form
either parallel or antiparallel configurations, see Fig. 1.2a. In the parallel config-
uration the majority (minority) electrons of the left lead tunnel to the majority
(minority) electron band in the right lead, as illustrated in Fig. 1.2b. Whereas, in
the antiparallel configuration the majority (minority) electrons from the left lead
tunnel to the minority (majority) electron band in the right lead. This situation
is shown in Fig. 1.2c. Thus, one can express the electric current I flowing in the
parallel (IP) and antiparallel (IAP) magnetic configurations as

IP ∼ ρL+ρR+ + ρL−ρR− , (1.1)

IAP ∼ ρL+ρR− + ρL−ρR+ , (1.2)

where ρrσ is the density of states for the majority (σ = +) or minority (σ = −)
electron band in the lead r. In the following it is assumed that the density of
states is independent of energy within the electron band.

3



1 Introduction 1.3 Outline

ρL+ 
ρL-

ρR+
ρR-

ρL+
ρL-

ρR+ρR-

L R

a

b cparallel antiparallel

Figure 1.2: Single ferromagnetic tunnel junction (a) and sketch of densities of
states for the majority ρr+ (blue) and minority ρr− (red) electron band in the
lead r (r = L, R) for the parallel (b) and antiparallel (c) magnetic configurations.

The tunnel magnetoresistance is defined phenomenologically as

TMR =
RAP −RP

RP

=
IP − IAP

IAP

, (1.3)

where RP and RAP are the total system resistances in the parallel and antiparallel
configurations, respectively. Using Eqs. (1.1) and (1.2) and expressing the spin-
dependent densities of states in terms of spin polarization of the lead r, pr, defined
as

pr =
ρr+ − ρr−
ρr+ + ρr−

, (1.4)

one can find for the TMR effect

TMR =
2pLpR

1− pLpR

≡ TMRJull . (1.5)

1.3 Outline

This dissertation is devoted to spin-polarized transport in nanostructures with
Coulomb blockade. The sequel is divided into two parts. The first part addresses
the problem of tunneling through ferromagnetic systems consisted of nanoscopic
islands coupled to external reservoirs. In particular, chapter 2 presents a review
of transport in ferromagnetic single-electron transistors, whereas chapter 3 deals
with spin-dependent tunneling in double-island devices. In both cases numerical
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results are presented and discussed in the absence and presence of nonequilibrium
spin accumulation on the islands. It is shown that spin accumulation may give rise
to negative differential conductance and modifies the TMR effect substantially.

The second part of the thesis concerns the spin-polarized transport through
quantum dots coupled to ferromagnetic leads. Chapter 4 presents the numeri-
cal results and their discussion in the case when the magnetic moments of the
leads are magnetized collinearly with respect to each other. The model consid-
ered is presented in section 4.1. Section 4.2 describes the real-time diagrammatic
technique used in calculations, whereas section 4.3 covers the Averin-Nazarov
approach. The numerical results on the first-order and second-order transport
are presented in section 4.4. The behavior of tunnel magnetoresistance is an-
alyzed in various transport regimes. It is shown that the magnitude of TMR
strongly depends on the transport regime. In particular, a parity effect in TMR
in the linear response is predicted. Moreover, it is shown that in the case of the
Coulomb blockade regime with odd number of electrons the TMR effect has a
minimum at zero bias. This minimum is a consequence of the zero-bias peak in
differential conductance in the antiparallel magnetic configuration. The discus-
sion and presentation of properties and mechanism of the zero-bias anomaly in
differential conductance is given in section 4.5. The influence of magnetic field
on the zero-bias peak is also discussed. In section 4.6 in turn we analyze the
impact of intrinsic spin relaxation on the dot on second-order tunneling through
quantum dots. It is shown that both the minimum in TMR at low bias voltage
and the zero-bias anomaly in differential conductance disappear in the limit of
fast spin relaxation.

Cotunneling transport in the Coulomb blockade regime in the case of quantum
dots coupled to ferromagnetic leads with noncollinear alignment of the leads’
magnetic moments is analyzed in chapter 5. The dependence of both the second-
order current and TMR in the case of empty and singly-occupied quantum dot is
analyzed as a function of the angle between the leads’ magnetizations. It is shown
that transport properties strongly depend on the relative alignment of magnetic
moments of the leads.

Finally, the conclusions are given in chapter 6.

1.4 Acknowledgements
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Spin-Polarized Transport
through Metallic Islands
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In the first part of the present thesis transport through systems built of metal-
lic islands is considered. First, the case of single-electron transistors is reviewed
and, second, transport through double-island devices is discussed. These devices
consist of central mesoscopic electrodes, the so-called islands, coupled through
tunnel barriers to external reservoirs and to each other1. Furthermore, a gate
voltage may be attached capacitively to each island. The capacitance C of a
typical island is of the order of 10−18 F [39, 40, 41]. Consequently, its charging
energy, EC = e2/(2C), corresponding to the addition of a single electron on the
island, may establish a new relevant energy scale. If the charging energy is larger
than the thermal energy, EC À kBT , where T denotes temperature and kB is
the Boltzmann constant, the effects due to discreteness of charge become observ-
able in the system transport characteristics, as discussed in section 1.2.1. First
of all, the current is blocked below a certain threshold voltage, leading to the
Coulomb blockade2. Furthermore, the single-electron charging leads to the step-
like current-voltage dependence and oscillations of electric current when sweeping
the gate voltage. The former effect is known in the literature as Coulomb stair-
case, whereas the latter one as Coulomb oscillations. These phenomena will be
presented and discussed in the following sections.

The respective electrodes, of which the single-electron devices consist, can
be built of either nonmagnetic or ferromagnetic materials3. Electronic trans-
port in nonmagnetic tunnel junctions was already extensively studied in the past
two decades [3, 4, 37, 38, 45, 46, 47, 48, 49, 50, 51]. However, it was only
several years ago when the attention was drawn to electron tunneling in mag-
netic systems [32, 33, 34, 35, 52, 53, 54], which became possible owing to re-
cent progress in nanotechnology. Magnetic multi-junctions seem to be of great
importance for future electronics based on spin-dependent electronic transport
(spintronics). Some of the effects that make those devices very promising have
been known for a long time. In 1975 Jullière [36] discovered that the total re-
sistance of a simple junction decreases when the magnetic configuration of the
electrodes switches from antiparallel to parallel alignment, as described in sec-
tion 1.2.3. Furthermore, it was shown theoretically that some qualitatively new
effects may also arise from the interplay of charging effects and spin degrees of
freedom such as, for example, oscillations of TMR with increasing bias voltage,
spin accumulation, enhancement of TMR in the Coulomb blockade regime, etc.
[32, 33, 55, 56, 57, 58, 59, 60, 61, 62]. The enhancement of TMR in the cotunnel-

1An important example and convenient model system is a single-electron transistor, which
is built of one island coupled via tunnel barriers to external reservoirs [37, 38].

2The first-order tunneling processes are exponentially suppressed, however, the current can
still be mediated by higher-order tunneling processes, see section 1.2.2.

3The ferromagnetic electrodes can be made either from ferromagnetic transition metals (like
Ni, Co, Fe) or from other conducting ferromagnetic systems [34, 35, 42, 43]. For a review on
first-order transport through both nonmagnetic and ferromagnetic single-electron transistors
see Ref. [44].
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ing regime and the oscillations of TMR as a function of the transport voltage were
also observed experimentally [41, 42, 43, 63]. Another interesting feature of mag-
netic mesoscopic junctions is that they can be used as sources of spin-polarized
current, in which the polarization degree can be controlled by an external gate
voltage [64, 65, 66].
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Chapter 2

Transport in Single-Electron
Transistors

This chapter reviews the issues of spin-dependent transport in ferromagnetic
single-electron transistors (FM SETs). A SET consists of one central nanoscopic
island coupled through tunnel barriers to source and drain electrodes. The two
following cases are considered, namely, the first one when all the electrodes are
ferromagnetic and the second case when the source and drain electrodes are
ferromagnetic, whereas the island is nonmagnetic. In the latter situation, a non-
equilibrium spin accumulation induced on the island is crucial for the observation
of a nonzero TMR effect.

2.1 Description of Model and Method

The schematics of single-electron transistors considered in this chapter are illus-
trated in Fig. 2.1. Part (a) presents a device whose all three electrodes are ferro-
magnetic (FM/FM/FM SET), whereas part (b) shows a system with ferromag-
netic source and drain electrodes, while the island is nonmagnetic (FM/NM/FM
SET). In general, the magnetic moments of the electrodes may be aligned in
an arbitrary way with respect to each other. Here, however, only the collinear
alignments of magnetic moments, namely, the parallel (P) and antiparallel (AP)
magnetic configurations are considered. They are specified in Fig. 2.1. In the
case of the first system, in both configurations the magnetic moments of external
electrodes point in the same direction, while magnetic moment of the island is
either parallel or antiparallel to them. Whereas in the case of the second sys-
tem, in the parallel configuration the magnetic moments of external electrodes
are aligned while in the antiparallel configuration they are anti-aligned. The two
magnetic alignments can be easily achieved by sweeping magnetic field through
the hysteresis loop, provided the respective ferromagnetic components have dif-
ferent coercive fields.

10



2 Single-Electron Transistors 2.1 Model and Method

LL , RC

gC

RR , RCne−

gV
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gC

ne−
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a

b
RR , RC

LV RV
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Figure 2.1: Schematics of ferromagnetic single-electron transistors. The parallel
and antiparallel magnetic configurations of the system are also specified. The
island is separated from external electrodes by tunnel barriers. Each barrier is
characterized by its resistance Rr and capacitance Cr (r = L, R). The system is
symmetrically biased, VL = V/2, VR = −V/2, and there is also a gate voltage Vg

applied to the island.

The considerations are restricted to the sequential tunneling regime, which
implies that the higher-order tunneling processes are not taken into account.
This is justified when the resistances of both barriers are much larger than the
quantum resistance, Rr À RQ = h/e2. As a consequence, the charge on the island
is well localized and the orthodox tunneling theory is applicable [3, 4]. Further,
only spin-conserving tunneling processes through the two barriers are considered.
Moreover, the island is assumed to be relatively large, which implies that the
effects due to quantization of the corresponding energy levels can be neglected.
For smaller islands, however, the discrete energy spectrum may modify transport
characteristics and has to be considered [67, 68, 69].

In order to calculate electric current, the method based on the master equation
is employed. This method takes into account the fact that the net transition rate
between the charge states with n and n+1 excess electrons on the island vanishes
in a stationary state. Thus, the probability P (n, V ) to find the island in a state
with n additional electrons when a bias voltage V is applied can be determined

11



2 Single-Electron Transistors 2.1 Model and Method

from the following recursion relation [45, 46]

P (n + 1, V )
∑

σ

[yσ(n + 1, V )] = P (n, V )
∑

σ

[xσ(n, V )] , (2.1)

where xσ(n, V ) =
∑

r=L,R Γσ
rI(n, V ) and yσ(n, V ) =

∑
r=L,R Γσ

Ir(n, V ), correspond-
ing to transition rates for tunneling to and off the island, respectively. Here,
Γσ

rI(n, V ) is the spin-dependent rate for tunneling of electrons with spin σ from
reservoir r to the island, whereas Γσ

Ir(n, V ) denotes the rate for tunneling back-
ward. The rates can be expressed by means of the Fermi golden rule as

Γσ
rI(Ir)(n, V ) =

1

e2Rrσ

∆Eσ
rI(Ir)(n, V )

exp
[
∆Eσ

rI(Ir)(n, V )/kBT
]
− 1

, (2.2)

where ∆Eσ
rI(Ir)(n, V ) describes a change in the system electrostatic energy caused

by corresponding tunneling event when in the initial state there were n additional
electrons on the island. In the above equation Rrσ denotes the spin-dependent
tunnel resistance of the r-th junction and is given by

Rrσ =
~

2πe2ρrσρIσ|trσ,Iσ|2 . (2.3)

The spin dependence of the resistance is a consequence of spin-dependent density
of electron states at the Fermi level in the respective electrodes between which
the junction is formed and the corresponding tunneling matrix elements. In
particular, in the above case it is due to the spin-dependent density of states of
the r-th lead ρrσ and the island ρIσ, as well as tunneling matrix elements trσ,Iσ.

In the following, the different magnetic configurations of devices are consid-
ered, therefore it is crucial to define the respective reference systems. Thus, it
is assumed that the global quantization axis is aligned along the net spin of the
left electrode (see Fig. 2.1), whereas local quantization axes are aligned along net
spins of respective electrodes. Furthermore, the majority (minority) electrons in
the local reference systems are labelled by + (−), and the spin-up (spin-down)
electrons in the global reference system are denoted by ↑ (↓). In the parallel con-
figuration all the magnetic moments point in the same direction, consequently
the majority electrons are the spin-up ones and the minority electrons are the
spin-down ones. In the case of the system shown in Fig. 2.1a, the antiparallel
configuration is obtained by flipping the magnetic moment of the island. Now,
the spin-up (spin-down) electrons correspond to the minority (majority) electron
band in the island.

In these considerations it is further assumed that the energy relaxation time
is much smaller than the time between two successive tunneling events, while no
such restriction is imposed on the spin relaxation time which can be arbitrary. In a
general case, due to the spin dependence of tunneling processes, a nonequilibrium

12



2 Single-Electron Transistors 2.2 Numerical Results

magnetic moment accumulates on the island, which leads to spin splitting of the
corresponding Fermi level. Thus, the change in the system electrostatic energy,
∆Eσ

rI(Ir)(n, V ), caused by tunneling of an electron with spin σ, is given by

∆Eσ
rI(Ir)(n, V ) =

e2

2C
± eUr(n, V )±∆Eσ

F , (2.4)

where C = CL + CR + Cg, with CL and CR being the capacitances of the two
junctions, and Cg denoting the gate capacitance. Ur(n, V ) is a voltage drop
between the r-th electrode and the island

Ur(n, V ) = C−1 [ne−Q0 + (Cr′ + Cg) Vr − Cr′Vr′ − CgVg] , (2.5)

where Vr is the electrostatic potential of the r-th electrode and r′ 6= r (r′ = L, R),
whereas Q0 represents the offset charge [4, 45, 60]. Finally, ∆Eσ

F is the spin
dependent shift of the Fermi energy on the island due to spin accumulation. The
ratio of the Fermi level shifts for spin-up and spin-down electrons depends on the
corresponding ratio of the densities of states.

When a transport voltage V is applied to the left and right electrodes, elec-
trons can tunnel one by one through the barriers giving rise to a flowing current.
The electric current flowing through the left junction can be then calculated from
the following formula

IL = −e
∑

σ

∞∑
n=−∞

[Γσ
LI(n, V )− Γσ

IL(n, V )] P (n, V ) . (2.6)

In the stationary state the currents flowing through each junction are equal,
IL = IR = I.

2.2 Numerical Results

In the following section we present the numerical results on spin accumulation,
electric current, its spin polarization, and resulting tunnel magnetoresistance.
The two limiting cases are considered – the limit of fast spin relaxation and the
limit of slow spin relaxation on the island. In the former case the spin of an
electron tunneling to the island relaxes before a next tunneling event takes place.
In the latter case, on the other hand, the electron spin is conserved for a time
much longer than the time between successive tunneling events.

2.2.1 Limit of Fast Spin Relaxation for FM SET with Fer-
romagnetic Island

In the limit of fast spin relaxation, SETs with nonmagnetic islands behave like
nonmagnetic junctions, exhibiting no TMR effect. Therefore, in this limit only
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Figure 2.2: The current in the parallel and antiparallel magnetic configurations
(a) and the resulting TMR (b) as a function of the bias voltage for FM/FM/FM
SET. The parameters are: T = 9 K, RP

L↑ = 0.65 MΩ, RP
L↓ = 0.065 MΩ, RP

R↑ = 5

MΩ, RP
R↓ = 2.5 MΩ, RAP

r↓ = RAP
r↑ = (RP

r↑R
P
r↓)

1/2 (for r = L, R), the capacitances:
CL = 0.1 aF, CR = 1 aF, Cg = 5.1 aF, Vg = 0, and Q0 = 0.025e. The dots in
part (b) present the experimental data taken from Ref. [41].

the calculations for FM SETs with ferromagnetic islands are presented. It is as-
sumed that the spin-dependent resistances for the parallel (RP

rσ) and antiparallel
(RAP

rσ ) configurations fulfill the condition RP
rσR

P
rσ̄ = RAP

rσ RAP
rσ̄ . Since there is no

spin accumulation on the island in the limit of fast spin relaxation, there is no
associated spin splitting of the Fermi level either, ∆Eσ

F = 0.
The current flowing through the system in the parallel and antiparallel con-

figurations and the resulting TMR are displayed in Fig. 2.2. For both magnetic
configurations the I −V curves reveal the well-known Coulomb steps. Moreover,
these two curves are different; current flowing in the parallel configuration is gen-
erally larger than current flowing in the antiparallel configuration, see Fig. 2.2a.
This difference leads in turn to nonzero TMR effect, as shown in Fig. 2.2b. It can
also be seen that TMR oscillates as a function of the bias voltage. Furthermore,
the amplitude of these oscillations decreases as the transport voltage increases.
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Figure 2.3: The current in the parallel and antiparallel magnetic configurations
(a) and the resulting TMR (b) as a function of the gate voltage calculated for
V = 25 mV. The other parameters are the same as in Fig. 2.2.

For parameters assumed here, TMR reaches local maxima at the voltages cor-
responding to the positions of the Coulomb steps. The global maximum value,
however, appears at the first step, i.e., at the threshold voltage. It is also worth
noting that the enhancement of TMR at the Coulomb steps remarkably decreases
when the temperature is increased and, at kBT ≈ EC, the effects due to discrete
charging disappear [60].

Recently, the oscillatory behavior of the TMR effect with increasing transport
voltage was observed experimentally by Ernult et al. [41]. The experimental data
taken from Ref. [41] are displayed in Fig. 2.2b and marked by dots.

The above characteristics were calculated in the case of vanishing gate voltage.
From the application point of view, however, the gate voltage characteristics seem
to be more important. In Fig. 2.3a we present the Coulomb oscillations of electric
current as a function of gate voltage, calculated for the parallel and antiparallel
configurations. The curves are calculated for the bias voltage equal to 25 mV,
which corresponds to the first Coulomb step, see Fig. 2.2a. Once the Fermi
level of the island lies in the energy window due to applied bias voltage, the
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current is increased, otherwise, it is suppressed. This results in the oscillatory
dependence of electric current on the gate voltage, as shown in Fig. 2.3a. The
periodic variation of the current with the gate voltage leads in turn to periodic
behavior of the TMR. This is presented in Fig. 2.3b.

2.2.2 Limit of Slow Spin Relaxation for FM SET with
Nonmagnetic Island

In the case of FM SETs with nonmagnetic islands, nonzero TMR can exist only
when the spin relaxation time is sufficiently long, significantly longer than the
time between successive tunneling events1. If this is the case, a nonequilibrium
magnetic moment builds up on the island due to spin accumulation. This moment
is responsible for the occurrence of TMR. In other words, the island becomes mag-
netized in a nonequilibrium situation, and the created moment depends on the
bias and gate voltages. It is worth noting that spin accumulation may occur not
only due to spin-dependent sequential tunneling, but also due to spin-dependent
cotunneling processes [59, 72].

For arbitrary spin relaxation times the splitting of the Fermi level can be
determined from the current conservation condition for each spin orientation
separately [58, 73]

1

e
(Iσ

R − Iσ
L)− ρIΩI

τsf

∆Eσ
F = 0 , (2.7)

where ρI is the density of states of the nonmagnetic island, ΩI is the island’s
volume, and τsf denotes the spin relaxation time on the island. Iσ

L and Iσ
R are

the currents flowing through the left and right junctions in the spin channel
σ. The last term in Eq. (2.7) takes into account intrinsic spin-flip processes on
the island. In the limit of slow spin relaxation, τsf → ∞, Eq. (2.7) reduces
to Iσ

L = Iσ
R. From this condition it is possible to calculate self-consistently the

shifts of the Fermi levels for both spin orientations. Since the density of states
at the Fermi level in a nonmagnetic island is independent of the spin orientation,
it is justifiable to assume ∆Eσ

F = −∆Eσ̄
F. Apart from this, in the case of FM

SETs with nonmagnetic islands the resistances in the antiparallel configuration
are RAP

Lσ = RP
Lσ and RAP

Rσ = RP
Rσ̄, see Fig. 2.1b.

Figure 2.4 presents the basic transport characteristics of FM SET with non-
magnetic island as a function of the bias voltage calculated in the limit of slow
spin relaxation. The splitting of the Fermi level is displayed in Fig. 2.4a for both
magnetic configurations. It is clear that the splitting takes place only in the an-
tiparallel alignment, while in the parallel configuration there is no spin accumula-
tion. However, this is true only in the case when both junctions are characterized
by equal spin asymmetry factors. When the spin asymmetries are different, spin

1The longest spin relaxation times were measured for aluminium and copper [70, 71]. For
example, the relaxation time for copper was estimated to be of the order of 10−7 s.
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Figure 2.4: Basic characteristics of FM/NM/FM SET as a function of the bias
voltage in the limit of slow spin relaxation on the island: (a) spin splitting of
the Fermi level, (b) I − V characteristics, (c) spin polarization of electric current,
and (d) tunnel magnetoresistance. The parameters are: kBT = 0.05 EC, RP

L↑ = 5
MΩ, RP

L↓ = 2.5 MΩ, RP
R↑ = 0.3 MΩ, RP

R↓ = 0.15 MΩ, the capacitances: CL =
CR = Cg = 1 aF, Vg = 0, and Q0 = 0.
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accumulation also occurs in the parallel configuration. As illustrated in Fig. 2.4a,
the behavior of the Fermi level splitting with increasing transport voltage can
be decomposed into two components. One component monotonically increases,
while the second one oscillates with increasing the bias voltage. This oscillatory
behavior can be understood in the following way. Let us assume that the volt-
age is slightly above that corresponding to a certain Coulomb step and begins
to increase. Then, the spin accumulation also increases, until a local maximum
value is reached. The local maximum occurs at a voltage, at which the chemi-
cal potential of the depleted spin channel approaches the value which allows the
next charge state on the island. This, in turn, enhances tunneling rate (onto the
island) of electrons corresponding to the depleted spin channel, and consequently
reduces the spin splitting of the Fermi level. When the voltage increases further,
a local minimum in the spin accumulation is then reached at a voltage, where the
chemical potential of the second (accumulated) spin channel approaches the value
which allows the next charge state on the island. The same scenario repeats at
each Coulomb step leading to the oscillatory behavior of the spin accumulation.
Because only the first-order tunneling processes are considered, there is no spin
accumulation in the Coulomb blockade regime, as can be seen in Fig. 2.4a. In real
situations, however, the higher-order tunneling processes, which dominate trans-
port when sequential tunneling is exponentially suppressed, may lead to finite
spin accumulation in the Coulomb blockade [59, 65].

The current as a function of the bias voltage for the parallel and antiparallel
configurations is shown in Fig. 2.4b. As before, there are characteristic Coulomb
steps, although now they are more complex. In both configurations the electric
current is spin polarized. Generally, the polarization degree of the current flowing
through the r-th junction can be defined as

ηr =
I↑r − I↓r
I↑r + I↓r

, (2.8)

where I↑r and I↓r are the currents flowing in the spin-up and spin-down channels.
In the slow spin relaxation limit, the polarization of electric current is constant,
i.e., the same for both junctions. The spin polarization calculated for both mag-
netic configurations is shown in Fig. 2.4c. The polarization degree is constant
in the parallel configuration (where there is no spin accumulation) and becomes
voltage dependent for the antiparallel alignment. Moreover, in the antiparallel
configuration it oscillates with increasing bias voltage and the amplitude of these
oscillations decreases as the bias is increased. The TMR effect corresponding to
the I − V curves shown in Fig. 2.4b is presented in Fig. 2.4d. Now, the bias
dependence is more complex than it was in the case of FM SETs with magnetic
islands. This difference is a result of the bias dependence of spin accumulation.

The same transport characteristics as in Fig. 2.4, but calculated as a function
of the gate voltage, are shown in Fig. 2.5. As previously, there is no spin splitting
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Figure 2.5: Characteristics the same as in Fig. 2.4, but shown as a function of
the gate voltage for the bias voltage of 50 mV. The other parameters are the
same as in Fig. 2.4.

of the Fermi level in the parallel configuration, while the splitting in the antipar-
allel configuration varies periodically with the gate voltage, as shown in Fig. 2.5a.
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Figure 2.6: Spin polarization of the current flowing through both junctions (a)
and TMR (b) as a function of the spin relaxation time calculated for indicated
temperatures and for V = 50 mV, ρIΩI = 1000/eV. The other parameters are
the same as in Fig. 2.4.

The current flowing through the system in the parallel and antiparallel config-
urations (Fig. 2.5b) changes periodically with the gate voltage, leading to the
Coulomb oscillations. The corresponding TMR, shown in Fig. 2.5d, also varies
periodically with the gate voltage. It is interesting to note that some additional
peaks appear in TMR, which were absent in the case shown in Fig. 2.3b. Further-
more, it can be seen that the spin polarization of the current in the antiparallel
configuration oscillates as a function of the gate voltage changing its sign, as
illustrated in Fig. 2.5c. Thus, by applying a gate voltage, one may control the
nonequilibrium magnetic polarization of the island and also the spin polarization
of the flowing current [65].

2.2.3 General Case

In the preceding subsection the typical transport characteristics of FM SETs
with nonmagnetic islands in the limit of slow spin relaxation were presented. It
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is, however, also interesting to analyze the crossover from the slow to fast spin
relaxation limits. In the case of SETs with nonmagnetic islands TMR vanishes
in the fast spin relaxation limit. The transport characteristics for arbitrary re-
laxation time can be calculated from Eq. (2.7). They are presented in Fig. 2.6.
The spin polarization of the current flowing through the left and right junctions
plotted as a function of the spin relaxation time is shown in Fig. 2.6a. The results
are calculated for three different temperatures and for the antiparallel configura-
tion. One can note that in the slow spin relaxation limit, the spin polarization
is the same for both junctions. However, once the spin relaxation time becomes
shorter, the spin polarizations become different and in the fast spin relaxation
limit they are opposite. The behavior of TMR at the crossover from fast to slow
spin relaxation limits is displayed in Fig. 2.6b. As the relaxation time becomes
shorter tunnel magnetoresistance decreases and finally vanishes in the fast spin
relaxation limit. It can also be seen that the TMR decreases with increasing tem-
perature, the crossover between the limits of τsf = 0 and τsf = ∞, on the other
hand, only slightly depends on temperature. In the case of spin polarization of
electric current shown in Fig. 2.6a, both the spin polarization and the crossover
are almost independent of temperature. The crossover from fast to slow spin
relaxation limits takes place for spin relaxation time comparable to the time be-
tween two successive tunneling events, which can be estimated to be of the order
of 10−10 s.

21



Chapter 3

Transport in Double-Island
Devices

In the previous chapter the basic characteristics of ferromagnetic single-electron
transistors were analyzed. In the following, we present and discuss the results
on spin-polarized electronic transport through a double-island structure which is
coupled through tunnel barriers to external electrodes. Furthermore, we also take
into account nonequilibrium spin accumulation on the islands, calculated in a self-
consistent way, which gives rise to new and nontrivial behavior of electric current
and the TMR effect [74]. Although the research on transport in ferromagnetic
double-island devices is in its early stage, in was already shown that such devices
could serve as, for example, magnetoresistive elements in spintronics with gate-
controlled magnitude of tunnel magnetoresistance [75] or as spin pumps [76].

3.1 Description of Model

A schematic of a double-island device is displayed in Fig. 3.1. The device consists
of two nanoscopic islands separated from each other and coupled to external
reservoirs by tunnel barriers. There are also gate voltages attached capacitively
to the islands. Generally, both the islands and external electrodes can be built
of either nonmagnetic or ferromagnetic materials [34, 43, 76]. In the following,
it is assumed that at least two electrodes are ferromagnetic. Furthermore, their
magnetic moments can form only collinear configurations. Consequently, two
different magnetic configurations can be defined: the parallel and antiparallel
ones. The system is described by its electrostatic energy which can be expressed
as [75, 77]

E(n1, n2) = EC1

(
n1 − Qg1

e

)2

+ EC2

(
n2 − Qg2

e

)2

+2ECM

(
n1 − Qg1

e

)(
n2 − Qg2

e

)
, (3.1)
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Figure 3.1: Schematic of a double-island device. The first (1) and second (2)
islands are capacitively coupled to two gate voltages, Vg1 and Vg2, and separated
from each other and from the left and right electrodes by tunnel barriers. The
system is symmetrically biased, VL = V/2 and VR = −V/2.

where n1(2) is the number of excess electrons on the first (second) island and
Qg1(g2) describes the respective charge induced by applied voltages, Qg1(g2) =
CL(R)VL(R) + Cg1(g2)Vg1(g2). EC1 and EC2 denote the charging energies of the
corresponding islands, whereas ECM

describes the electrostatic energy of coupling
between the islands

EC1(C2) =
e2

2C1(2)

(
1− C2

M

C1C2

)−1

, (3.2)

ECM
=

e2

2CM

(
C1C2

C2
M

− 1

)−1

, (3.3)

with C1(2) being the total capacitance of the first (second) island, C1(2) = CL(R) +
Cg1(g2) + CM, and CM denoting the capacitance of the middle junction. The
electrostatic energy, Eq. (3.1), is given with accuracy to terms irrelevant of n1

and n2. This, however, does not affect the final result because one is mainly
interested in energy change between different charge states. Thus, the terms
independent of electron numbers cancel. In real systems there may be a finite
cross coupling between the first (second) gate voltage and the second (first) island
[78]. In the following, however, it is assumed that the capacitance corresponding
to this coupling is negligible.

In our considerations only the first-order tunneling processes are taken into
account. The calculations are based on the master equation method and tunnel-
ing rates are given by the Fermi golden rule. The details and assumptions of the
formalism were presented in the previous chapter. The main difference is that in
the case of double-island devices the charge state of the system is defined by two
numbers, (n1, n2), instead of one, as was in the case of single-electron transistors.
This however complicates only the numerical part of the analysis.
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In order to calculate the stationary current through the system it is necessary
to determine the probabilities P (n1, n2, V ) of finding the system in the charge
state with n1 and n2 additional electrons on the first and second islands, respec-
tively, when a bias voltage V is applied. The corresponding probabilities can be
calculated in a recursive way from the following steady-state master equation

0 = −
∑

σ

[
Γσ

L1(n1, n2, V ) + Γσ
1L(n1, n2, V ) + Γσ

12(n1, n2, V )

+Γσ
21(n1, n2, V ) + Γσ

2R(n1, n2, V ) + Γσ
R2(n1, n2, V )

]
P (n1, n2, V )

+
∑

σ

Γσ
L1(n1 − 1, n2, V )P (n1 − 1, n2, V )

+
∑

σ

Γσ
1L(n1 + 1, n2, V )P (n1 + 1, n2, V )

+
∑

σ

Γσ
12(n1 + 1, n2 − 1, V )P (n1 + 1, n2 − 1, V )

+
∑

σ

Γσ
21(n1 − 1, n2 + 1, V )P (n1 − 1, n2 + 1, V )

+
∑

σ

Γσ
R2(n1, n2 − 1, V )P (n1, n2 − 1, V )

+
∑

σ

Γσ
2R(n1, n2 + 1, V )P (n1, n2 + 1, V ) , (3.4)

and are fully determined using the normalization,
∑

n1,n2
P (n1, n2, V ) = 1. The

corresponding transition rates are given by Eq. (2.2), while the respective changes
in the total system electrostatic energy read

∆Eσ
L1(n1, n2) = E(n1 + 1, n2)− E(n1, n2) + eVL + ∆Eσ

F1 , (3.5)

∆Eσ
12(n1, n2) = E(n1 − 1, n2 + 1)− E(n1, n2)−∆Eσ

F1 + ∆Eσ
F2 , (3.6)

∆Eσ
2R(n1, n2) = E(n1, n2 − 1)− E(n1, n2)− eVR −∆Eσ

F2 , (3.7)

if an electron with spin σ tunnels from the left lead to the first island, from
the first island to the second one, and from the second island to the right lead,
respectively, whereas for tunneling backward they are given by

∆Eσ
1L(n1, n2) = E(n1 − 1, n2)− E(n1, n2)− eVL −∆Eσ

F1 , (3.8)

∆Eσ
21(n1, n2) = E(n1 + 1, n2 − 1)− E(n1, n2) + ∆Eσ

F1 −∆Eσ
F2 , (3.9)

∆Eσ
R2(n1, n2) = E(n1, n2 + 1)− E(n1, n2) + eVR + ∆Eσ

F2 . (3.10)

Here, ∆Eσ
F1 and ∆Eσ

F2 denote the corresponding shifts of the chemical potentials
for spin σ electrons in the first and second islands. In order to describe the spin
asymmetry of barriers, an asymmetry factor of barrier r, αr, defined as αr =
Rr↑/Rr↓, is introduced. The asymmetry factor corresponds to the ratio of the
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respective spin-dependent densities of states. In particular, for FM/NM junctions
it is given by α = ρ↓/ρ↑, whereas for FM/FM junctions α = ρ2

↓/ρ
2
↑, provided

that the two ferromagnetic electrodes are built of the same materials. The total
resistance of barrier r is denoted by Rr and equal to 1/Rr = 1/Rr↑ + 1/Rr↓.
When a bias voltage is applied to the system, a nonequilibrium spin accumulation
may appear on the islands. Generally, the shift of the Fermi level for each spin
direction may be different. In the following discussion, it is assumed that the
ratio of the Fermi level shifts for the spin-up and spin-down electrons, defined as
βj = −∆E↑

Fj/∆E↓
Fj, fulfills the relation βj = ρIj↑/ρIj↓, for the first (j = 1) and

second (j = 2) islands, respectively, with ρIjσ being the spin-dependent density of
states of the j-th island. As a consequence, for nonmagnetic islands one directly
gets, β1 = β2 = 1.

Having found the probabilities P (n1, n2, V ), one can calculate electric current
from the following formula

IL = −e
∑

σ

∞∑
n1,n2=−∞

[Γσ
L1(n1, n2, V )− Γσ

1L(n1, n2, V )] P (n1, n2, V ) .(3.11)

The above equation corresponds to the current flowing through the left junction,
which in the stationary state is equal to currents flowing through the middle (IM)
and right junctions (IR).

3.2 Numerical Results in the Absence of Spin

Accumulation

Transport characteristics of a system built of two ferromagnetic islands and non-
magnetic external electrodes are shown in Fig. 3.2. Different magnetic configu-
rations of the system are specified in the inset of Fig. 3.2c. It is assumed that
the relaxation time in the islands is much shorter than the time between two suc-
cessive tunneling events. As a consequence, there is no spin accumulation on the
islands. Because there is an asymmetry between junction resistances, the charge
accumulates on the islands, as displayed in Fig. 3.2a. First of all, it can be seen
that with increasing bias voltage, the amount of excess charge on the islands also
increases. Because of the barrier asymmetry, it is easier for electrons to tunnel
on the second island from the right lead than out of the second island to the first
one. As a consequence, the electrons accumulate on the second island. On the
other hand, it is easier for electrons to tunnel out of the first island to the left
lead than from the second island to the first island. Thus, the number of excess
electrons on the first island decreases with increasing the bias voltage – there
are holes accumulated on the first island. This is the case in both magnetic con-
figurations. The electric current flowing through the system in the parallel and
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Figure 3.2: The average electron number on the islands (a), currents (b) in
the parallel and antiparallel configurations and the resulting TMR (c) as a func-
tion of the bias voltage. The parameters are: C1 = C2 ≡ C = 3CM = 3 aF,
kBT/(e2/2C) = 0.05. The spin asymmetries of resistances in the parallel con-
figuration are αL = αR = 5, αM = 25, whereas the total junction resistances
are RP

L = RP
R = RP

M/10 = 1 MΩ. In the antiparallel configuration, RAP
Lσ = RP

Lσ,
RAP

M↑ = RAP
M↓ = (RP

M↑R
P
M↓)

1/2, and RAP
Rσ = RP

Rσ̄.

antiparallel configurations is shown in Fig. 3.2b. The Coulomb steps due to dis-
crete charging are clearly evident. Furthermore, the current flowing through the
system in the parallel configuration is generally larger than the current flowing in
the antiparallel configuration. This difference in turn gives rise to nonzero tunnel
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Figure 3.3: The current in the parallel and antiparallel configurations and result-
ing TMR as a function of gate voltages (Vg1 = Vg2 = Vg) for V = 80 mV. The
other parameters are the same as in Fig. 3.2.

magnetoresistance, which is shown in Fig. 3.2c. The TMR effect oscillates as a
function of the bias voltage and the amplitude of these oscillations decreases as
the voltage is increased in a similar way as in the case of FM SETs, see Fig. 2.2b.
Moreover, some dips occur in TMR at voltages corresponding to the steps in the
current-voltage characteristics.

The current calculated for both magnetic configurations and the resulting
TMR as a function of the gate voltage are displayed in Fig. 3.3. Figure was
generated for V = 80 mV and the same voltage was applied to each gate Vg1 =
Vg2 = Vg. The chosen value of the bias voltage corresponds to that slightly
above the threshold voltage, see Fig. 3.2b. The Coulomb oscillations of electric
current are presented in Fig. 3.3a. It is interesting to note that this dependence
is different from that shown in Fig. 2.3a for single-electron transistor. Now there
are two peaks for each period of Coulomb oscillations [77, 79]. The oscillations
of current lead in turn to the oscillatory behavior of TMR as a function of gate
voltage, as illustrated in Fig. 3.3b.

The density plot of the TMR effect as a function of gate voltages is shown
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Figure 3.4: The tunnel magnetoresistance as a function of gate voltages for
V = 60 mV. The other parameters are the same as in Fig. 3.2.

in Fig. 3.4. The results are shown for a constant and nonzero bias voltage. It
can be seen that TMR varies periodically with both gate voltages. By changing
gate voltages it is possible either to enhance or suppress the TMR to almost zero.
Thus, the device can be used as a magnetoresistive element with gate-controlled
amplitude of tunnel magnetoresistance [75].

3.3 Numerical Results in the Presence of Spin

Accumulation

If the spin relaxation time is longer than the time between two successive tunnel-
ing events, a nonequilibrium magnetic moment appears on each island. In order
to calculate the corresponding shifts of the Fermi level due to spin accumula-
tion, one can use the spin current conservation equations, which for the first and
second islands are given by

1

e
(Iσ

M − Iσ
L)− ρI1σΩI1

τsf1

∆Eσ
F1 = 0 , (3.12)

1

e
(Iσ

R − Iσ
M)− ρI2σΩI2

τsf2

∆Eσ
F2 = 0 , (3.13)

with ρIjσ being the spin-dependent density of states and ΩIj denoting the volume
of the j-th island. The spin relaxation time of the j-th island is denoted by τsfj,
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and Iσ
r is the current flowing through the r-th junction in the spin channel σ.

From the above equations it is possible to calculate self-consistently the shifts
of the Fermi level. For relaxation times much longer than the injection time, it
is justifiable to assume that the spin currents through each junction have to be
conserved, Iσ

L = Iσ
M = Iσ

R.
If the two islands are nonmagnetic, whereas the electrodes are ferromagnetic,

one could expect no TMR effect. However, a finite TMR in such systems may
appear due to nonequilibrium magnetic moment that builds up on the islands if
the spin of tunneling electrons does not relax for sufficiently long time. In this
situation the islands become magnetized, which in turn leads to nonzero tunnel
magnetoresistance. When considering the case of zero temperature, assuming
no charging effects and that the islands are built of the same materials, whereas
the external electrodes are made from the same ferromagnets, one can write the
spin currents in the antiparallel configuration as [72], I↑L ∼ ρIρ↑(−eV/2−∆E↑

F1),

I↑M ∼ ρ2
I (∆E↑

F1−∆E↑
F2), I↑R ∼ ρIρ↓(−eV/2+∆E↑

F2), for the spin-up electrons, and

I↓L ∼ ρIρ↓(−eV/2−∆E↓
F1), I↓M ∼ ρ2

I (∆E↓
F1 −∆E↓

F2), I↓R ∼ ρIρ↑(−eV/2 + ∆E↓
F2),

for the spin-down electrons. When assuming further that ρ↑ + ρ↓ = 2ρI ≡ ρ,
it is possible to express the densities of states in terms of spin polarization p,
given by Eq. (1.4), as ρ↑ = ρ(1 + p)/2 and ρ↓ = ρ(1 − p)/2. Using the spin
current conservation in the limit of long relaxation time, one can determine the
corresponding shifts of the Fermi levels, they read

∆E↑
F1 = −eV

6
− eV

3

(3− p)p

3− p2
,

∆E↓
F1 = −eV

6
+

eV

3

(3 + p)p

3− p2
,

∆E↑
F2 =

eV

6
− eV

3

(3 + p)p

3− p2
,

∆E↓
F2 =

eV

6
+

eV

3

(3− p)p

3− p2
.

It can be seen from the above equations that ∆Eσ
F1 = −∆Eσ̄

F2, for σ =↑, ↓. It
is also interesting to note that ∆Eσ

F1 and ∆Eσ
F2 may change sign, depending on

value of the spin polarization p. In a similar way one can show that for the parallel
configuration there is no spin accumulation and the electrochemical potentials of
the islands are ∆Eσ

F1 = −eV/6 and ∆Eσ
F2 = eV/6, irrespective of spin σ. Using

calculated shifts of the Fermi level it is then easy to find the value of the TMR
effect, it is given by TMR = 2p2/(3−3p2). This value of TMR corresponds to one
third of the Jullière’s value. It is worth noting that in the case of single-electron
transistors with nonmagnetic islands, TMR was found to be equal to a half of the
Jullière’s value [72]. Thus, TMR decreases as the number of islands is increased.

Once the charging effects become important and there is an asymmetry be-
tween barriers, the situation becomes more complex and analytical analysis is not
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Figure 3.5: The shifts of the Fermi levels for spin-up electrons (a), currents in the
parallel and antiparallel configurations (b) and TMR (c) as a function of the bias
voltage. The parameters are: C1 = C2 ≡ C = 3CM = 3 aF, kBT/(e2/2C) = 0.05,
β1 = β2 = 1, τsf1 → ∞, τsf2 =→ ∞, αL = αR = 5, αM = 1, whereas RP

L = RP
R =

RP
M/50 = 1 MΩ. In the antiparallel configuration, RAP

Lσ = RP
Lσ, RAP

Rσ = RP
Rσ̄.

too straightforward. In this case, the associated spin accumulation is analyzed
numerically. Figure 3.5 shows the shifts of the Fermi levels and currents in the
parallel and antiparallel configurations, as well as the resulting TMR calculated
in the limit of long spin relaxation time for the system built of ferromagnetic
electrodes and nonmagnetic islands. The magnetic moments of external elec-
trodes can form either parallel or antiparallel configurations, as illustrated in the
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Figure 3.6: TMR calculated for different values of bias voltage as a function of
relaxation time for τsf1 = τsf2 = τsf and ρI1ΩI1 = ρI2ΩI2 = 1000/eV. The other
parameters are the same as in Fig. 3.5.

inset of Fig. 3.5c. First of all, it can be seen that nonequilibrium spin accumula-
tion, shown in Fig. 3.5a, exists not only in the antiparallel configuration but also
in the parallel configuration. In the antiparallel configuration the shifts of the
Fermi level for a given spin orientation are equal, whereas in the parallel config-
uration they are opposite. Furthermore, the effects due to discrete charging lead
to an oscillatory behavior of the Fermi level shift, in a similar way as in the case
of single-electron transistors with nonmagnetic islands discussed in the previous
chapter. The currents flowing through the system in both magnetic configura-
tions are shown in Fig. 3.5b. Characteristic Coulomb steps due to single-electron
charging are clearly visible. Moreover, because of nonequilibrium spin accumula-
tion induced on the islands, the currents flowing in the parallel and antiparallel
configurations are different. This difference, in turn, leads to nonzero tunnel
magnetoresistance, as displayed in Fig. 3.5c. It can be seen that TMR oscillates
as a function of the bias voltage and the amplitude of these oscillations decreases
with increasing the voltage. Furthermore, the TMR may change sign, depending
on the value of transport voltage. These effects are clearly due to accumulated
magnetic moments on the islands. If spin relaxation time becomes shorter than
the time between successive tunneling events, spin accumulation disappears and,
consequently, TMR also vanishes. This is shown in Fig. 3.6, where the TMR is
plotted for several values of the bias voltage as a function of spin relaxation time.
The values of bias voltage correspond to maximal and minimal values of TMR,
see Fig. 3.5c. Moreover, it can also be seen that the crossover from the limit of
fast relaxation time to the limit of short relaxation time takes place for τsf of the
order of 10−8 s.

Transport characteristics as a function of the gate voltage are shown in Fig. 3.7
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Figure 3.7: The gate voltage dependence of the Fermi level shifts for spin-
up electrons (a), currents in the parallel and antiparallel configurations (b) and
resulting TMR (c) for Vg1 = Vg2 = Vg and V = 150mV. The other parameters
are the same as in Fig. 3.5.

for Vg1 = Vg2 = Vg and for bias voltage V = 150 mV. The value of bias volt-
age corresponds to the middle of the first Coulomb step in the respective I-V
curves. At this voltage the spin accumulation has local maximum, see Fig. 3.5a.
The Fermi level shifts oscillate as a function of the gate voltage, as presented
in Fig. 3.7a. The shifts of the Fermi level in the antiparallel configuration are
symmetric with respect to Vg = 0, for the parallel configuration, however, their
dependence on gate voltage is more complex. The Coulomb oscillations of elec-
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Figure 3.8: The density plot of TMR as a function of both gate voltages for
V = 170 mV. The other parameters are the same as in Fig. 3.5.

tric current in the parallel and antiparallel magnetic configurations are depicted
in Fig. 3.7b, whereas TMR is displayed in Fig. 3.7c. It can be seen that TMR
exhibits an oscillatory behavior as a function of gate voltage. Moreover, TMR
changes sign when sweeping the gate voltage. As a consequence, by applying
appropriate gate voltages, it is possible to tune the magnitude of TMR from pos-
itive to negative values. This is also shown in Fig. 3.8, which presents the density
plot of tunnel magnetoresistance as a function of both gate voltages calculated
for V = 170 mV. This value of bias voltage corresponds to the minimal value of
TMR, see Fig. 3.5c.

Some further interesting effects appear in systems built of ferromagnetic is-
lands with long spin relaxation time. In this situation, nonequilibrium magnetic
moments due to spin accumulation can also appear on the islands. Because the
islands are ferromagnetic, the ratio of the Fermi level shifts for spin-up and spin-
down electrons is not equal to unity, as was in the case of nonmagnetic islands,
but depends on the ratio of the corresponding spin-dependent densities of states
of islands. Transport characteristics of system consisting of ferromagnetic islands
and nonmagnetic leads are shown in Fig. 3.9. In particular, the shifts of the
Fermi levels in the parallel and antiparallel configurations are shown in Fig. 3.9a,
whereas the current is shown in Fig. 3.9b. As the current flowing in the antiparal-
lel configuration presents a typical Coulomb staircase characteristic, the behavior
of current flowing in the parallel configuration is more complex. It can be seen
that once a Coulomb step is reached, the current starts decreasing in some range
of bias voltage, thus, leading to negative differential conductance, as shown in
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Figure 3.9: The shifts of the Fermi levels for majority-spin electrons (a), currents
(b) and differential conductance (c) in the parallel and antiparallel configurations
and the TMR effect (d) as a function of the bias voltage. The parameters are:
C1 = C2 ≡ C = 3CM = 3 aF, kBT/(e2/2C) = 0.03, β1 = β2 = 0.2, τsf1 → ∞,
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M↑R
P
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1/2, and
RAP

Rσ = RP
Rσ̄.
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Figure 3.10: The density plot of differential conductance dI/dV (µA/V) in the
parallel configuration as a function of both gate voltages for V = 200 mV. The
other parameters are the same as in Fig. 3.9.

Fig. 3.9c. It is further clearly visible that negative differential conductance exists
only in the parallel configuration and is absent in the antiparallel configuration.
The occurrence of negative differential conductance, however, depends on the pa-
rameters of the system. As shown in the sequel, negative differential conductance
may also exist in the antiparallel configuration. Moreover, it can be observed that
differential conductance oscillates as a function of bias voltage and the oscillations
reflect the step-like current-voltage dependence. Furthermore, it is worth noting
that the period of conductance oscillations in the parallel configuration is slightly
modified as compared to that in the antiparallel configuration. The effect of
modified period of Coulomb staircase for different magnetic configurations is due
to spin accumulation and was already predicted theoretically for single-electron
transistors [55]. The TMR effect corresponding to I-V curves shown in Fig. 3.9b
is displayed in Fig. 3.9d. The oscillatory behavior of TMR as a function of the
bias voltage is clearly visible. Furthermore, the TMR exhibits a large maximum
at transport voltage corresponding to the first Coulomb step, the amplitude of
TMR, however, decreases with increasing bias voltage.

The conductance through the system can be tuned by applying gate voltages.
This is illustrated in Fig. 3.10, where differential conductance in the parallel
configuration is plotted as a function of both gate voltages for V = 200 mV.
At this value of bias voltage the differential conductance becomes negative, see
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Fig. 3.9c. It can be seen that differential conductance varies periodically with
gate voltages. Thus, by applying respective gate voltages one can change value
of the differential conductance from positive to negative.

The negative differential conductance occurs due to nonequilibrium spin ac-
cumulation on the islands and disappears in the limit of fast spin relaxation time.
Figure 3.11 presents differential conductance in the parallel configuration and the
TMR effect as a function of the relaxation time for two values of the bias voltage.
The first one, V = 175 mV, corresponds to the second Coulomb step, whereas
the second one, V = 200 mV, corresponds to the voltage where differential con-
ductance is negative, see Fig. 3.9. Consider first the case of V = 175 mV. As
the relaxation time becomes longer, both the differential conductance and TMR
increase, as illustrated in Fig. 3.11a and b. It is further interesting to note that
this increase is nonmonotonic – there is a peak in differential conductance and a
slight dip in the TMR effect at relaxation time corresponding to the time between
successive tunneling events. For V = 200 mV, on the other hand, the differen-
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tial conductance decreases and changes its sign as the relaxation time becomes
longer – it is positive in the limit of fast relaxation, whereas in the limit of slow
spin relaxation differential conductance becomes negative. Furthermore, it can
be seen that the TMR effect is larger in the limit of fast spin relaxation than in
the limit of slow spin relaxation. This behavior is opposite to the one observed
for V = 175 mV. Moreover, at the crossover between those two limits there is
a slight maximum in TMR. Thus, both differential conductance and the TMR
effect exhibit distinctively different behavior as a function of the relaxation time,
depending on value of the bias voltage and, consequently, spin accumulation.

Recently, several experiments on spin-polarized transport through granular
systems were reported [42, 43, 54, 69, 80]. For example, in Ref. [54], the tun-
neling current was driven from a tip of scanning tunneling microscope through
ferromagnetic grains to ferromagnetic electrode. Transport measurements of such
devices showed pronounced Coulomb steps in the current-voltage characteris-
tics. Moreover, negative differential conductance was observed. It was further
proposed that the mechanism responsible for occurrence of negative differential
conductance could be nonequilibrium spin accumulation. Such systems can be
modelled theoretically by double-island devices whose two islands and the right
electrode are ferromagnetic, whereas the left electrode is nonmagnetic, corre-
sponding to nonmagnetic tip of scanning tunneling microscope, see the inset of
Fig. 3.12c. Transport characteristics of such device are displayed in Fig. 3.12.
The parameters used to generate this figure correspond to the parameters taken
from Ref. [54]. In calculations the nonequilibrium spin accumulation was also
taken into account. The shifts of the Fermi level for spin-up electrons are shown
in Fig. 3.12a. The oscillations of spin accumulation are clearly evident. Fur-
thermore, the Fermi level shifts on the islands are different in both magnetic
configurations. Generally, spin accumulation on the first island is larger than the
accumulation on the second island. The reason for this is the fact that the rate for
electron tunneling from the first island to the left lead is smaller than the rate for
tunneling of electrons to or from the second island, which is due to asymmetry of
barriers. The currents flowing through the system in the parallel and antiparallel
configurations are illustrated in Fig. 3.12b. The I-V curves present the typical
Coulomb staircase characteristics. Moreover, negative differential conductance
occurs in both magnetic configurations, however, it is more pronounced in the
antiparallel configuration, as shown in Fig. 3.12c. It can be seen that negative
differential conductance increases with increasing the bias voltage. These numer-
ical results are in good agreement with experimental data presented in Ref. [54].
The resulting TMR effect is displayed in Fig. 3.12d. The oscillatory behavior
of TMR with bias voltage is visible. Furthermore, it is interesting to note that
TMR oscillates between negative and positive values.

In order to present more clearly the effect of spin accumulation on trans-
port characteristics, in Fig. 3.13 we show the electric current for parallel and
antiparallel configurations and resulting TMR calculated in the limit of fast spin
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Figure 3.12: The shifts of the Fermi levels for majority-spin electrons (a), currents
(b) and differential conductance (c) in the parallel and antiparallel configurations,
and the resulting TMR (d) as a function of the bias voltage. The parameters are:
T = 140 K, CL = 0.45 aF, CM = 0.2 aF, CR = 0.35 aF, Cg1 = Cg2 = 0,
α2

L = αM = αR = 25, and β1 = β2 = 0.2, whereas τsf1 = τsf2 = ∞. The total
junction resistances are RL = 3500 MΩ, RM = RR = 1 MΩ. In the antiparallel
configuration, RAP

Lσ = RP
Lσ, and RAP

r↑ = RAP
r↓ = (RP

r↑R
P
r↓)

1/2, for r = M, R.

38



3 Double-Island Devices 3.3 Results in the Presence of Spin Accumulation

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

0.5

V (V)

 

I 
(n

A
)

0.0

0.4

0.8

1.2

 

 

T
M

R

 

Figure 3.13: The currents flowing in the parallel (solid line) and antiparallel
(dashed line) configurations and resulting TMR (dotted line) as a function of the
bias voltage in the limit of short relaxation time. The other parameters are the
same as in Fig. 3.12.

relaxation time. In this limit there is no associated spin accumulation because
the electron spin relaxes before next tunneling event takes place. First of all, it
can be seen that the negative differential conductance vanishes in the limit of
fast spin relaxation time and the current-voltage curves present typical Coulomb
staircase characteristics. Furthermore, although the TMR effect still exhibits
an oscillatory behavior as a function of bias voltage, its value is always positive
and the amplitude of oscillations is much suppressed. The dependence of tunnel
magnetoresistance on bias voltage displays small peaks at the Coulomb steps,
otherwise TMR tends to zero.

In the case of analyzed systems, the negative differential conductance occurs
due to nonequilibrium spin accumulation on the islands. It is however worth
noting that the negative differential conductance may also exist in single-electron
devices built of nonmagnetic materials [78, 81].

To summarize, one of the main effects caused by nonequilibrium spin accu-
mulation on the islands is negative differential conductance. Furthermore, spin
accumulation also influences TMR – it oscillates as a function of bias voltage
between positive and negative values. These effects are clearly due to spin accu-
mulation and disappear once the relaxation time becomes shorter than the time
between successive tunneling events.
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3.4 Spin Pumps

The possibility of pumping electrons one by one through nonmagnetic double-
island devices was already proposed and demonstrated in the past decade [4, 82,
83]. In order to pump single electrons, one has to apply two gate voltages, shifted
in phase by π/2, to the islands. In this case, by changing continuously the poten-
tials of the islands, the electrons are pumped through the system one per cycle.
Such device is called single-electron pump. If, in turn, the electrodes are made
of ferromagnetic material the current is spin-polarized. The spin polarization of
such current depends on the parameters of the system. Consequently, such device
may be used for pumping electrons with a given spin orientation. The possibility
of pumping single electrons in ferromagnetic double-island devices was proposed
in Ref. [76]. In this work the process of pumping was obtained by applying alter-
nating magnetic field which caused the shift of electrochemical potentials of the
islands.

In this section we show that in the case of ferromagnetic double-island de-
vices one can also pump electrons with given spin orientation by attaching two
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Figure 3.14: The average number of excess electrons on the islands in the linear
response regime for Vg1 = Vg0 +VgA cos ϕ and Vg2 = Vg0 +VgA cos (ϕ + π/2), with
Vg0 = 50 mV and VgA = −70 mV. The other parameters are the same as in
Fig. 3.2.
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alternating gate voltages to the islands. In the following, it is assumed that the
frequency of the gate voltages is low as compared to the time between succes-
sive tunneling events, so that the system is always in a well-defined charge state
(n1, n2). We consider the system built of two ferromagnetic islands and nonmag-
netic leads, as illustrated in the inset of Fig. 3.2c, and assume that the leads
are magnetized in parallel. Figure 3.14 displays the average electron number on
the islands in the linear response regime at different phases of the gate voltages,
ϕ = 0, π/2, π, 3π/2. The voltage Vg0 is chosen in this way so that the system
is close to the degeneracy point where three charge states are possible, namely,
(0, 0), (0, 1) and (1, 0). As can be seen in Fig. 3.14a, for ϕ = 0 there are no excess
electrons on the islands and the system is in the charge state (0, 0). Then, as the
time goes by, an electron from the right lead tunnels into the second island and,
consequently, the system is in the charge state (0, 1). This situation occurs for
ϕ = π/2, as shown in Fig. 3.14b. In turn in the case of ϕ = π, the charge state
of the system changes into (1, 0), see Fig. 3.14c. This happens by tunneling of
an electron from the second island to the first one. Then, the electron from the
first island tunnels further to the left lead and the system is again in the charge
state (0, 0), as illustrated in Fig. 3.14d for ϕ = 3π/2. This scenario repeats with
each period of the gate voltage effectively giving rise to the process of single-
electron pumping. Because the system is ferromagnetic the pumped current is
spin-polarized. The spin-polarization of pumped electrons η, given by Eq. (2.8),
depends on the parameters of the system, in particular, on the spin asymmetry
of barriers. For the parameters assumed here η = −2/3.
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Spin-Polarized Transport
through Quantum Dots

42



In the previous part spin-polarized transport through single-electron devices
was discussed. The central mesoscopic electrodes were assumed to have suffi-
ciently small dimensions, so that the energy associated with addition of a single
electron was the most relevant energy scale. The level quantization of the islands,
however, was still negligible. If, nevertheless, the size of the island is reduced fur-
ther, the energy spectrum becomes quantized and only a few discrete energy
levels contribute to the conductance. In this case one arrives at slightly more
sophisticated systems – the ones based on quantum dots (QDs) or molecules.
Quantum dots are man-made structures consisting of a small number of free elec-
trons, which can range from zero to a few hundreds [7]. The energy spectrum of
quantum dots is quantized in a way resembling that of atoms, therefore, quantum
dots are also frequently called artificial atoms [84, 85].

Quantum dots have already paved their way to become underlying devices of
spintronics not only because of beautiful physics emerging in those systems, but,
more importantly, due to possible future applications and due to the possibil-
ity of manipulation of a single spin [7, 40, 86, 87]. The transport properties of
quantum dots coupled to nonmagnetic leads have already been extensively stud-
ied both theoretically and experimentally [7, 22, 27, 28, 86, 87, 88, 89]. Some
further interesting effects occur in the case of quantum dots coupled to ferro-
magnetic leads. Certain aspects of spin-dependent transport through quantum
dots have already been considered theoretically. For example, the TMR effect
was thoroughly analyzed in the limit of sequential tunneling, and the influence
of spin-flip relaxation processes in the dot on TMR was discussed [90, 91, 92].
Furthermore, the dependence of the first-order conductance through a quantum
dot on the angle between magnetic moments of the leads was also considered
[93, 94, 95, 96]. However, in some cases considerations taking into account only
first-order processes are not sufficient. The first-order contribution is only domi-
nant for transport voltages exceeding the threshold voltage, whereas for voltages
below the threshold, the system is in the Coulomb blockade regime and the
sequential tunneling is suppressed, see section 1.2.2. Although the first-order
tunneling in the Coulomb blockade regime is prohibited by energy conservation,
the current can still be mediated by higher-order processes such as cotunneling
[22, 29, 30, 33]. The cotunneling current through quantum dots was studied both
experimentally [97, 98, 99, 100] and theoretically [101, 102, 103, 104, 105, 106].
Contrarily to the case of metallic islands, the cotunneling current through quan-
tum dots was found to be linear with the applied voltage [101]. It was shown
that the second-order contribution leads to renormalization of the dot level and
the dot-lead coupling strength [102]. Furthermore, the resonant tunneling regime
in the case of quantum dots coupled to ferromagnetic leads was also considered
[107, 108].

This part of the thesis presents a thorough analysis of transport through
single-level quantum dots weakly coupled to ferromagnetic leads both in the se-
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quential and cotunneling regimes in the full range of parameters1. In particular,
it is shown that the tunnel magnetoresistance displays distinctively different be-
havior depending on the transport regime. Furthermore, a new zero-bias anomaly
is found in differential conductance when the leads are magnetized antiparallel
to each other. The effect of intrinsic spin relaxation on the dot on conductance
in the Coulomb blockade regime is also analyzed. Moreover, the problem of co-
tunneling transport through quantum dots coupled to ferromagnetic leads with
noncollinear alignment of magnetic moments is addressed.

The systems studied in this chapter may be realized experimentally in various
ways, including ultrasmall aluminum nanoparticles [40], single molecules [109],
self-assembled dots in ferromagnetic semiconductors [119], or carbon nanotubes
[120, 121, 122, 123, 124].

1Another interesting situation occurs in the case when the dot is strongly coupled to external
leads. The Kondo physics emerges then at sufficiently low temperatures [109, 110, 111, 112, 113,
114]. In order to analyze the Kondo effect [115], one needs to employ some nonperturbative
methods such as, for example, the numerical renormalization group method [116, 117, 118].
These very interesting issues, however, go beyond the scope of the present thesis.
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Chapter 4

Transport through Quantum
Dots Coupled to Ferromagnetic
Leads with Collinear
Magnetizations

In this chapter transport through a single-level quantum dot weakly coupled to
ferromagnetic leads is analyzed in the full range of parameters. It is assumed that
magnetic moments of the electrodes are collinear. The considerations are based
on the real-time diagrammatic technique and tunneling contributions of the first
and second order in the tunnel-coupling strength are taken into account. The dot
occupation probabilities, current and resulting tunnel magnetoresistance, as well
as the differential conductance are calculated in both the linear and nonlinear
response regimes. Furthermore, the impact of intrinsic spin relaxation processes
in the dot on the conductance in the Coulomb blockade regime is analyzed.

4.1 Description of Model

A schematic of a single-level quantum dot is presented in Fig. 4.1. The dot
is weakly coupled to two ferromagnetic electrodes whose magnetizations are
collinear. Thus, the orientations of the lead magnetic moments can be either
parallel or antiparallel. Extension to a noncollinear case, however, is straightfor-
ward. There is also a gate voltage attached to the dot.

The system is modelled by an Anderson-like Hamiltonian of the form [125]

H = HL + HR + HD + HT . (4.1)

The first and second terms represent the left and right reservoirs of noninteracting
electrons, Hr =

∑
qσ εrqσc

†
rqσcrqσ, for r = L, R, where c†rqσ (crqσ) is the creation

(annihilation) operator of an electron with wave number q and spin σ in the
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Dot
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Figure 4.1: Schematic of a single-level quantum dot coupled to ferromagnetic
leads. The magnetic moments of external electrodes can be aligned either in
parallel or antiparallel. The system is symmetrically biased and there is a gate
voltage attached to the dot.

lead r, whereas εrqσ denotes the corresponding single-particle energy. The second
part of the Hamiltonian, HD, represents the dot and involves two terms. The
first term describes noninteracting electrons on the dot, whereas the second term
represents the Coulomb interaction described by the correlation energy U . The
dot Hamiltonian can be then expressed as

HD =
∑

σ=↑,↓
εσd

†
σdσ + Ud†↑d↑d

†
↓d↓ , (4.2)

where εσ = ε ∓∆/2 is the energy of an electron on the dot with spin σ and d†σ
(dσ) is the corresponding creation (annihilation) operator. The position of the dot
level can be tuned by the gate voltage, but is independent of the symmetrically-
applied transport voltage. Furthermore, the dot level may be spin-split due to
for example a stray field of the electrodes or an external magnetic field. The
corresponding level splitting is denoted by ∆, whereas ε is the energy of the spin-
degenerate dot level (∆ = 0). Because of the finite Coulomb energy U , there
are four different states of the dot possible – empty dot (χ = 0), singly occupied
dot with a spin-up (χ =↑) or spin-down (χ =↓) electron, and doubly occupied
dot (χ = d), where |χ〉 are the corresponding eigenfunctions. This results in a
four-by-four density matrix for the quantum dot subsystem.

Interaction between the leads and quantum dot is incorporated in the tunnel-
ing Hamiltonian, HT, given by

HT =
∑

r=L,R

∑
qσ

(
trqσc

†
rqσdσ + t∗rqσd

†
σcrqσ

)
, (4.3)

where trqσ are the tunnel matrix elements. Tunneling gives rise to an intrinsic
broadening Γσ of the dot levels, Γσ =

∑
r=L,R Γσ

r . The parameters Γ↑r and Γ↓r
describe contributions to the level widths due to coupling of the dot to the lead
r. The respective contribution Γσ

r can be expressed in terms of the Fermi golden
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rule as Γσ
r = 2π

∑
q |trqσ|2δ(ω − εrqσ). Assuming the tunnel matrix elements trqσ

to be independent of the wave number, one gets

Γσ
r = 2π|trσ|2ρrσ , (4.4)

with ρrσ denoting the spin-dependent density of states in the lead r. In order to
parameterize the system in the most intuitive way, the couplings are expressed
in terms of the spin polarization pr of the lead r, given by Eq. (1.4), as Γ

↑(↓)
r =

Γr(1± pr), where Γr = (Γ↑r + Γ↓r)/2. In general, the leads may have different spin
polarizations and/or coupling strengths to the dot. In the following it is assumed
ΓL = ΓR ≡ Γ/2 and pL = pR ≡ p.

4.2 Real-Time Diagrammatic Technique

In order to investigate transport properties of the system the real-time diagram-
matic technique is employed [102, 126, 127, 128, 129]. A starting point for setting
up a diagrammatic description is an expansion of an expectation value of an op-
erator O at time t with respect to the tunneling Hamiltonian1

〈O(t)〉 = (4.5)

Tr

{
ρ0

∞∑
n=0

(−i)n

∫

K

dτ1

∫

K

dτ2 . . .

∫

K

dτnTK [HT(τ1)IHT(τ2)I . . . HT(τn)IO(t)I]

}
,

where the integrals are with respect to the Keldysh contour and TK is the time
ordering operator, which orders all the following operators along the Keldysh
contour in such way that the operators with later time (on the Keldysh contour)
go at a leftmost position, for example, TK[HT(τ1)IHT(τ2)I] = HT(τ1)IHT(τ2)I, for
τ1 > τ2. The subscript ”I” by the operators denotes that they are written in the
interaction picture. It is assumed that the initial density matrix ρ0 of the whole
system factorizes into the density matrices for the quantum dot and the leads,
ρ0 = ρD

0 ρL
0ρR

0 . The electrons in the leads are described by Fermi functions, whereas
the corresponding density matrix is given by the grand canonical distribution
function. Thus, one can employ the Wick’s theorem to the lead Fermi operators
and integrate out the degrees of freedom of the leads. The Wick’s theorem,
however, can not be applied to the dot operators because the dot Hamiltonian,
Eq. (4.2), is biquadratic with respect to Fermi operators. Thus, these terms have
to be calculated explicitly. As a results, one obtains a reduced density matrix
encompassing only the dot degrees of freedom, i.e., χ = 0, ↑, ↓, d.

The time evolution of the reduced system can be represented graphically as
a sequence of irreducible diagrams on the Keldysh contour. An example of such
time evolution is illustrated in Fig. 4.2, where the upper and lower branches of

1In particular, in the case considered here, the operators to be expanded are the current
operator and the density matrix.
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↑

↑ d ↓ 0 ↑ 0 ↓ ↓

d ↓ 0 ↑ d

d

↓ d ↓

↓L ↑R ↓L ↑L ↓R ↑L
↑R

↓R

Figure 4.2: An example of time evolution of the reduced density matrix. The
grey regions correspond to the irreducible diagrams of the first and second order
in tunneling processes, respectively. Each tunneling line indicates whether an
electron leaves or enters the dot, thus, leading to a change of the dot state, as
indicated on the forward and backward Keldysh propagators.

the Keldysh contour represent the forward and backward propagators, to which
the respective dot states are assigned. The vertices on the propagators corre-
spond to the products of Fermi operators of the leads and the dot. It is further
necessary to distinguish between the vertices originating from the expansion of
the tunnel Hamiltonian (they are referred to as internal vertices) and the vertices
related to the operator, of which the expectation value is calculated (those are
the external vertices). Furthermore, the vertices are connected by tunneling lines
representing the contractions of the lead operators. Each tunneling line acquires
an arrow indicating whether an electron with respective spin leaves or enters the
dot through the corresponding junction. The grey regions in Fig. 4.2 mark the
irreducible diagrams of the first order (diagrams with one tunneling line) and
the second order (diagrams with two overlapping tunneling lines) in the dot-lead
coupling strength Γ. By an irreducible diagram one means a diagram in which
any vertical line drawn between two neighboring vertices on the real axis crosses
at least one tunneling line.

The propagation of the reduced system can be expressed by the reduced prop-

agator Π
χ1χ′1
χ2χ′2

(t, t′), corresponding to the propagation forward in time from state

χ′1 at time t′ to state χ1 at time t and then backward in time from state χ2 at
time t to state χ′2 at time t′. An element of the reduced density matrix at time
t, P χ1

χ2
(t), can be then written as [102]

P χ1
χ2

(t) =
∑

χ′1,χ′2

Π
χ1χ′1
χ2χ′2

(t, t′)P χ′1
χ′2

(t′) , (4.6)

the propagator, in turn, is given by a Dyson equation of the form [102]

Π
χ1χ′1
χ2χ′2

(t, t′) = Π(0)χ1

χ2
(t, t′)δχ1,χ′1δχ2,χ′2 (4.7)

+
∑

χ′′1 ,χ′′2

∫ t

t′
dt2

∫ t2

t′
dt1Π

(0)χ1

χ2
(t, t2)Σ

χ1χ′′1
χ2χ′′2

(t2, t1)Π
χ′′1χ′1
χ′′2χ′2

(t1, t
′) .
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Here, Σ
χ1χ′1
χ2χ′2

(t, t′) is an irreducible self-energy and Π(0)χ1

χ2
(t, t′) denotes the free

propagator, Π(0)χ1

χ2
(t, t′) = exp [−i(εχ1 − εχ2)(t− t′)]. The irreducible self-energy

is given by a sum of all irreducible diagrams having at the ends the corresponding

states. The Dyson equation for propagator Π
χ1χ′1
χ2χ′2

(t, t′) can be written graphically
as

= +Π Π )0( Π )0( Σ Π
1 χ′ 1 χ 1 χ′ 1 χ 1 χ′ 1 χ

2 χ2 χ′2 χ′ 2 χ 2 χ′ 2 χ2 χ ′′

1 χ ′′

(4.8)

By multiplying Eq. (4.7) with P
χ′1
χ′2

(t′) summing over χ′1, χ′2 and differentiating

with respect to t, this equation can be transformed to the following [102]

d

dt
P χ1

χ2
(t) + i(εχ1 − εχ2)P

χ1
χ2

(t) =
∑

χ′1,χ′2

∫ t

t0

dt′Σχ1χ′1
χ2χ′2

(t, t′)P χ′1
χ′2

(t′) . (4.9)

The calculation proceeds with the determination of all the elements of the re-
duced density matrix, which can be found from the above time-dependent equa-
tion. However, in this analysis only the stationary properties of the system are
considered, since the majority of experimental works has been carried out in this
regime. In the stationary state, Eq. (4.9) becomes

0 = (εχ1 − εχ2)P
χ1
χ2

+
∑

χ′1χ′2

Σ
χ1χ′1
χ2χ′2

P
χ′1
χ′2

. (4.10)

Because only spin conserving tunneling processes are taken into account and mag-
netic moments of the leads are collinear, all the spinor functions are represented
in one reference frame. This results in vanishing of the off-diagonal elements of
the reduced density matrix and consequently one can write P χ′

χ ≡ Pχ′ for density

matrix elements and Σχχ′
χ1χ′1

≡ Σχχ′ for self-energies. Thus, the diagonal elements

of the reduced density matrix can be determined from the following steady-state
master equation

0 =
∑

χ

Σχ′χPχ . (4.11)

Now, each element Pχ has its clear physical meaning – it corresponds to the
probability that the dot is in state |χ〉. The electric current is given by [102, 129]

I = − ie

2~
∑

χχ′
ΣI

χ′χPχ , (4.12)

where the self-energy ΣI
χ′χ is modified as compared to Σχ′χ to account for the

number of electrons transferred through the barriers.
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Using the diagrammatic language we perform a perturbative expansion of the
reduced density matrix and self-energies in the coupling strength Γ

Pχ = P (0)
χ + P (1)

χ + . . . , (4.13)

Σχ′χ = Σ
(1)
χ′χ + Σ

(2)
χ′χ + . . . . (4.14)

The expansion of the probabilities starts from the zeroth order, whereas the
expansion of the self-energies proceeds from the first order in the dot-lead coupling
strength Γ.

In these considerations we analyze the current up to the second order in
Γ. This implies that we take into account the first-order and second-order self-
energies. The respective self-energies Σ

(m)
χ′χ and Σ

I(m)
χ′χ are determined by summing

all irreducible diagrams of the m-th order, having at the ends the states χ′ and
χ, respectively. Consequently, the entire problem is reduced to the calculation of
all the self-energies with the aid of the diagrammatic rules. The rules to calculate
contributions coming from corresponding diagrams in energy space will be pre-
sented further on. Having determined the first- and second-order self-energies, it
is straightforward to find the respective probabilities using the following station-
ary master equations [102]

0 =
∑

χ

Σ
(1)
χ′χP (0)

χ , (4.15)

0 =
∑

χ

Σ
(2)
χ′χP (0)

χ + Σ
(1)
χ′χP (1)

χ , (4.16)

for the first and second orders, respectively. The probabilities are fully determined
using the normalization ∑

χ

P (m)
χ = δm,0 . (4.17)

Systematic perturbation expansion of electric current with respect to the cou-
pling strength Γ can be performed in a similar way as in the case of master equa-
tion [129]. The first-order and second-order contributions to the current can be
calculated from the expressions [102, 129]

I(1) = − ie

2~
∑

χχ′
Σ

I(1)
χ′χP (0)

χ , (4.18)

I(2) = − ie

2~
∑

χχ′
Σ

I(2)
χ′χP (0)

χ + Σ
I(1)
χ′χP (1)

χ . (4.19)

Here, the coefficients Σ
I(1)
χ′χ and Σ

I(2)
χ′χ are the first- and second-order self-energies,

respectively, in which one external vertex was substituted for an internal vertex
representing the current operator Î.
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The evaluation of probabilities P
(0)
χ and P

(1)
χ from Eqs. (4.15) and (4.16) has

to be done carefully. As shown in the proceeding subsections, it is necessary to
distinguish between the two cases in which sequential tunneling is either present
or exponentially suppressed [105].

4.2.1 Perturbation Expansion in the Presence of Sequen-
tial Tunneling

In regime where the sequential tunneling is allowed, one can use the perturbation
expansion presented in the previous subsection. In particular, one can determine
the zeroth-order probabilities P

(0)
χ from Eq. (4.15) and, then, plug the result into

Eq. (4.16) in order to evaluate the first-order corrections P
(1)
χ . Having calculated

the corresponding probabilities, one can use the result to calculate the current
from Eqs. (4.18) and (4.19) in the first and second order, respectively.

4.2.2 Perturbation Expansion in the Coulomb Blockade
Regime

The situation, however, becomes more complex for the range of parameters where
the first-order processes are suppressed. In the Coulomb blockade regime, sev-
eral of the first-order self-energies are exponentially small, as they are associated
with energetically forbidden sequential tunneling rates. As a consequence, some
factors in the first-order master equation, Eq. (4.15), are exponentially small.

This is because either the state χ is classically forbidden, i.e., P
(0)
χ is exponen-

tially suppressed, or the state χ is classically allowed but then the corresponding
transition rates Σ

(1)
χ′χ are exponentially small.

This is not a problem for the Coulomb blockade valleys with an even num-
ber of electrons, kBT, |eV | ¿ ε, ε + U and kBT, |eV | ¿ −ε,−ε − U , since for
this case there is only one classically-allowed dot state and from the first-order
master equation one gets P

(0)
χ = δχ,0 and P

(0)
χ = δχ,d, respectively. The situation

is different for the Coulomb blockade valley with an odd number of electrons,
kBT, |eV | ¿ −ε, ε + U , where both the states χ =↑ and χ =↓ are classically
occupied. In this case, Eq. (4.15) simplifies to




Σ
(1)
00 0 0 0

Σ
(1)
↑0 0 0 Σ

(1)
↑d

Σ
(1)
↓0 0 0 Σ

(1)
↓d

0 0 0 Σ
(1)
dd







P
(0)
0

P
(0)
↑

P
(0)
↓

P
(0)
d


 = 0 . (4.20)

From the above equation one obtains P
(0)
0 = P

(0)
d = 0, while the individual

occupation probabilities P
(0)
↑ and P

(0)
↓ remain undetermined. Furthermore, the

probabilities P
(1)
↑ and P

(1)
↓ do not appear in the second-order master equation,
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Eq. (4.16), and the expression for the second-order current, Eq. (4.19), because

they are multiplied with exponentially small self-energies Σ
(1)
χ′χ. As a consequence,

one only needs to find the probabilities P
(1)
0 , P

(0)
↑ , P

(0)
↓ , and P

(1)
d . They are

determined from the second-order master equation given by Eq. (4.16), which
simplifies to 



Σ
(1)
00 Σ

(2)
0↑ Σ

(2)
0↓ 0

Σ
(1)
↑0 Σ

(2)
↑↑ Σ

(2)
↑↓ Σ

(1)
↑d

Σ
(1)
↓0 Σ

(2)
↓↑ Σ

(2)
↓↓ Σ

(1)
↓d

0 Σ
(2)
d↑ Σ

(2)
d↓ Σ

(1)
dd







P
(1)
0

P
(0)
↑

P
(0)
↓

P
(1)
d


 = 0 , (4.21)

together with normalization condition, Eq. (4.17), which is now given by P
(0)
↑ +

P
(0)
↓ = 1. The current can be then calculated from the expression

I = − ie

2~
∑

χ

Σ
I(2)
χ↑ P

(0)
↑ + Σ

I(2)
χ↓ P

(0)
↓ + Σ

I(1)
χ0 P

(1)
0 + Σ

I(1)
χd P

(1)
d . (4.22)

It is worth noting that the current in the Coulomb blockade regime can alter-
natively be calculated without the use of the real-time diagrammatic technique.
Instead one can express the cotunneling rates using the second-order perturbation
theory and then calculate the occupation probabilities from the appropriate mas-
ter equation. This method is known as the Averin-Nazarov approach and will be
described in section 4.3. The results obtained within the second-order perturba-
tion theory are identical to the ones obtained using the diagrammatic language.
Close to resonance, however, it is not sufficient to include the sequential and
cotunneling processes, but also contributions associated with renormalization of
level position, level splitting and tunnel-coupling strength. All these effect are
automatically taken into account within the real-time diagrammatic technique in
a systematic way.

4.2.3 Crossover Scheme

In previous subsections a proper perturbation expansion of the current up to
the second order in Γ for both the case when sequential tunneling is allowed or
suppressed was formulated. However, when calculating transport characteristics
as a function of various parameters, such as the gate or transport voltage, one
has to switch from one scheme to the other around the threshold of sequential
tunneling. In order to cross smoothly from one scheme to the other one a crossover
scheme can be used. This scheme consists of solving the master equation with
first-order and second-order self-energies, without expanding the probabilities

0 =
∑

χ

[
Σ

(1)
χ′χ + Σ

(2)
χ′χ

]
Pχ . (4.23)
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Then the probabilities can be used to calculate the current from the following
expression

I = − ie

2~
∑

χχ′

[
Σ

I(1)
χ′χ + Σ

I(2)
χ′χ

]
Pχ . (4.24)

Up to the second order in the dot-lead coupling strength Γ, this result for the
electric current is identical to the one obtained with the aid of the accurate
perturbation schemes described previously. Deviations are of third and higher
order, which are however always small for the chosen parameters.

4.2.4 Diagrammatic Rules in Energy Space

In this section the general rules in energy space for calculating contributions of
various diagrams are presented [102, 127]. Contribution of a particular diagram
to the self-energy Σχ′χ can be found following the general rules in energy space:

1. Draw all topologically different diagrams with fixed time ordering and posi-
tion of vertices. Connect the vertices by tunneling lines. Assign the energies
of respective quantum dot states to the forward and backward propagators.
To each tunneling line assign a frequency ω, the spin of tunneling electron
and label of the junction.

2. Tunneling lines acquire arrows indicating whether an electron leaves or en-
ters the dot. For tunneling lines going forward with respect to the Keldysh
contour assign a factor γ−σ

r (ω), whereas for tunneling lines going backward
assign γ+σ

r (ω).

3. For each time interval on the real axis limited by two adjacent vertices draw
a vertical line inside the interval and assign a resolvent 1/(∆E + i0+), with
∆E being the difference of all energies crossing the vertical line from right
side minus all energies crossing the vertical line from left side.

4. Each diagram gets a prefactor (−1)b+c, with b being the number of vertices
lying on the backward propagator and c denoting the number of crossings
of the tunneling lines.

5. Each internal vertex represents a matrix element 〈χ|d†σ|χ′〉 or 〈χ|dσ|χ′〉.
Consequently, a minus sign may appear due to these matrix elements. This
is because |d〉 = d†σ|σ̄〉 = −d†σ̄|σ〉 (depending on the definition of state |d〉),
where σ =↑ or σ =↓. To account for this factor, multiply each diagram by
(−1)m, where m is the number of vertices connecting the spin-σ state with
doubly occupied state.

6. Integrate over all frequencies and sum up over the reservoirs.
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The parameters γ±σ
r (ω) are defined as

γ+σ
r (ω) =

Γσ
r

2π
f(ω − µr) , (4.25)

γ−σ
r (ω) =

Γσ
r

2π
[1− f(ω − µr)] , (4.26)

with f(x) being the Fermi-Dirac distribution function, f(x) = 1/ [exp(x/kBT ) + 1],
and µr representing the electrochemical potential of lead r.

To find electric current flowing through the system, one has to determine the
self-energies ΣI, see Eqs. (4.18) or (4.19). This can be done by realizing that each
term of the expansion of the current operator Î = (ÎR − ÎL)/2, where Îr is the
current operator for electrons tunneling to the lead r, is equal to the corresponding
expansion term of the reduced density matrix multiplied by a factor of e/~. The
only difference is that now for each external vertex lying on the upper (lower)
branch of the Keldysh contour, corresponding to tunneling of an electron into the
left (right) or out of the right (left) lead, we have a multiplicative factor +1/2,
whereas for each external vertex on the upper (lower) branch of the contour,
describing tunneling of an electron into the right (left) or out of the left (right)
lead, there is a factor of -1/2.

The explicit expressions for the first-order self-energies Σ(1) and ΣI(1) are listed
in Appendix A.1. Whereas the second-order self-energies Σ(2) and ΣI(2) are pre-
sented in Appendix A.2. An exemplary calculation of one of the second-order
self-energies is also described therein.

4.3 Averin-Nazarov Approach

In this section an approach developed by Averin and Nazarov [30] is presented.
Within this approach one can analyze the second-order transport in the case when
the system is in a deep Coulomb blockade. It consists in calculating the cotun-
neling rates using the second-order perturbation theory, whereas the respective
occupation probabilities are determined from the appropriate master equation.
The cotunneling rate for transition from lead r to lead r′ is given by [101]

γrr′ =
2π

~

∣∣∣∣∣
∑

ν

〈Φr|HT|Φν〉〈Φν |HT|Φr′〉
εi − εν

∣∣∣∣∣

2

δ(εi − εf ) , (4.27)

where εi and εf denote the energies of the initial and final states, |Φr〉 is the
state with an electron in the lead r, whereas |Φν〉 is a virtual state of the sys-
tem with εν denoting the corresponding energy. Between cotunneling processes
one can distinguish the single-barrier (r = r′) and double-barrier (r 6= r′) cotun-
neling processes. Furthermore, there are also cotunneling processes that leave
unchanged magnetic state of the dot (non-spin-flip processes) and the processes
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Figure 4.3: A sketch illustrating different types of cotunneling processes: (a)
double-barrier non-spin-flip cotunneling, (b) double-barrier spin-flip cotunneling
and (c) single-barrier spin-flip cotunneling. The process shown in (c) is possible
only for kBT > 0.

which reverse spin of the dot (spin-flip processes). The former processes are
elastic and coherent, whereas the latter ones are generally inelastic and lead to
decoherence. The various cotunneling processes are illustrated schematically in
Fig. 4.3. Part (a) shows a double-barrier non-spin-flip cotunneling process, part
(b) presents a double-barrier spin-flip cotunneling event, whereas part (c) is an
example of a single-barrier spin-flip cotunneling process. The spin-flip cotunnel-
ing can take place via two intermediate virtual states, in which the dot is either
empty or doubly occupied. For the sake of clarity, in Fig. 4.3b,c we show only
one of the two possible virtual states, namely, the one in which the dot is in state
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|χ = d〉.
Unlike the double-barrier cotunneling processes, the single-barrier ones do not

contribute directly to electric current. However, they may affect the occupation
probabilities, and this way also the current flowing through the system.

In the case of empty or doubly occupied dot (Coulomb blockade valleys with
even number of electrons) the occupation probabilities are fixed, respectively,
either P0 = 1 or Pd = 1. The situation is changed for singly occupied dot
(Coulomb blockade valleys with odd number of electrons). Although in this case
the probability that the dot is occupied by a single electron is equal to unity,
it is necessary to determine the occupation probabilities for having spin-up or
spin-down electron on the dot. They can be calculated from the following master
equation

0 =
∑

r,r′=L,R

(−γrr′,σ⇒σ̄Pσ + γrr′,σ̄⇒σPσ̄) , (4.28)

together with the normalization condition

Pσ + Pσ̄ = 1 , (4.29)

where γrr′,σ⇒σ′ denotes the cotunneling rate for transition from lead r to lead
r′ with a change of the dot spin from σ to σ′. If σ = σ′ the process is a non-
spin-flip one, whereas for σ 6= σ′ the process is a spin-flip one. The explicit
expressions for the cotunneling rates are given in Appendix B. Having calculated
the corresponding probabilities from Eq. (4.28), one can calculate electric current
using the formula

I = −e
∑

σ,σ′=↑,↓
[γLR,σ⇒σ′ − γRL,σ⇒σ′ ] Pσ . (4.30)

This method was first proposed for single-electron transistors [30] and then
extended into the case of quantum dots [101]. It is worth noting that in deep
Coulomb blockade where sequential processes are suppressed, within the approach
described above, one gets results identical to the ones obtained within the per-
turbation scheme presented in subsection 4.2.2.

4.4 Numerical Results on Transport through

Quantum Dots

In the following, we analyze transport through quantum dots in both the linear
and nonlinear response regimes [105]. Therefore, it is important to distinguish be-
tween different transport regimes that will be considered. The various transport
regimes are sketched in Fig. 4.4 and labelled by corresponding letters.

First of all, one can see that by changing the position of the dot level (by the
gate voltage) or applying the bias voltage, one can cross over from one regime
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Figure 4.4: A sketch illustrating different transport regimes. The respective
regimes are separated by solid lines and labelled correspondingly.

to another. The three diamonds around zero bias correspond to regime where
sequential tunneling is exponentially suppressed and current flows due to cotun-
neling. In these regimes the charge state of the dot is fixed to zero electrons in
regime A, one electron in regime B, and two electrons in regime A’. The first-
order tunneling processes are possible once the bias voltage is increased above
the threshold voltage, allowing for finite occupation of two adjacent charge states
(zero and one for regime C, and one and two for regime C’). In regime D all four
dot states χ = 0, ↑, ↓, d are possible. By performing a particle-hole transforma-
tion, the behavior in regime A’ and C’ can be mapped to that in regime A and
C, respectively.

4.4.1 Case of Nonmagnetic Leads

Before the description of numerical results of the first-order and second-order
transport through a quantum dot coupled to ferromagnetic leads, let us discuss
briefly the case of a dot coupled to nonmagnetic leads (pL = pR = 0). At
equilibrium, the dot can be occupied by zero electrons when ε À 0 (regime A),
one electron for −U ¿ ε ¿ 0 (regime B), and two electrons when ε ¿ −U
(regime A’). When ε ≈ 0 or ε ≈ −U , the dot is in a mixed valance state. The
occupancy can be changed by applying gate voltage to the dot.

Figure 4.5 shows the linear conductance calculated in the first (dashed line)
and second (dotted line) orders as well as the total conductance (solid line) de-
fined as the sum of the first- and second-order contributions. The conductance
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Figure 4.5: Linear conductance as a function of the level position. The dashed
line corresponds to the first-order contribution G(1), the dotted line presents the
second-order conductance G(2) and the solid line shows the sum G(1) + G(2). The
different transport regimes are also specified. The parameters are: kBT = Γ, U =
20Γ, and p = 0. The figure was generated using the scheme for the perturbation
expansion in the presence of sequential tunneling.

is shown there as a function of the position of the dot level energy. Since this
position can be changed by an externally applied gate voltage, Fig. 4.5 can be
considered effectively as a gate voltage dependence of the linear conductance.

regime Dregime Cregime A

0 20 40 60 80

0.0

0.1

0.2

0.3

0.4

0.5

eV/Γ

I 
(e

Γ/
  )

 

h̄

Figure 4.6: The current as a function of the bias voltage. The dashed line
presents the first-order contribution, whereas the solid line shows the first- and
second-order current. The parameters are: kBT = Γ, ε = 10Γ, U = 20Γ, and
p = 0. The figure was generated using the scheme for the perturbation expansion
in the presence of sequential tunneling.
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When the energy of the dot level crosses the Fermi level of electrodes, there is
a resonance peak in the linear conductance. Another resonance appears when
ε + U crosses the Fermi level. The resonance peaks acquire a certain width as a
result of thermal fluctuations and also as a result of the level broadening. It is
interesting to note, that the second-order contribution becomes negative at res-
onances, which indicates that the second-order processes renormalize first-order
(sequential) contribution. Except for resonances, the dot is either in the empty
(regime A) or doubly occupied (regime A’) state, or in the Coulomb blockade
regime (regime B). In all these three cases the cotunneling contribution to elec-
tric current becomes dominant. It is also worth noting, that the second-order
processes lead to renormalization of the dot level energy2.

The first-order as well as first- and second-order currents as a function of the
bias voltage are shown in Fig. 4.6. The parameters correspond to the situation
when the dot level lies above the Fermi energy of the leads. In the Coulomb
blockade regime (regime A), the sequential tunneling is suppressed and the cur-
rent flows due to cotunneling. Furthermore, the second-order processes lead to
smearing of the Coulomb steps, as can be seen in Fig. 4.6.

4.4.2 Case of Ferromagnetic Leads

When the quantum dot is coupled to ferromagnetic leads, some novel phenomena
originating from ferromagnetism of the leads can arise. In particular, these phe-
nomena result from spin dependency of the coupling between the dot and ferro-
magnetic leads. In the following, it is assumed that spin-up (spin-down) electrons
in the parallel configuration correspond to the majority (minority) electrons of
the leads. In the antiparallel configuration, on the other hand, the magnetic
moment of the right electrode is reversed (see Fig. 4.1), and spin-up (spin-down)
electrons correspond to minority (majority) electrons in the right lead.

As a consequence of spin-dependent densities of states in the leads, the dot-
lead coupling also becomes dependent on spin. In the parallel configuration
and for symmetric junctions, the coupling of the spin-up level to electrodes is
proportional to (1 + p), whereas coupling of the spin-down level is proportional
to (1 − p). One may then expect an effective splitting of the dot level due to
interaction with ferromagnetic leads [93, 113]. Figure 4.7 shows the zeroth-order
and first-order probabilities to find the dot in the states | ↑〉 and | ↓〉 in the linear
response regime. The probabilities are shown as a function of the level position.

In equilibrium, the lowest-order probabilities are simply given by the Boltz-
mann factors, P

(0)
χ = exp(−βεχ)/Z, with Z denoting the partition function and εχ

being the energy of state |χ〉. When the isolated dot is nonmagnetic (ε↑ = ε↓ = ε),
the zeroth-order occupation probabilities for spin-up and spin-down energy levels

2For a detailed description of second-order transport in the case of quantum dots coupled
to nonmagnetic leads see Ref. [102].
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Figure 4.7: The occupation probabilities of the spin-up and spin-down dot levels
as a function of the level position in the parallel (a) and antiparallel (b) configu-
rations. The zeroth-order occupation probabilities for the spin-up and spin-down
levels are equal in both magnetic configurations, and are represented by the dot-
ted lines. The total occupation probability of the spin-up (spin-down) level is
presented by the solid (dashed) line. In the antiparallel configuration, the dashed
and solid lines coincide. The parameters are: kBT = 1.5Γ, U = 40Γ, and p = 0.5.
The figure was generated using the scheme for the perturbation expansion in the
presence of sequential tunneling.

are equal, P
(0)
↑ = P

(0)
↓ , as shown in Fig. 4.7. However, the corrections P

(1)
χ due to

the second-order processes give rise to a finite splitting of the dot level, as can be
concluded from Fig. 4.7a. An effective exchange field exerted by ferromagnetic
electrodes on the dot gives rise to a difference in occupations of the spin-up and
spin-down levels3. However, the difference in energy is relatively small compared
to the thermal energy kBT , therefore the splitting may be hardly detectable in
conductance measurements.

Contrarily, in the antiparallel configuration the spin-up and spin-down lev-

3An overview about the various effects of exchange field can be found in Ref. [130].
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Figure 4.8: The first-order tunnel magnetoresistance as a function of the bias and
gate voltages. The parameters are: kBT = 1.5Γ, U = 40Γ, and p = 0.5.

els are equally coupled to the leads, with the coupling strength independent of
spin polarization p (provided there is no asymmetry between the left and right
junctions in the parallel configuration). If this is the case, the probability of
having a spin-up electron is equal to the probability that the dot is occupied by
a spin-down electron, P↑ = P↓. This situation is displayed in Fig. 4.7b.

In the case of ferromagnetic systems, transport characteristics usually depend
on the relative orientation of the leads’ magnetic moments, and the resistance
generally increases when magnetic alignment switches from parallel to antipar-
allel. The relative change in the resistance is described phenomenologically by
tunnel magnetoresistance given by Eq. (1.3). In the following part, we present
and discuss the behavior of the TMR effect in different transport regimes.

Figure 4.8 shows tunnel magnetoresistance calculated in the first order of the
dot-lead coupling strength Γ as a function of bias and gate voltages. It can be
seen that TMR generally takes two values, depending on transport regime. For
regimes A (and A’), B and D, the TMR value is

TMRA,B,D
seq =

p2

1− p2
=

1

2
TMRJull , (4.31)

while for regime C (and C’) it is

TMRC
seq =

4p2

3(1− p2)
=

2

3
TMRJull . (4.32)
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Figure 4.9: The first and second-order tunnel magnetoresistance as a function of
bias and gate voltages. The parameters are the same as in Fig. 4.8. The figure
was generated using the crossover scheme.

These results can be understood in the following way. For regions A and B the
first-order linear conductance in the parallel and antiparallel configurations can
be expressed as

G
(1)
P ∼ Γ/2 and G

(1)
AP ∼ Γ(1− p2)/2 , (4.33)

which gives the TMR equal to TMRA,B
seq = p2(1− p2).

To understand the behavior of TMR in regions C and D let us consider the
case at zero temperature and assume that electrons tunnel only from the left to
right sides. In region C there are three dot states taking part in transport, those
are χ = 0, ↑, ↓ (because of particle-hole symmetry results are applicable to regime
C’). For this case one finds the first-order currents in the parallel and antiparallel
configurations to be

I
(1)
P ∼ Γ/3 and I

(1)
AP ∼ Γ(1− p2)/(3 + p2) , (4.34)

which, after plugging to the formula for TMR, gives TMRC
seq = 4p2/3(1 − p2).

By performing a similar analysis for region D, one gets, I
(1)
P ∼ Γ/2 and I

(1)
AP ∼

Γ(1− p2)/2, for the corresponding currents. Consequently, the TMR is found to
be TMRD

seq = p2/(1− p2).
One can note that the sequential tunneling TMR is always smaller than the

Jullière’s value of TMR, see Eq. (1.5). This is because the corresponding first-
order transition rates involve the spin-dependent density of states of only one
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lead, as can be seen from the expressions for first-order self-energies given in
appendix A.1. As it was already pointed in previous chapters, the TMR does not
occur in systems of type FM/NM/FM, unless a finite spin accumulation on the
middle electrode is taken into account. In the case of quantum dots, it is thus the
spin accumulation on the dot that mediates the information about the relative
magnetic orientation of the leads. This indirect mechanism is, however, always
less effective than a direct coupling of the two leads. Consequently, the value of
the first-order TMR is always smaller than the Jullière’s TMR.

Let us now include the second-order contribution and discuss the changes in
the TMR effect due to cotunneling. This situation is displayed in Fig. 4.9. The
sequential tunneling dominates transport above threshold voltage, i.e., in regimes
C and D. As a consequence, the total TMR is only slightly modified as compared
to the first-order TMR. In regimes A and B, however, the first-order tunneling
processes are exponentially suppressed and the current flows due to second-order
tunneling processes. As can be seen in Fig. 4.9, in these regimes, cotunneling
has the largest impact on tunnel magnetoresistance. Furthermore, TMR exhibits
distinctively different behavior in regimes A and B. In the following, the TMR
effect in different transport regimes is presented and discussed in more details.

The first and second-order linear conductance as well as the resulting TMR
effect as a function of the level position (gate voltage) are displayed in Fig. 4.10.
By changing the position of the dot level, one crosses over from regime A through
regime B to regime A’. First of all, it can be seen that the total conductance for
parallel alignment is larger than that in the antiparallel configuration, as shown
in Fig. 4.10a. This difference in turn leads to a nonzero TMR effect shown in
Fig. 4.10b. For comparison, the Jullière’s value of TMR is also displayed in the
figure. The first-order contribution to TMR (denoted as TMR(1)) is constant as
a function of the gate voltage and equal exactly to a half of the Jullière’s value.
First of all, one can see that the inclusion of second-order processes modifies the
TMR substantially. Unlike the first-order term, the total TMR (first-order plus
second-order contributions) does depend on the level position. The interesting
and new feature of TMR shown in Fig. 4.10b is a strong parity effect. The TMR
reaches maximum when there is an even number of electrons on the dot (zero for
regime A or two for regime A’), and has minimum for an odd (one in regime B)
number of electrons. A universal feature is that for even electron number the value
of TMR exactly coincides with the Jullière’s value. This fact suggests that for
even number of electrons, the system behaves like a single ferromagnetic tunnel
junction. Such a situation can take place when tunneling processes are coherent.
Consider, for example, the case of empty dot. The only second-order processes
that contribute to conductance are the non-spin-flip cotunneling processes, in
which the electron spin is conserved, see Fig. 4.3a. Such processes are fully
coherent. The corresponding cotunneling rates are proportional to the product
of the density of states of the left and right leads, thus, one can express the
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Figure 4.10: The total linear conductance (a) in the parallel (solid line) and
antiparallel (dashed line) configuration and the resulting tunnel magnetoresis-
tance [solid line in (b)] as a function of the level position. The dashed line in
part (b) represents the first-order tunnel magnetoresistance, whereas the dotted
line corresponds to the Jullière’s value. The dotted-dashed curve presents the
TMR calculated using Eq. (4.37). The parameters are kBT = 1.5Γ, U = 40Γ,
and p = 0.5. The figure was generated using the scheme for the perturbation
expansion in the presence of sequential tunneling.

second-order linear conductance as

G
(2)
P ∼ Γ2

2
(1 + p2) and G

(2)
AP ∼

Γ2

2
(1− p2) , (4.35)

for the parallel and antiparallel configuration, respectively. As a consequence,
the TMR is that of a single ferromagnetic tunnel junction

TMRA =
2p2

1− p2
= TMRJull , (4.36)

i.e., twice as large as the first-order TMR. Because of the particle-hole symmetry,
the same result can be obtained for regime A’.
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While the dot occupied by an even number of electrons allows only non-spin-
flip (coherent) cotunneling processes, the situation becomes more complex for
an odd number of electrons on the dot. Apart from the non-spin-flip processes
described above, there are also spin-flip cotunneling processes that change spin
of the dot, see Fig. 4.3b and c. Such second-order processes give rise to spin
relaxation on the dot. Moreover, such processes are incoherent. This effectively
leads to reduction of TMR for regime B. In other words, the suppression of TMR
in regime B can be understood by realizing the fact that for a singly-occupied dot
both spin-flip and non-spin-flip cotunneling processes are possible, in contrast to
regime A where only non-spin-flip cotunneling occurs. Thus, spin-flip cotunneling
has a tendency to reduce the TMR, which is minimal for ε = −U/2, see Fig. 4.10b.
The dependence of TMR on the position of the energy level in regime B reflects
the relative relation of the spin-flip to non-spin-flip cotunneling processes. The
corresponding cotunneling rates are given in appendix B.1, see Eqs. (B.2), (B.11)
and (B.12). Thus, for the gate voltage dependence of the ratio of spin-flip to
non-spin-flip cotunneling, one finds [−1/ε + 1/(ε + U)]2/[1/ε2 + 1/(ε + U)2] =
2/[1 + (1 + 2ε/U)2], which can be obtained from the expressions for cotunneling
rates by setting ω = 0. It can bee seen that the ratio is maximal for ε = −U/2,
thus leading to a minimum in TMR. As illustrated in Fig. 4.10b, the gate voltage
dependence of the linear response TMR around the center is parabolic. When
considering the case of deep Coulomb blockade regime (kBT, Γ ¿ |ε|, ε + U),
taking into account only the lowest-order corrections in the ratio x/y with x =
|eV |, kBT , y = |ε|, ε+U , and, further, expanding the TMR up to quadratic order
around ε = −U/2, one can obtain an approximate analytic expression for the
TMR

TMRB =
p2

1− p2

[
2

3
+

4

9

(
1 +

2ε

U

)2
]

. (4.37)

From the above expression one finds that for ε = −U/2, which corresponds to
minimal value of TMR, the tunnel magnetoresistance is

TMRB
min =

2p2

3(1− p2)
=

1

3
TMRJull , (4.38)

For comparison, in Fig. 4.10b we also plotted the analytic expression given by
Eq. (4.37). As can be seen in the figure, this formula approximates the numerical
data relatively accurately.

Figure. 4.11 illustrates the current flowing through the system in the parallel
and antiparallel configurations as well as the resulting TMR as a function of level
position for the nonlinear response regime. The dashed line in Fig. 4.11b presents
the first-order TMR plotted for reference. When changing the gate voltage, one
crosses over from regime A’ through regime C’ to regime B and then further on
through regime C to regime A. As shown in the figure, the second-order processes
modify the TMR mainly in regimes A and B, whereas in regime C, where the
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Figure 4.11: The total currents (a) in the parallel (solid line) and antiparallel
(dashed line) magnetic configurations as a function of level position for eV = 20Γ.
Part (b) shows the first-order contribution to the TMR (dashed line) and the
total TMR (solid line). The inset in part (b) shows the total TMR at lower
temperature, kBT = 0.5Γ. The other parameters are the same as in Fig. 4.10.
The figure was generated using the crossover scheme.

sequential tunneling dominates, the total TMR is only slightly modified. Further-
more, it can be seen that the behavior of TMR in regime B differs significantly
from that in linear response shown in Fig. 4.10b. Instead of a minimum, TMR
has a local maximum for ε = −U/2, as displayed in Fig. 4.11b. When lowering
the temperature, this maximum develops into a pronounced plateau, see the inset
of Fig. 4.11b. The height of this plateau is given by the Jullière’s value and the
width is determined by the region where first-order contributions are negligible.
The reason for this increased TMR is nonequilibrium spin accumulation, which
appears in the nonlinear response regime. Spin accumulation, in turn, decreases
the role of spin-flip cotunneling and, as a consequence, non-spin-flip cotunneling
dominates, leading to the Jullière’s value of the total TMR. In the linear response,
on the contrary, single-barrier spin-flip cotunneling processes become important.
These processes do not contribute to transport but reduce the spin accumulation
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Figure 4.12: The total current (a) in the parallel (solid line) and antiparallel
(dashed line) magnetic configurations as a function of the bias voltage. Part
(b) shows the first-order contribution to the TMR (dashed line) and the total
TMR (solid line). The dotted-dashed curve presents the TMR calculated using
Eq. (4.40). The parameters are: kBT = 1.5Γ, ε = −20Γ, U = 40Γ, and p = 0.5.
The figure was generated using the crossover scheme.

and, consequently, the TMR effect. When approaching the threshold for sequen-
tial tunneling, the first-order processes dominate transport and TMR drops from
Jullière’s value to the first-order TMR, as can be seen in Fig. 4.11b. For regime
A (A’) the TMR effect reaches the Jullière’s value, similarly as in the case shown
in Fig. 4.10b.

Electric current flowing through the system in the nonlinear response regime is
shown in Fig. 4.12a for both magnetic configurations and for symmetric Anderson
model (ε = −U/2). The resulting TMR is also shown there, see Fig. 4.12b. A
finite contribution due to the second-order tunneling processes leads to a nonzero
current in the Coulomb blockade regime. Furthermore, the cotunneling processes
make the Coulomb steps smoother. The sequential TMR is shown by a dashed
line in Fig. 4.12b. It can be seen that sequential TMR is constant as a function
of the bias voltage. However, this is not a universal behavior but occurs only for
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symmetric Anderson model. Generally, first-order TMR depends on the applied
bias voltage, as illustrated in Fig 4.8. The second-order processes lead to a strong
and nontrivial dependence of the total TMR on the bias voltage. For large values
of the transport voltage (regime D), the first-order tunneling processes dominate,
and therefore the total TMR is only slightly modified as compared to that in the
sequential transport regime. However, for voltages below the threshold voltage
(regime B), the cotunneling processes have to be included. These processes lead
to a strong bias dependence of the TMR effect in the Coulomb blockade regime,
and to a deep minimum of TMR in the zero-bias limit. This is an interesting
and qualitatively new result. In the case of metallic islands, cotunneling processes
usually lead to an enhancement of the TMR effect in the Coulomb blockade regime
[33]. Here, we have the opposite situation, i.e., suppression of the effect. At low
bias voltage, |eV | ¿ kBT , the single-barrier spin-flip processes reduce the TMR.
This is however no longer the case for nonlinear response regime, |eV | À kBT ,
where the spin accumulation diminishes the amount of spin-flip processes and the
TMR increases. Consequently, the TMR effect in regime B increases with rising
the bias voltage within the limits

1

3
TMRJull ≤ TMRB ≤ TMRJull . (4.39)

The minimal value is reached at V = 0 and ε = −U/2, whereas the maximal
value is approached for bias voltages large as compared to thermal energy but
still far away from the onset of sequential tunneling. In order to determine an
approximate analytic expression for the TMR around the minimum, we consider
the symmetric Anderson model, ε = −U/2, expand the TMR up to quadratic
order in |eV |/kBT and take the limit |ε| À kBT . Then, we get

TMRB =
p2

1− p2

[
2

3
+

(3− p2)(eV )2

54(kBT )2

]
, (4.40)

which compares well with the full numerical result, as can be seen in Fig. 4.12b.
If the bias voltage increases further, the first-order processes become dominant
and deep in regime D the TMR approaches one half of the Jullière’s TMR, as
shown in Fig. 4.12b.

Another interesting feature can be seen at the threshold voltage for sequential
tunneling. This value of the bias voltage corresponds to the intersection point
of regimes B, C and D. At this bias voltage, the first-order processes become
dominant, however, the effect of second-order processes on TMR can still be
observable. The corrections due to cotunneling lead to a local minimum of the
TMR effect, as shown in Fig. 4.12b. When assuming |ε| À kBT and expanding
the TMR up to the first order in Γ/(kBT ), the TMR at the intersection of regimes
B, C and D can be approximated by

TMRB|C|D =
p2

1− p2

{
1− Γ

4πkBT

[
ln

( |ε|
πkBT

)
−Ψ

(
1

2

)]}
, (4.41)
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Figure 4.13: The differential conductance (a) for the parallel and antiparallel
configurations and the tunnel magnetoresistance (b) as a function of the bias
voltage for different values of temperature. The maximum in differential con-
ductance for antiparallel configuration at zero bias is clearly demonstrated. The
other parameters are the same as in Fig. 4.12. Figure was generated using the
scheme for the perturbation expansion in the Coulomb blockade regime.

with Ψ(x) being the digamma function, Ψ(1/2) ' −1.96.
In order to elucidate and understand the anomalous behavior of TMR in the

Coulomb blockade regime, we show in Fig. 4.13a the differential conductance
in the small bias regime for both parallel and antiparallel configurations. Fig-
ure 4.13b displays the TMR effect for several temperatures. First of all, one
can see that the TMR effect in regime B for |eV | À kBT increases with lower-
ing temperature and approaches the Jullière’s value. Whereas, the minimum at
zero bias does not depend on temperature, as can be seen in Fig. 4.13b. The
differential conductance in the parallel alignment has characteristics typical of
the cotunneling regime, with a smooth parabolic dependence on the bias voltage.
For antiparallel configuration, on the other hand, differential conductance has
a local maximum at zero bias, followed by local minimum with increasing bias,
as illustrated in Fig. 4.13a. This zero-bias anomaly stems from the interplay
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Figure 4.14: The total current (a) in the parallel (solid line) and antiparallel
(dashed line) magnetic configurations as a function of the bias voltage. Part
(b) shows the first-order contribution to TMR (dashed line) and the total TMR
(solid line). The parameters are: kBT = 1.5Γ, ε = 20Γ, U = 40Γ, and p = 0.5.
The figure was generated using the perturbation expansion in the presence of
sequential tunneling.

of the spin-flip and non-spin-flip single-barrier and double-barrier cotunneling
processes [104]. The minimum in the TMR effect is a direct consequence of
anomalous behavior of differential conductance in the antiparallel configuration.
The mechanism and main features of this zero-bias anomaly will be presented
and discussed in the next section.

The current for parallel and antiparallel configurations and the resulting TMR
for the situation when the dot level lies above the Fermi energy of the leads is
shown in Fig. 4.14. The first-order TMR is also shown for comparison. In this
case, one crosses over from regime A via C to D as the bias voltage is increased.
At low voltage, the dot is empty (regime A) and the current is mediated by non-
spin-flip cotunneling, with the TMR given by the Jullière’s value. In regime C, the
first-order processes dominate transport. The second-order processes, however,
slightly reduce the TMR effect as compared to the sequential tunneling value. In
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order to find an approximate analytic expression for this case, we consider the
case of zero temperature, expand the TMR up to the first order in Γ and assume
|ε|/U ¿ 1, then we get

TMRC =
p2

1− p2

[
4

3
− (27 + 34p2 + 3p4)Γ

18π(1− p2)ε

]
. (4.42)

The second term in the bracket of the above expression describes the renormal-
ization of the first-order TMR due to cotunneling.

Furthermore, it can be seen that at the intersection of regimes A and C the
TMR develops a local minimum. This results from the fact that when approach-
ing the intersection from regime C the TMR (dominated by sequential tunneling)
decreases while beyond, in regime A, the TMR has to rise again to reach the
Jullière’s value [107].

In regime D all the four dot states, i.e., χ = 0, ↑, ↓, d take part in transport.
This situation is illustrated in Fig. 4.12b and Fig. 4.14b for eV > 2(ε + U). In
regime D, transport is dominated by the first-order processes and the influence
of second-order processes is negligible. Consequently, the value of total TMR in
regime D is well described by Eq. (4.31), as can be seen in Figs. 4.12b and 4.14b.

Up to now the considerations were restricted to the case when the dot level
was spin degenerate. It is, however, interesting to investigate the behavior of
the tunnel magnetoresistance when an external magnetic field is applied to the
system. In this situation the spin degeneracy of the dot level can be lifted, conse-
quently, ε↑ 6= ε↓. As shown below, a finite Zeeman splitting, ∆ = ε↓−ε↑, changes
the transport characteristics substantially. Figure 4.15 illustrates the gate and
bias voltage dependence of tunnel magnetoresistance for ∆ = 4Γ. First of all,
it can be seen that a finite Zeeman splitting affects the TMR mainly in regimes
A (A’) and B, where the second-order processes dominate. Furthermore, TMR
exhibits a distinctively different behavior in regimes A and A’. It is increased in
the case of empty dot, whereas in the case of doubly occupied dot, the TMR is
much decreased and may even become negative. This effect depends on the direc-
tion of applied magnetic field and, when the field is applied in opposite direction,
∆ = −4Γ, there is an enhancement of TMR in regime A’ and suppression in
regime A, as illustrated in Fig. 4.16. Thus, by changing the sign of the Zeeman
splitting (direction of magnetic field) or applying the gate voltage, which changes
the dot occupation, it is possible to reduce or enhance the TMR effect consider-
ably. Another interesting feature of TMR displayed in Fig. 4.15 can be seen in
regime B. There is a strong asymmetry of TMR with respect to the bias reversal.
The TMR is decreased for positive and increased for negative bias voltage. This
can also be seen in Fig. 4.16, but in this case for positive transport voltage TMR
is larger than for negative bias voltage. The crossover between those two values
of TMR takes place roughly at the zero bias. As a consequence, by changing
the bias voltage in the small range one can substantially tune the magnitude of
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Figure 4.15: The total tunnel magnetoresistance as a function of the bias and
gate voltages in the presence of external magnetic field. The parameters are:
kBT = 1.5Γ, ∆ = 4Γ, U = 40Γ, and p = 0.5.

Figure 4.16: The total tunnel magnetoresistance as a function of the bias and
gate voltages in the presence of external magnetic field for ∆ = −4Γ. The other
parameters are the same as Fig. 4.15.
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the TMR effect. The main properties of second-order transport through quan-
tum dots in the presence of magnetic field will be presented and discussed in the
proceeding sections.

In this section we have thoroughly analyzed electronic transport through
single-level quantum dots coupled to ferromagnetic leads for the linear and non-
linear response regimes, with an even or odd number of electrons on the dot. We
have shown that the behavior of TMR is different in various transport regimes. In
particular, it was shown that the value of TMR is below that of a single magnetic
tunnel junction, except for the Coulomb blockade valley with an even dot elec-
tron number and the Coulomb blockade valley with an odd number of electron on
the dot in the case of the nonlinear response regime. This, consequently, results
in a strong parity effect of TMR between the Coulomb blockade valleys with an
even and odd number of electrons, that is related to the absence or presence of
spin-flip cotunneling, respectively. Furthermore, the TMR has a minimum at the
zero bias, which results from the anomalous behavior of differential conductance
in the antiparallel configuration. It was also demonstrated that a finite Zeeman
splitting induced for example by an external magnetic field may substantially
modify the tunnel magnetoresistance in the cotunneling regime.

4.5 Zero-Bias Anomaly in the Cotunneling

Regime

In the previous section transport characteristics of a quantum dot coupled to
ferromagnetic leads were analyzed in the whole range of parameters. In particular,
in the case of Coulomb blockade regime and singly occupied dot (regime B) the
zero-bias anomaly in differential conductance in the antiparallel configuration was
found. In the following, the mechanism and main features of this anomaly are
presented and discussed both in the case of spin-degenerate and spin-split dot
level.

In order to calculate the current in the Coulomb blockade regime we employ
the perturbation scheme in the absence of sequential tunneling, as described in
subsection 4.2.2. The same results, however, can be obtained within the Averin-
Nazarov approach [104].

4.5.1 Results in the Absence of Magnetic Field

First, we consider the case of spin-degenerate dot level. The differential conduc-
tance as a function of the bias voltage for different values of spin polarization
of the leads and temperature is shown in Fig. 4.17. In the parallel configura-
tion, we find a typical parabolic behavior of the cotunneling conductance with
increasing bias voltage. This is distinctively different for the antiparallel con-
figuration, for which a zero-bias anomaly appears. As illustrated in Fig. 4.17a,
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Figure 4.17: Differential conductance in the parallel and antiparallel configura-
tions as a function of bias voltage for different values of spin polarization (a) and
for different temperatures (b). The other parameters are kBT = 0.5Γ, ε = −U/2,
U = 30Γ, and p = 0.5 in part (b).

the differential conductance in the antiparallel configuration strongly depends on
the spin polarization – when spin polarization increases the conductance is gen-
erally decreased. The bias voltage dependence of the conductance for different
temperatures is shown in Fig. 4.17b. It can be seen that the width of the peak
increases with increasing temperature. In order to understand the behavior of the
differential conductance in a more intuitive way, we present some approximative
expressions for the zero-bias peak. When considering the case of deep Coulomb
blockade regime, one can neglect corrections in the ratio x/y with x = |eV |, kBT
and y = |ε|, ε + U , then the differential conductance in the parallel configuration
can be expressed as

GP =
e2

h

Γ2

2

[
1

ε2
+

1

(ε + U)2
+

1− p2

|ε|(ε + U)

]
. (4.43)

The above result is independent of |eV |/kBT . For the antiparallel configuration
one finds

GAP
max =

e2

h

Γ2

2
(1− p2)

[
1

ε2
+

1

(ε + U)2
+

1

|ε|(ε + U)

]
(4.44)

in the linear response regime, |eV | ¿ kBT , and

GAP
min =

e2

h

Γ2

2

1− p2

1 + p2

[
1

ε2
+

1

(ε + U)2
+

1− p2

|ε|(ε + U)

]
(4.45)

for the nonlinear response (|eV | À kBT ). First of all, one can see that conduc-
tance in the parallel configuration is generally larger than conductance in the
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antiparallel configuration. Furthermore, from the above expressions it can be
seen that GAP

max > GAP
min, which leads to a zero-bias peak. In order to describe the

peak, it is useful to introduce a quantity describing its relative height, defined as

xG ≡ GAP
max −GAP

min

GAP
min

, (4.46)

which, after plugging Eqs. (4.44) and (4.45), is given by

xG =
p2U2

(1 + p2)ε(ε + U) + U2
. (4.47)

The relative height increases from xG = p2 for |ε| ¿ ε + U or |ε| À ε + U to
xG = 4p2/(3− p2) in the middle of the Coulomb blockade valley (ε = −U/2).

The main properties of the zero-bias anomaly can be written in several points
listed in the following:

• The crossover from GAP
max to GAP

min is around |eV | ≈ kBT
√

8/(1 + p2), i.e.,
the width of the zero-bias anomaly scales linearly with temperature and
depends only weakly on polarization.

• The relative peak height xG increases monotonically with polarization and
when moving from the edges towards the middle of the Coulomb blockade
valley.

• The absolute peak height GAP
max−GAP

min depends nonmonotonically on polar-
ization, since it vanishes for p = 0 and p = 1.

• At low temperature both GAP
max and GAP

min increase with temperature,
GAP

max,min(T )/GAP
max,min(0) = 1 + (T/B)2 +O(T 4) with the same constant B,

such that xG is nearly independent of temperature.

It is worth noting that the zero-bias anomaly in the cotunneling regime is
qualitatively similar to the maximum due to the Kondo effect, which occurs in
the strong coupling limit [110, 111, 112]. There are, however, some distinct
differences. First of all, processes responsible for the zero-bias anomaly in the
cotunneling regime are of the second order in tunneling processes, while these
leading to the Kondo effect are of higher than second order. The conductance in
the cotunneling regime is much smaller than in the Kondo regime, where almost
perfect transmission (G = e2/h) through the dot is possible owing to the Kondo
peak in the density of states at the Fermi level. Furthermore, the Kondo peak
occurs at temperatures lower than the so-called Kondo temperature, T . TK,
and exists also in the parallel configuration [109, 113].
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4.5.2 Mechanism of the Zero-Bias Anomaly

To understand the mechanism of the zero-bias anomaly it is crucial to distin-
guish between different types of cotunneling processes. They are illustrated in
Fig. 4.3. In the following, however, we focus only on the cotunneling processes
that are responsible for the occurrence of the zero-bias peak. These are the single-
barrier cotunneling processes shown in Fig. 4.18a and double-barrier cotunneling
processes illustrated in Fig. 4.18b. As already pointed in section 4.3 both single-
barrier and double-barrier processes can be either spin-flip or non-spin-flip ones.
The current flows due to double-barrier cotunneling, whereas the single-barrier
cotunneling can influence the current in an indirect way, by changing the mag-
netic state of the dot. In the antiparallel configuration, there is a finite spin
accumulation on the dot, as presented in Fig. 4.18c. The different occupation
probabilities for spin-up and spin-down electrons appear due to spin asymmetry
in tunneling processes, i.e., when the spin-flip cotunneling rates that change the
dot state from | ↑〉 to | ↓〉 and | ↓〉 to | ↑〉 are different from each other. In
equilibrium, both rates are equal and, consequently, there is no spin accumula-
tion, P↑ = P↓. When, however, a bias voltage is applied and the system is in the
antiparallel configuration, the situation is different. The amount of single-barrier
cotunneling is diminished as compared to the double-barrier cotunneling. This is
because the rate of single-barrier cotunneling is proportional to thermal energy,
whereas that of double-barrier cotunneling is proportional to the bias voltage. In
the nonlinear response regime, only the two spin-flip processes that transfer an
electron from the left to the right leads determine the magnetic state of the dot.
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Figure 4.18: Single-barrier (a) and double-barrier (b) cotunneling processes, and
the occupation probabilities for spin-up and spin-down electrons in the antipar-
allel configuration (c). The parameters are kBT = 0.5Γ, ε = −U/2, U = 30Γ,
and p = 0.5.
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The one shown in Fig. 4.18b changes the dot spin from | ↑〉 to | ↓〉. Because the
rate of this process is proportional to a product of densities of states for majority
electrons, the corresponding rate is larger than that of the other process that
changes the dot spin from | ↓〉 to | ↑〉, where only the minority spins are involved.
This results in a nonequilibrium spin accumulation P↓ > P↑ that increases with
increasing voltage, as shown in Fig. 4.18c. The initial state for the dominant
spin-flip cotunneling process that contributes to the current is | ↑〉, as sketched
in Fig. 4.18b. Thus, due to the spin accumulation (P↓ > P↑) conductance is de-
creased. This is the mechanism by which spin accumulation gives rise to nonzero
tunnel magnetoresistance effect, GP > GAP, see Fig. 4.13b.

Because the spin accumulation decreases transport, thus, any spin-flip process,
that reduces the spin accumulation will enhance the conductance. In particular,
single-barrier spin-flip cotunneling is such a process. As pointed in previous para-
graph, the rate of single-barrier processes scales with kBT while that of double-
barrier cotunneling is proportional to max{|eV |, kBT}, which explains the mech-
anism of the zero-bias anomaly. At low bias voltage, |eV | . kBT , single-barrier
spin-flip processes play a significant role – they decrease the spin accumulation
and, thus, open the system for the fastest double-barrier cotunneling. As a con-
sequence, the current increases relatively fast with applied bias, leading to a
maximum in differential conductance. For |eV | À kBT , on the other hand, the
relative role of single-barrier processes is negligible as compared to double-barrier
cotunneling, and the conductance is reduced. Thus, it is the interplay between
the rates of double-barrier and single-barrier cotunneling processes that leads to
the maximum in the differential conductance at the zero bias.

4.5.3 Results in the Presence of Magnetic Field

If an external magnetic field is applied, the dot level becomes spin-split. Fur-
thermore, when the splitting ∆ = ε↓ − ε↑ is larger than thermal energy and bias
voltage, |∆| À max{kBT, |eV |}, only the lower spin level is occupied and the dot
is fully polarized, which results in a complete suppression of the spin-flip cotun-
neling, thus, leading to a reduction of conductance. This can be seen in Fig. 4.19,
where the bias voltage dependence of differential conductance in both the parallel
and antiparallel configurations for symmetric and asymmetric Anderson model
is displayed. When using the same assumptions as the ones used in the case of
spin-degenerate dot level, one can find approximative expressions for the plateaus
in differential conductance. They are given by

GP
field =

e2

h

Γ2

4

[
(1 + p)2

(ε− |∆|/2)2
+

(1− p)2

(ε + U + |∆|/2)2

]
, (4.48)

for the parallel configuration, whereas for the antiparallel configuration one finds

GAP
field =

e2

h

Γ2

4
(1− p2)

[
1

(ε− |∆|/2)2
+

1

(ε + U + |∆|/2)2

]
. (4.49)
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Figure 4.19: Differential conductance in the presence of a Zeeman splitting
with p = 0.5 in parts (a,b,c) and p = −0.5 in part (d) for the symmetric (a,b)
and asymmetric (c,d) Anderson model with parallel (a,c,d) and antiparallel (b)
relative magnetization of the leads. The other parameters are: kBT = 0.2Γ, and
U = 40Γ.

The above expressions describe the plateau in differential conductance due to
the suppression of spin-flip cotunneling. When, however, the bias voltage is
increased such that |eV | ∼ |∆| À kBT , spin-flip processes are again possible,
and the conductance increases. In the antiparallel magnetic configuration, the
conductance is asymmetric under the reversal of bias voltage. This is illustrated
in Fig. 4.19b.

In order to understand this behavior it is crucial to realize that when the dot
level splitting ∆ = ε↓ − ε↑ is positive and larger than thermal energy, the single-
barrier spin-flip cotunneling processes can occur only when the dot is occupied
by a spin-down electron. This follows simply from the energy conservation rule.
(The situation may be changed for negative ∆.) Thus, the single-barrier processes
can assist the fastest double-barrier cotunneling processes, but only for positive
bias voltage. This is because the fastest processes can occur when the dot is
occupied by a spin-down electron for negative transport voltage and by a spin-up
electron for positive voltage. As a consequence, the differential conductance is
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larger for negative bias voltage than for positive one. This is indeed the case in
the characteristics shown in Fig. 4.19b. Apart from this, if |eV | < |∆| then the
double-barrier spin-flip processes are also energetically forbidden, which results
in a broad plateau in the conductance in the small bias voltage range.

In the parallel configuration, there is again a plateau for max{kBT, |eV |} ¿
|∆| due to the suppression of spin-flip cotunneling processes, as shown in Fig. 4.19a.
In addition, it can be seen that for an asymmetric Anderson model (Fig. 4.19c
and d) the differential conductance significantly depends on the spin polarization
p. In the situation shown in Fig. 4.19c, a weak maximum in the conductance at
small bias voltage appears for weak magnetic fields, which subsequently develops
into a broad minimum for large fields. This does not take place for the opposite
polarization factor, as shown in Fig. 4.19d.

In the present section we have presented the main properties and mechanism
of the zero-bias anomaly in differential conductance found in the cotunneling
regime when the leads are magnetized antiparallel to each other. It was shown
that this zero-bias anomaly originates from the interplay of single-barrier and
double-barrier spin-flip cotunneling processes. From an experimental point of
view, the anomaly may be observed in quantum dots and/or molecules attached
to ferromagnetic leads, which include an odd number of electrons. Such structures
have already been realized experimentally [97, 98, 99, 100, 109, 119].

Finally, it is worth noting that no zero-bias anomaly occurs in the Coulomb
blockade valleys with an even number of electrons (empty dot for ε > 0 and
doubly occupied dot for ε + U < 0), as in this case the total dot spin is zero, and
spin accumulation is absent.

4.6 Effects of Intrinsic Spin Relaxation in the

Dot on Transport in the Cotunneling Regime

In the following, we discuss the impact of intrinsic spin relaxation in the dot
on conductance of a quantum dot coupled to ferromagnetic leads in the cotun-
neling regime. In particular, we consider the cases of a dot symmetrically and
asymmetrically coupled to the leads. The latter case is of particular interest as
the corresponding transport characteristics are typical of diodes, i.e., they are
highly asymmetric with respect to bias reversal. It is further shown that the
diode-like behavior in the cotunneling regime is suppressed by the intrinsic spin
flip processes on the dot.

In order to analyze the transport properties in the cotunneling regime we
use the Averin-Nazarov approach. This approach was outlined in section 4.3.
In numerical calculations we have included all possible cotunneling events. Fur-
thermore, the intrinsic spin relaxation processes on the dot are also considered
[91]. These processes have been taken into account via a relaxation term in the
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appropriate master equation for the occupation probabilities

0 =
∑

r,r′=L,R

(−γrr′,σ⇒σ̄Pσ + γrr′,σ̄⇒σPσ̄)− Pσ − Pσ̄

τsf

, (4.50)

where τsf is the spin relaxation time on the quantum dot. The occupation proba-
bilities can be determined from the above master equation together with normal-
ization condition, Eq. (4.29). The respective expressions for cotunneling rates are
given in appendix B.1. Having found the corresponding second-order transition
rates, one can calculate the electric current from Eq. (4.30).

4.6.1 Symmetrical Systems

We consider the case when the dot is singly occupied at equilibrium and the sys-
tem is in a deep Coulomb blockade regime, Γ, kBT ¿ |εσ|, εσ +U . This transport
regime corresponds to regime B, as illustrated in Fig. 4.4. The sequential tunnel-
ing is then exponentially suppressed, and cotunneling gives the dominant contri-
bution to electric current. Both non-spin-flip and spin-flip cotunneling processes
are then allowed, as described in the previous sections. In the following, the influ-
ence of intrinsic spin relaxation on transport characteristics both in the presence
and absence of external magnetic field is presented and discussed.

In the case of ∆ = 0 the dot level is spin degenerate, ε↑ = ε↓ = ε. The
differential conductance for parallel and antiparallel magnetic configurations in
the case of symmetric coupling of the dot to the leads is shown in Fig. 4.20. In the
parallel configuration one finds typical parabolic behavior of the conductance with
increasing transport voltage, whereas in the antiparallel configuration a maximum
in differential conductance in the small bias regime appears, as presented in the
preceding section. The anomalous behavior of differential conductance in turn
leads to respective minimum in tunnel magnetoresistance, as shown by the solid
curve in Fig. 4.20c.

Physical mechanism of the zero-bias anomaly was discussed in the previous
section for the case of no spin relaxation, where it was pointed out that the anom-
alous behavior of differential conductance results from the spin asymmetry of
tunneling processes and the subtle interplay of single-barrier and double-barrier
cotunneling processes. The spin asymmetry of tunneling processes leads effec-
tively to nonequivalent occupation of the dot by spin-up and spin-down electrons
(spin accumulation), as illustrated in Fig. 4.18c and Fig. 4.21. Figure 4.21 shows
the spin accumulation, defined as (P↑ − P↓)/2, as a function of the bias voltage
for different spin relaxation times. It can be seen that the accumulation is de-
creased as the relaxation time becomes shorter. From the discussion presented
in subsection 4.5.2 follows that spin accumulation is crucial for the occurrence
of the zero-bias anomaly. Thus, one may expect that intrinsic spin-flip processes
on the dot should suppress the anomaly. Now we show that this is indeed the
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Figure 4.20: The differential conductance in the parallel and antiparallel config-
urations (a,b) and tunnel magnetoresistance (c) as a function of the bias voltage
for different spin relaxation r = h/(τsfΓ). The parameters are kBT = 0.2Γ,
ε = −15Γ, U = 30Γ, and p = 0.5.

case, i.e., intrinsic spin relaxation on the dot significantly modifies the conduc-
tance maximum at zero bias, and, eventually, totally suppresses the anomaly
in the limit of fast spin relaxation. This behavior is displayed in Fig. 4.20b,
where different curves correspond to different values of the parameter r defined
as r = h/(Γτsf). Thus, the case of r = 0 corresponds to the situation with no
intrinsic spin relaxation, whereas the curves corresponding to nonzero r describe
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Figure 4.21: The spin accumulation in the antiparallel configuration as a function
of the bias voltage for different spin relaxation r = h/(τsfΓ). The parameters are
the same as in Fig. 4.20.

the influence of the relaxation processes. First of all, it can be seen that small
amount of intrinsic spin-flip processes enhances the zero-bias anomaly. This is
because the spin-flip processes on the dot play a role similar to that of single-
barrier spin-flip cotunneling, thus, reducing the spin accumulation. In the limit of
fast spin relaxation, on the other hand, the spin accumulation is suppressed and
the anomaly disappears, see Fig. 4.20b and Fig. 4.21 for r = 1. It is also worth
noting that spin-flip processes on the dot enhance the overall conductance. In the
parallel configuration, however, the differential conductance does not depend on
intrinsic relaxation. This is because there is no spin accumulation in the parallel
configuration. Consequently, the spin-flip processes on the dot do not play any
role.

Intrinsic spin-flip scattering on the dot modifies conductance in the antipar-
allel configuration, and this way also the tunnel magnetoresistance, as shown in
Fig. 4.20c. Since the zero-bias maximum in conductance is suppressed in the fast
spin relaxation limit, the corresponding minimum in TMR at small bias voltage
is also suppressed by the relaxation processes. More specifically, it can be seen
that the dip in TMR broadens with increasing r and disappears in the limit of
fast relaxation (see the curve for r = 1). An interesting feature of the TMR effect
in the presence of spin-flip scattering on the dot is the crossover from positive to
negative values when r increases, as illustrated in Fig. 4.20c. Thus, the difference
between parallel and antiparallel magnetic configurations persists even for fast
spin relaxation on the dot, on the contrary to the sequential tunneling regime,
where this difference vanishes in this limit [91].

In the case of a deep Coulomb blockade one can take only the lowest order
corrections in term x/y, with x = kBT, |eV |, y = |ε|, ε + U . It is then possible
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to derive some approximate formulas for the differential conductance and TMR.
For the parallel configuration the differential conductance is independent of spin
relaxation and given by Eq. (4.43). For the antiparallel configuration and in
the linear response, |eV | ¿ kBT , the conductance can be approximated by the
expression

GAP
max =

e2

h

Γ2

2

{
(1− p2)

[
1

ε2
+

1

(ε + U)2
+

1

|ε|(ε + U)

]

+
p2U2h/τsf

ε2(ε + U)2h/τsf + kBTU2Γ2

}
, (4.51)

which describes the maximum of the differential conductance at zero bias. On
the other hand, when |eV | À kBT , one finds the formula

GAP
min =

e2

h

Γ2

2

{
1− p2

1 + p2

[
1

ε2
+

1

(ε + U)2
+

1− p2

|ε|(ε + U)

]

+
4p2

1 + p2

U2h/τsf

2ε2(ε + U)2h/τsf + (1 + p2)kBTU2Γ2

}
, (4.52)

which in turn corresponds to local minimum value of the differential conductance.
The latter terms in Eqs. (4.51) and (4.52) are due to spin relaxation processes.
The above equations present generalizations of Eqs. (4.44) and (4.45). On the
other hand, the relative height of the maximum in differential conductance for
antiparallel configuration, given by Eq (4.46), in the case of symmetric Anderson
model, ε = −U/2, can be expressed as

xG =
32p2(1− p2)(kBT )2Γ4

(4kBTΓ2 + ε2h/τsf) [2(1− p2)(3− p2)kBTΓ2 + (3 + p2)ε2h/τsf ]
. (4.53)

In the limit of no spin relaxation one finds xG = 4p2/(3 − p2), whereas in the
limit of fast spin relaxation xG tends to zero. This is because spin-flip relaxation
processes diminish spin accumulation (and spin accumulation was the necessary
condition for the zero-bias anomaly to occur). Indeed, in the limit of fast spin
relaxation, GAP

max and GAP
min are equal and given by

GAP =
e2

h

Γ2

2

[
1

ε2
+

1

(ε + U)2
+

1 + p2

|ε|(ε + U)

]
. (4.54)

A similar analysis can be performed for tunnel magnetoresistance. In the
case of a symmetric Anderson model the minimum in TMR at zero bias can be
expressed as

TMRmin =
2p2 (4kBTΓ2 − ε2h/τsf)

12(1− p2)kBTΓ2 + (3 + p2)ε2h/τsf

, (4.55)
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Figure 4.22: The spin relaxation time dependence of the linear conductance in
the antiparallel configuration (a) and the resulting TMR (b). The parameters
are the same as in Fig. 4.20.

whereas for |eV | À kBT one finds

TMRmax =
2p2 [2(3− p2)kBTΓ2 − ε2h/τsf ]

2(1− p2)(3− p2)kBTΓ2 + (3 + p2)ε2h/τsf

. (4.56)

The latter formula approximates the value of TMR corresponding to the bias
voltage at which differential conductance has local minimum. In the limit of long
spin relaxation one finds TMRmin = 2p2/3(1− p2), and TMRmax = 2p2/(1− p2),
see Eq. (4.39). On the other hand, in the limit of short spin relaxation TMR
becomes negative and is given by

TMR = − 2p2

3 + p2
, (4.57)

independent of |eV |/kBT . This is consistent with numerical results shown in
Fig. 4.20c.

As follows from the results described above, the intrinsic spin relaxation on the
dot has a significant influence on transport characteristics. The zero-bias anomaly
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Figure 4.23: The temperature dependence of the linear conductance in the an-
tiparallel configuration (a) and the resulting TMR (b) for the same parameters
as in Fig. 4.20.

in the antiparallel configuration and minimum in TMR become suppressed by the
spin-flip processes. Variation of the conductance and TMR with the parameter
r is shown explicitly in Fig. 4.22a and b, where the transition between slow and
fast spin relaxation on the dot is clearly evident. Different curves correspond to
different values of temperature. One can see that the crossover between the limit
of fast and slow relaxation time is slightly shifted towards longer relaxation times
as temperature increases.

The temperature dependence of the conductance and tunnel magnetoresis-
tance is illustrated in Fig. 4.23a and b, where different curves correspond to
different values of the parameter r. The TMR effect in the limit of slow and
fast relaxation is almost independent of temperature. However, in the crossover
between those two regimes the tunnel magnetoresistance reveals a strong depen-
dence on temperature, and so does the linear conductance.

The discussion up to now was limited to the case of a spin-degenerate dot level.
The situation changes when ε↑ 6= ε↓, e.g., due to an external magnetic field. The
magnetic field splits the dot level, consequently the occupation probabilities for
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Figure 4.24: The differential conductance in the nonlinear response regime for
different spin relaxation in the parallel (a) and antiparallel (b) configurations.
The parameters are: kBT = 0.2Γ, ε↑ = −16Γ, ε↓ = −14Γ, U = 30Γ and p = 0.5.

the spin-up and spin-down electrons are not equal even at equilibrium (V = 0).
The level splitting is described by the parameter ∆ = ε↓−ε↑, where the magnetic
field is assumed to be along the magnetic moment of the left electrode. In Fig. 4.24
we show the bias dependence of the differential conductance in the parallel and
antiparallel configurations for different values of spin relaxation parameter r. In
the limit of no spin relaxation on the dot (solid line in Fig. 4.24) and at low bias
voltage, the dot is occupied by spin-up electron and the current flows mainly
due to non-spin-flip cotunneling. Spin-flip cotunneling processes are suppressed
for |∆| ≥ |eV |, kBT , which results in the steps in differential conductance at
|∆| ' |eV |, as discussed in previous section. The suppression of the spin-flip
inelastic cotunneling was recently used as a tool to determine spin splitting of the
dot level and the corresponding spectroscopic g-factor [98]. When |eV | becomes
larger than |∆|, spin-flip cotunneling is allowed, consequently the conductance
increases. However, there is a large asymmetry in the antiparallel configuration
with respect to bias reversal, as shown in Fig. 4.24b. No such an asymmetry
occurs in the parallel configuration, as presented in Fig. 4.24a. The mechanism
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of the asymmetry with respect to the bias reversal was discussed in subsection
4.5.3.

The situation changes when intrinsic spin-flip relaxation processes on the dot
are present. As the relaxation time becomes shorter, the probability that the spin
on the dot is flipped increases. Consequently, there appear a nonzero probability
for electrons to tunnel through the spin-down energy level by spin-flip cotunnel-
ing processes. This results in an increase of differential conductance. Finally,
in the limit of short relaxation time the spin-flip and non-spin-flip cotunneling
contribute to the current on equal footing and the gap due to the suppression of
spin-flip cotunneling disappears, irrespective of magnetic configuration, as shown
in Fig. 4.24 in the case of r = 1. Moreover, the asymmetry with respect to the
bias reversal in the antiparallel configuration also vanishes.

4.6.2 Asymmetrical Systems

An interesting situation occurs for quantum dots coupled asymmetrically to the
left and right leads. For this situation we first present the results in the case
of degenerate dot level and then we proceed with the discussion of transport
properties in the case where the degeneracy is lifted.

Differential conductance for a system with one electrode nonmagnetic and the
other one made of a ferromagnet with large spin polarization (in the following
referred to as strong ferromagnet) is shown in Fig. 4.25. The parts (a) and (c)
correspond to the cases when the dot is described by an asymmetric Anderson
model (|ε| 6= ε+U). The difference between (a) and (c) is due to different position
of the dot level ε, and consequently also ε+U , with respect to the Fermi level at
equilibrium. More precisely, (a) and (c) are symmetrical in the sense that |ε| in
(a) is equal to ε+U in (c), and vice-versa, |ε| in (c) is equal to ε+U in (a). Part
(b), in turn, corresponds to the dot described by a symmetric Anderson model,
with |ε| equal to ε + U .

Consider first the situation in the absence of the spin relaxation on the dot
(solid curves in Fig. 4.25). There is then a significant asymmetry of electric
current with respect to the bias reversal (diode-like behavior) in the situations
displayed in Fig. 4.25a and c, whereas no such an asymmetry occurs for symmet-
ric Anderson model, as can be seen in Fig. 4.25b. Another feature of the curves
shown in Fig. 4.25 is the presence of zero-bias anomaly in the case described by
symmetric Anderson model [part (b)]. This anomaly is similar to that shown
in Fig. 4.20a for antiparallel configuration. The anomaly, however, is less pro-
nounced when the dot is described by asymmetric Anderson model, as clearly
visible in Fig. 4.25a and c.

Let us discuss now the physical mechanism of the asymmetry with respect
to the bias reversal, displayed in Fig. 4.25a and c. When |eV | À kBT , one can
neglect the role of single-barrier cotunneling [104]. The cotunneling processes
which transfer charge from one lead to the other take place via two possible
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Figure 4.25: The differential conductance in the nonlinear response regime for the
asymmetric (a,c) and symmetric (b) Anderson model for different spin relaxation.
The parameters are: kBT = 0.2Γ, U = 60Γ, pL = 0.95 and pR = 0.

virtual states – empty dot (an electron residing on the dot tunnels to one of
the leads and another electron from the second lead enters the dot) and doubly
occupied dot (an electron of opposite spin enters the dot while electron being
originally on the dot leaves the dot). Both processes are coherent, consequently
the corresponding amplitudes add to each other, see Eq. (B.2). Consider first the
situation illustrated in Fig. 4.25a for positive bias (eV > 0, electrons flow from
right to left, i.e., from normal metal to strong ferromagnet), and assume for clarity
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of discussion that the strong ferromagnet is a half-metallic one with full spin
polarization (only spin-up electrons can then tunnel to the left lead). When spin-
down electron enters the dot, it has no possibility to leave the dot for a long time.
The cotunneling processes which are then allowed are those taking place through
virtual states with doubly occupied dot. In the absence of intrinsic spin relaxation
on the dot, the only processes which can reverse the dot spin are the single-barrier
cotunneling ones, which however play a minor role when kBT ¿ |eV |. Thus, the
current flows due to non-spin-flip cotunneling via doubly-occupied dot virtual
states, whereas cotunneling through empty-dot virtual states is suppressed. The
situation is changed for negative bias (electrons flow from strong ferromagnet to
normal metal). Now, the dot is mostly occupied by a spin-up electron (compare
with Fig. 4.21), which suppresses cotunneling via doubly-occupied dot virtual
state and the only contribution comes from cotunneling via empty-dot virtual
state. The ratio of cotunneling rates through the empty-dot and doubly-occupied
dot virtual states is approximately equal to ξ = [ε/(ε + U)]−2, see Eq. (B.2). In
the situation presented in Fig. 4.25a ξ ¿ 1. Accordingly, the conductance for
negative bias is much larger than for positive bias. In turn, in the case displayed
in Fig. 4.25c the ratio of the respective cotunneling rates is exactly equal to the
inverse of this ratio corresponding to the case shown in Fig. 4.25a. Thus, now we
have ξ À 1, and the conductance is smaller for negative bias than for positive
one. In turn, in the case presented in Fig. 4.25b ξ is equal to 1, consequently,
both cotunneling rates are equal and the conductance is symmetrical with respect
to the bias reversal.

When |eV | becomes of the order of kBT or smaller, the rate of single-barrier co-
tunneling events is of the order of the rate of double-barrier cotunneling processes.
Therefore, the single-barrier processes can play an important role in transport.
More precisely, single-barrier cotunneling processes can reverse spin of an elec-
tron on the dot and, thus, can open the system for the fast cotunneling processes.
This behavior can be observed in Fig. 4.25a and c. In the symmetric case shown
in Fig. 4.25b, the single-barrier processes lead to zero-bias anomaly similar to
that shown in Fig. 4.20a for antiparallel configuration in a system with two fer-
romagnetic electrodes coupled symmetrically to the dot. The mechanism of the
anomaly is the same, i.e., the single-barrier cotunneling processes open the sys-
tem for the fast spin-flip cotunneling, which occurs for kBT À |eV |. This leads to
an increase in conductance in the small range of the bias voltage. The zero-bias
anomaly exists also in asymmetric cases illustrated in Fig. 4.25a and c. However,
the maximum in conductance is slightly shifted away from V = 0 and is much
less pronounced.

Intrinsic spin-flip processes on the dot have similar influence on electronic
transport as in the symmetric case studied in the previous section. As before,
relaxation processes remove the asymmetry with respect to the bias reversal and
suppress the zero-bias anomaly. Thus, the diode-like behavior can appear only
in the limit of slow spin relaxation, and is suppressed in the limit of fast spin
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relaxation, as shown in Fig. 4.25 by the curves corresponding to r = 1.
Simple analytical formula for the conductance in the limit |eV | À kBT can

be obtained when assuming pL = p, pR = 0. One can then find approximative
formulas for the differential conductance

G =
e2

h

Γ2

2

[
1

(ε + U)2
+

(1− p2)U

ε2(ε + U)
+

p2ε2U(ε + U)3

[ε2(ε + U)2 − eV U2Γ2τsf/(4h)]2

]
(4.58)

for positive bias, and

G =
e2

h

Γ2

2

[
1

ε2
+

(1− p2)U

|ε|(ε + U)2
+

p2|ε|3U(ε + U)2

[ε2(ε + U)2 + eV U2Γ2τsf/(4h)]2

]
(4.59)

for negative bias. In order to describe the diode operation it is useful to define a
ratio of conductance for positive and negative bias voltage ζ. In the limit of long
spin relaxation it is given by

ζ =
ε2 + (1− p2)(ε + U)U

(ε + U)2 + (1− p2)|ε|U . (4.60)

It can be seen from the above expression that the operation of the diode can be
tuned by varying the gate voltage (which shifts energy of the dot level).

Figure 4.26 illustrates the influence of spin splitting of the dot level due to
applied magnetic field, ε↑ 6= ε↓. The bias voltage dependence of the differential
conductance is shown there for different values of the parameter r, for symmetric
(b) and asymmetric (a,c) Anderson model. The parameters used in numerical
calculations are the same as in Fig. 4.25, except for the dot level energy which
was spin degenerate in Fig. 4.25 and now is spin-split.

Let us first focus on Fig. 4.26a, which corresponds to the case of asymmetric
Anderson model, ε = −U/4. The two new features of the system conductance
in the limit of no spin relaxation appear in this figure. First, the conductance is
now suppressed above a certain finite positive value of the bias voltage and this
is not for eV > 0 as it was in the case shown in Fig. 4.25a. Strictly speaking, the
conductance drops when eV is equal to the level splitting ∆, eV ≈ ∆. The shift of
the main slope in the conductance from eV = 0 to eV ≈ ∆ is due to the fact that
the dot is blocked for cotunneling via the empty state by a spin-down electron
only when eV exceeds the level splitting. Thus, in the case shown in Fig. 4.25a
the main drop of the conductance was at eV = 0, whereas in Fig. 4.26a it is at
eV ≈ ∆. When a spin-down electron appears on the dot, then, for eV < ∆, it can
always tunnel back to the source electrode and open the dot for fast cotunneling
through the empty state.

The second feature visible in the case of no intrinsic spin relaxation on the
dot is the peak in the conductance at eV = ∆, and a shallow plateau in the
conductance for |eV | ≤ ∆. The origin of the peak is similar to the origin of the
zero-bias anomaly in the case of zero splitting of the dot level, i.e., the crucial role
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Figure 4.26: The differential conductance in the nonlinear response regime for
different spin relaxation. The parameters are: kBT = 0.2Γ, ε↑ = ε − ∆/2,
ε↓ = ε + ∆/2, ∆ = 2Γ, U = 60Γ, pL = 0.95 and pR = 0.

plays the single-barrier cotunneling, whereas the plateau in the small bias voltage
range is due to suppression of the spin-flip cotunneling for eV < ∆, similarly as
in the case presented in Fig. 4.24. However, the plateau is now very weak and
shallow. This is due to the minor role of spin-flip cotunneling, which follows from
the strong spin polarization of the ferromagnetic electrode.

Qualitatively similar behavior may also be observed for the case when ε =
−3U/4. This situation is shown in Fig. 4.26c and is analogous to the one illus-
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trated in Fig. 4.25c. In the case of ε = −U/2 shown in Fig. 4.26b, the influence of
magnetic field is qualitatively similar to that found in the case of a quantum dot
coupled to two ferromagnetic leads in the antiparallel configuration, see Fig. 4.24.

Once the spin relaxation on the dot appears, all the features discussed above
become suppressed by the relaxation processes and disappear in the limit of fast
spin relaxation. This is shown by the curves corresponding to r = 1 in Fig. 4.26.

In this section the influence of intrinsic spin relaxation on the dot on the differ-
ential conductance and the TMR effect in the cotunneling regime was considered
both numerically and analytically. It was shown that the spin-flip processes can
decrease and eventually suppress totally both the zero-bias anomaly in the an-
tiparallel magnetic configuration and the minimum in tunnel magnetoresistance
at zero bias. Moreover, in the limit of short spin relaxation time the TMR effect
may become negative.

It was also shown that the zero-bias anomaly exists in systems with only
one ferromagnetic electrode (the second one may be nonmagnetic). Such devices
have transport characteristics typical of diodes. This behavior exists also when
the system is in an external magnetic field, but the operation range is changed,
i.e., the bias at which the conductance drops depends on the level splitting. This
behavior is strongly suppressed by intrinsic spin relaxation processes on the dot.

Finally, it is interesting to note that spin relaxation effects do not play any
role in the case of Coulomb blockade valleys with even number of electrons on
the dot, because the dot is unpolarized.
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Chapter 5

Transport through Quantum
Dots Coupled to Ferromagnetic
Leads with Noncollinear
Magnetizations

Previous chapters dealt with spin-polarized transport through quantum dots cou-
pled to ferromagnetic leads in the case when the magnetic moments of the leads
were aligned collinearly with respect to each other. In the following, we con-
sider spin-dependent cotunneling transport in the case when the leads’ magne-
tizations can form arbitrary magnetic configurations [106, 131]. Spin-polarized
transport through quantum dots coupled to ferromagnetic electrodes with non-
collinear magnetic moments is still not fully explored, although a couple of papers
have already been reported [93, 94, 95, 132, 133, 134, 135, 136, 137].

5.1 Description of Model and Method

The system consists of a single-level quantum dot coupled through tunnel barriers
to two external ferromagnetic leads, whose magnetizations are oriented arbitrarily
in the plane of the structure. The dot is assumed to be deposited on a ferromag-
netic substrate which strongly interacts with the dot and leads to spin-splitting of
the dot level. The splitting is assumed to be larger than the level splitting due to
exchange interaction between the dot and electrodes. The exchange interaction
results from tunneling processes and is of the first order in the dot-lead coupling
strength Γ [93, 94]. When neglecting the exchange coupling between the dot and
leads, one may assume that the level splitting is constant, i.e., independent of
applied voltage.

Coupling of the dot to ferromagnetic substrate is described by an effective
molecular field Bs, lying in the plane of the structure. Thus, the magnetic mo-
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Figure 5.1: Schematic of a quantum dot coupled to ferromagnetic leads. The
dot level is spin-split due an effective molecular field. Classical spin of the lead
r (r = L, R) can form an arbitrary angle ϕr with the dot spin quantization axis
(axis z), as indicated.

ments of the electrodes and the molecular field are all in a common plane. The
effective molecular field determines the global quantization axis for electron spin
on the dot (axis z antiparallel to the molecular field). In turn, the local quanti-
zation axis in the leads is determined by the corresponding local magnetization
direction, and is parallel to the net spin of the lead (thus, being antiparallel to
the local magnetic moment). Furthermore, it is assumed that the net spin of
the left (right) lead forms an angle ϕL (ϕR) with the global quantization axis, as
shown in Fig. 5.1. In previous chapters all the magnetic moments were collinear
with respect to each other. In the case of noncollinear magnetic configurations, it
is important to distinguish between different quantization directions. Thus, the
majority (minority) spins in the local reference systems are labelled by σ = +(−),
while spin projection on the global quantization axis is denoted as σ =↑ (↓) for
spin-up (spin-down) electrons.

Hamiltonian of the system has the general form, H = HL+HR+HD+HT, see
Eq. (4.1). The lead Hamiltonians are diagonal in the respective local coordinate
systems, Hr =

∑
σ=+,−

∑
q εrqσc

†
rqσcrqσ (for r = L, R), with εrqσ being the energy

of a single electron with wavevector q and spin σ in the lead r, whereas c†rqσ and
crqσ denote the corresponding creation and annihilation operators.

The dot is described by the Anderson Hamiltonian, which in the global ref-
erence frame can be expressed as HD =

∑
σ=↑,↓ εσd

†
σdσ + Un↑n↓, where εσ is the

energy of an electron with spin σ, εσ = ε∓ gµBBs, and d†σ (dσ) creates (annihi-
lates) a spin-σ electron. Here, g is the Lande factor and ε is the dot level energy
in the absence of magnetic electrodes and molecular field due to the substrate.
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The tunnel Hamiltonian in the global reference system takes the form

HT =
∑

r=L,R

∑
q

[(trq+c†rq+ cos
ϕr

2
− trq−c†rq− sin

ϕr

2
)d↑

+(trq+c†rq+ sin
ϕr

2
+ trq−c†rq− cos

ϕr

2
)d↓ + h.c.] , (5.1)

with trqσ denoting the tunnel matrix elements between the dot states and majority
(σ = +) or minority (σ = −) electron states in the lead r when ϕr = 0.

As described in section 4.1, due to the coupling between dot and leads, the
dot level acquires a finite width. When the magnetic moment of lead r and
the molecular field acting on the dot are parallel, the corresponding contribution
Γσ

r to the dot level width may be written as Γσ
r = 2π|trσ|2ρrσ, where ρrσ is the

spin-dependent density of states for the majority (σ = +) and minority (σ = −)
electrons in the lead r. As previously, the coupling parameters are expressed in
terms of spin polarization of the lead r, Eq. (1.4), as Γ±r = Γr(1 ± pr), where
Γr = (Γ+

r + Γ−r )/2. In the following, it is assumed that ΓL = ΓR ≡ Γ/2.
In the case of ferromagnetic leads, the coupling of the spin-up dot level is

different from the coupling of the spin-down level, which is due to different densi-
ties of states for spin-majority and spin-minority electron bands in the leads. As
pointed in the previous chapter, this may result in the splitting of the dot level
[105, 138]. In this analysis it is assumed that the dot level splitting, ∆ = ε↓− ε↑,
due to the molecular field is larger than the coupling parameters, ∆ À Γ±r . In
other words, it is assumed that the exchange interaction between the dot and
magnetic leads is much smaller than the Zeeman energy due to the molecular
field and, thus, can be neglected. An electron residing on the dot has then ei-
ther spin up or down. Thus, the corresponding density matrix in the global
quantization system is diagonal in the spin space1.

In that case, only the second-order processes (with respect to the tunneling
Hamiltonian) have to be taken into account in the Coulomb blockade regime.
When the above condition is not fulfilled, the exchange interaction cannot be
ignored and therefore the first-order processes, which are responsible for the ex-
change coupling (and do not contribute to charge transport), have to be consid-
ered.

The electric current is calculated by means of the Averin-Nazarov approach,
as described in section 4.3. In the case of noncollinearly magnetized leads, there
are finite amplitudes for transitions between states that were forbidden in the
case of collinearly magnetized leads. For the cotunneling rate for transition of
electron from a spin-majority state in the lead r to a spin-minority state in the

1This follows directly from the general kinetic equation in the Liouville space for the density
matrix elements, Eq. (4.10), derived within real-time diagrammatic technique [94].
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lead r′ one can write

γ+⇒−
rr′ =

2π

~

∣∣∣∣∣
∑

ν

〈Φ+
r |HT|Φν〉〈Φν |HT|Φ−

r′〉
εi − εν

∣∣∣∣∣

2

δ(εi − εf ) , (5.2)

where |Φ+
r 〉 and |Φ−

r′〉 are the initial and final states of the system, whereas |Φν〉
is a virtual state of the system. The corresponding energies are denoted as εi,
εf , and εν . The explicit expressions for cotunneling rates calculated within the
second-order perturbation theory are given in appendix B.2.

In the following the two different situations are considered. The first one
corresponds to an empty dot (due to particle-hole symmetry the results can be
adapted to the case of doubly occupied dot). The second situation is the case of
a singly occupied dot.

5.2 Cotunneling through Empty Dot

When the dot level is far above the Fermi energy of the leads, εσ À kBT, Γ, |eV |,
there are no electrons on quantum dot and electric current can flow only due to
non-spin-flip cotunneling processes. This situation corresponds to regime A, as
illustrated in Fig. 4.4. Because of the particle-hole symmetry, a similar analysis
can be directly performed for a doubly occupied dot (regime A’), when εσ+U ¿ 0
and |εσ + U | À kBT, Γ, |eV |. As in the case of empty dot, the current can then
flow only due to non-spin-flip cotunneling.

5.2.1 Theoretical Description

Electric current flowing from the left to right leads in the case of empty dot can
be calculated from the following equation

I = −e (γLR,0⇒0 − γRL,0⇒0) , (5.3)

with γLR,0⇒0 being the non-spin-flip cotunneling rate for transition from the left
to right leads, when the dot is in the state |χ = 0〉. Similarly, γRL,0⇒0 is the
non-spin-flip cotunneling rate for transition from the right to left electrodes. The
explicit expressions for corresponding cotunneling rates are given in appendix
B.2.1.

Having found all the cotunneling rates, one can calculate the electric current
from Eq. (5.3), it is given by

I =
eΓ2

4h

[
(1 + pL cos ϕL)(1 + pR cos ϕR)(B↑2R − B↑2L)

+(1− pL cos ϕL)(1− pR cos ϕR)(B↓2R − B↓2L)

+
2pLpR sin ϕL sin ϕR

ε↓ − ε↑

(
B↓1R − B↓1L − B↑1R + B↑1L

) ]
, (5.4)
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where the coefficients Bσ
1r and Bσ

2r are given by Eq. (B.9).
In the following, numerical results on electric current and the associated mag-

netoresistance are presented. In the case of systems with noncollinear magneti-
zations, the TMR effect is defined as

TMR =
IP − I(ϕL, ϕR)

I(ϕL, ϕR)
, (5.5)

where I(ϕL, ϕR) is the current flowing in the noncollinear configuration described
by the angles ϕL and ϕR, whereas IP is the current flowing in the parallel config-
uration corresponding to ϕL = ϕR = 0.

5.2.2 Numerical Results

The formula (5.4) for electric current corresponds to the situation where the
magnetic moments of the leads and the effective molecular field acting on the dot
are oriented arbitrarily in the plane of the structure. Further numerical analysis
is restricted, however, to the following two situations: (i) the magnetic moment
of the left lead is parallel to the molecular field acting on the dot (ϕL = 0), while
the magnetic moment of the right lead can have an arbitrary orientation, and
(ii) the magnetic moments of both leads can rotate symmetrically in the opposite
directions, ϕR = −ϕL. The case (i) corresponds to the situation when magnetic
moment of one lead and magnetic moment of the layer producing the molecular
field acting on the dot are fixed along the same direction. This can be achieved
for instance by a common antiferromagnetic underlayer with strong exchange
anisotropy at the antiferromagnet/ferromagnet interface. The situation (ii), in
turn, corresponds to the case when both leads are equivalent and their magnetic
moments can be rotated simultaneously by an external magnetic field.

In the first case, when ϕL = 0, the electric current is given by the formula

I =
eΓ2

4h

[
(1 + pL)(1 + pR cos ϕR)(B↑2R − B↑2L)

+(1− pL)(1− pR cos ϕR)(B↓2R − B↓2L)
]

, (5.6)

which follows directly from Eq. (5.4). In Figure 5.2 we show the current (a,c)
flowing through the system and the corresponding TMR (b,d) as a function of the
bias voltage for several values of angle ϕR, and as a function of the angle ϕR for
several values of the bias voltage. It can be seen that the current decreases and
TMR increases as the angle ϕR varies from ϕR = 0 to ϕR = π, which corresponds
to the transition from parallel to antiparallel magnetic configurations. Parts (c)
and (d) show explicitly this angular dependence. Both the current and TMR vary
monotonically with ϕR (for 0 ≤ ϕR ≤ π) and electric current reaches minimum,
while TMR maximum, at ϕR = π, i.e., in the antiparallel configuration. Such
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Figure 5.2: The cotunneling current (a,c) and the TMR effect (b,d) as a function
of the bias voltage (left column) and the angle ϕR (right column). The parameters
assumed for calculations are: kBT = Γ, ε↑ = 18Γ, ε↓ = 22Γ, pL = pR = 0.5, and
ϕL = 0.

behavior is typical of normal spin valves and results from spin asymmetry in
tunneling processes. It is also worth noting that TMR is only weakly dependent
on the bias voltage, as shown in Fig. 5.2b.

Assuming the same spin polarization of the leads, pL = pR = p, one can find
the following explicit formula for TMR in the case of empty dot in the zero bias
and zero temperature limits

TMR =
(1− cos ϕR)p

[
(1 + p)ε2

↓ − (1− p)ε2
↑
]

(1 + p)(1 + p cos ϕR)ε2
↓ + (1− p)(1− p cos ϕR)ε2

↑
. (5.7)

The above formula describes the angular variation of TMR and shows explicitly
that TMR reaches maximum for ϕ = π. This maximum value is given by the
expression

TMRmax =
2p

1− p2

[
p +

ε2
↓ − ε2

↑
ε2
↑ + ε2

↓

]
. (5.8)
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Figure 5.3: The cotunneling current (a,c) and the TMR effect (b,d) as a function
of the bias voltage (left column) and as a function of ϕ = ϕR = −ϕL (right
column). The other parameters are the same as in Fig. 5.2.

The first term in the bracket of the above equation gives the Jullière’s value of
TMR, see Eq. (1.5), whereas the second term describes enhancement of the tunnel
magnetoresistance due to the level splitting. Such an enhancement of TMR may
be of some interest from the application point of view. Furthermore, it is worth
noting that by changing the sign of the level splitting from ∆ to −∆ (by changing
the direction of the molecular field), one can either enhance or suppress the TMR
effect, as can also be seen in Figs. 4.15 and 4.16.

Consider now the situation (ii), when ϕR = −ϕL ≡ ϕ. The magnetic moment
of the left lead rotates now together with the magnetic moment of the right lead,
but in the opposite direction. The electric current is then given by Eq. (5.4) with
ϕR = ϕ and ϕL = −ϕ. The corresponding bias and angular dependence of the
cotunneling current and TMR is displayed in Fig. 5.3.

It is interesting to note that the angular dependence of electric current and
TMR differs now from that found above for the situation (i). In order to under-
stand this difference one should take into account the fact that ϕR = ϕL = 0 corre-
sponds to the parallel configuration, whereas the situation with ϕR = −ϕL = π/2
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corresponds to the antiparallel configuration with magnetic moments oriented
perpendicularly to the molecular field acting on the dot. It is also worth not-
ing that electric current reaches minimum and TMR maximum not exactly at
ϕR = −ϕL = π/2, but for the configuration which is close to the antiparallel one.
Moreover, position of these minima and maxima depends on the bias voltage, as
shown in Fig. 5.3c and d. In turn, the case ϕR = −ϕL = π corresponds again
to the parallel configuration, but with the magnetic moments of the electrodes
being antiparallel to the molecular field. This leads to a local maximum of elec-
tric current (minimum in TMR) at ϕR = −ϕL = π. It is interesting to note
that the two parallel configurations (aligned and anti-aligned with respect to the
molecular field) are not equivalent, and consequently the corresponding currents
and also TMR values are not equal.

When assuming equal spin polarizations of the leads and low bias and temper-
ature limits, one finds that the TMR effect at ϕR = −ϕL = π (which corresponds
to its local minimum) is given by

TMRmin =
4p(ε2

↓ − ε2
↑)

(1 + p)2ε2
↑ + (1− p)2ε2

↓
. (5.9)

In the same limit and for a nonzero spin polarization p, one can show that the
two maxima of TMR appear at ϕ = arccos φ and ϕ = 2π − arccos φ, with φ =
−∆/p(ε↑ + ε↓). In the limit of p = 0 TMR vanishes by definition. On the other
hand, in the case when |∆| < p(ε↑ + ε↓), the maxima appear approximately at
ϕR = −ϕL = π/2 and ϕR = −ϕL = 3π/2. The corresponding TMR value is then
equal

TMRmax =
p [(2 + p)ε↓ − (2− p)ε↑] (ε↑ + ε↓)

ε2
↑ + ε2

↓ − 2p2ε↑ε↓
. (5.10)

5.3 Cotunneling through Singly-Occupied Dot

By applying an external gate voltage to the dot, one can tune position of the level
energy and this way also the dot occupation. When εσ is negative and εσ + U
positive, the dot is singly occupied at equilibrium for Γ, kBT ¿ |εσ|, |εσ +U |, and
the system is in the Coulomb blockade regime, see regime B in Fig. 4.4. As before,
the two situations (i) and (ii) defined in the previous section are considered.

5.3.1 Theoretical Description

In the case studied in the preceding section the dot was empty, and the second-
order current was mediated only by non-spin-flip cotunneling processes. When
the dot is singly occupied, the cotunneling current can also flow due to spin-flip
cotunneling, in which the electrons tunneling to and off the dot have opposite
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Figure 5.4: The cotunneling current (a,c) and the TMR effect (b,d) as a function
of the bias voltage (left column) and the angle ϕR (the right column). The
parameters assumed for calculations are: kBT = Γ, ε↑ = −22Γ, ε↓ = −18Γ,
U = 40Γ, pL = pR = 0.5, ϕL = 0.

spin orientations (and consequently also different energies due to the level spin-
splitting), as discussed in previous chapter. These spin-flip cotunneling processes
determine the occupation numbers of the dot.

The probabilities P↑ and P↓, that the dot is occupied either by a spin-up
or spin-down electron, can be calculated from the master equation given by
Eq. (4.28). The corresponding spin-flip and non-spin-flip second-order transi-
tion rates are listed in appendix B.2.2. Having calculated the cotunneling rates
and the occupation probabilities, one can determine the current flowing from the
left to right leads from Eq. (4.30).

5.3.2 Numerical Results

In the case when the magnetic moment of the left electrode is fixed (ϕL = 0)
and the magnetic moment of the right lead is free to rotate, situation (i), the
angular and bias dependence of electric current and the TMR effect is shown
in Fig. 5.4. Except for the parallel configuration, the current-voltage curves are
now asymmetric with respect to the bias reversal, see Fig. 5.4a. This asymmetry

101



5 QDs: Noncollinear Configurations 5.3 Results: Singly-Occupied Dot

k
B
T = 0.1Γ

k
B
T = Γ

b

a

-15 -10 -5 0 5 10 15

1

2

3

4

5

6

7

 

 

eV/Γ

G
 (

10
-3
 e

2 /h
)

1

2

3

4

5

 

 

G
 (

10
-3
 e

2 /h
)

 ϕ
R
 = 0 

 ϕ
R
 = π/3

 ϕ
R
 = 2π/3

 ϕ
R
 = π

Figure 5.5: Differential conductance corresponding to the situation shown in
Fig. 5.4a, calculated for two different temperatures: (a) kBT = Γ and (b) kBT =
0.1Γ.

also leads to related asymmetric behavior of TMR, as illustrated in Fig. 5.4b.
Moreover, for positive bias voltage, the TMR effect can change sign and become
negative in a certain range of the bias and angle values. Such an asymmetry in
transport characteristics with respect to the bias reversal is of some importance
for applications, particularly when the current is significantly suppressed for one
bias polarization (diode behavior).

In order to account for the bias asymmetry, let us consider only the antipar-
allel configuration. One should then realize that owing to the level splitting,
ε↑ < ε↓, the single-barrier spin-flip cotunneling processes can occur only when
the dot is occupied by a spin-down electron, see also subsection 4.5.3. As a con-
sequence, the current can flow due to the double-barrier cotunneling processes
assisted by the single-barrier processes. The fastest double-barrier cotunneling
can occur when the dot is occupied by a spin-down electron for negative bias and
by a spin-up electron for positive bias, thus, leading to respective suppression or
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Figure 5.6: The TMR effect as a function of the bias voltage for kBT = 0.1Γ
and for different angles ϕR. The other parameters are the same as in Fig. 5.4.

enhancement of the current, as shown in Fig. 5.4a. The above described mech-
anism of the asymmetry with respect to the bias reversal does not hold when
magnetic moments of the two leads are parallel, consequently, the corresponding
current-voltage curve is symmetrical.

In order to demonstrate the above described asymmetry more clearly, the
corresponding differential conductance is displayed in Fig. 5.5a. The asymmetry
for ϕR > 0 is clearly evident. Besides the asymmetry, an additional interesting
feature of the differential conductance is also visible, namely, a characteristic
plateau in the small bias voltage regime. This plateau is a consequence of the
suppression of spin-flip double-barrier cotunneling events when |eV | < |∆|. For
|eV | > |∆|, the spin-flip cotunneling processes are allowed, leading to an enhanced
conductance, as discussed in previous chapter. The asymmetry and zero-bias
anomaly are even more evident at lower temperature, as shown in Fig. 5.5b.

Furthermore, the effect of suppression of spin-flip cotunneling can be also
visible in the TMR effect – it displays a plateau for |eV | < |∆|, as illustrated in
Fig. 5.6. For the angular dependence of this plateau, we have found in the low
temperature limit

TMR =
2p2 sin2 ϕR

2

1 + p2 cos ϕR

, (5.11)

which for ϕR = π gives the Jullière’s value. Equation (5.11) shows the explicit
dependence of TMR in the linear response on the angle ϕR.

The angular variation of electric current and TMR reveals further new fea-
tures. For negative bias there is a maximum of absolute value of electric current
in the parallel configuration and a minimum in the antiparallel configuration.
For positive bias, however, the electric current has a maximum for noncollinear
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Figure 5.7: Differential conductance for different values of the level splitting for
the parallel (a) and antiparallel (b) magnetic configurations. The parameters are:
kBT = 0.2Γ, ε↑ = ε−∆/2, ε↓ = ε+∆/2, ε = −20Γ, U = 40Γ, and pL = pR = 0.5.

configuration, as displayed in Fig. 5.4c. The nonmonotonic variation of electric
current with the angle ϕR leads to the corresponding nonmonotonic variation of
TMR, shown in Fig. 5.4d. Furthermore, TMR may now become negative, as
already mentioned before.

Numerical results presented so far have been shown for a single value of the
level splitting, ∆ = 4Γ. From the experimental point of view, variation of the
conductance as a function of the level splitting (induced for instance by a strong
external magnetic field), allows one to determine some interesting transport and
spectroscopic characteristics. Therefore, the differential conductance for different
splitting of the dot level in the parallel and antiparallel configurations is shown
in Fig. 5.7. By measuring width of the conductance dip, one can determine for
instance the spectroscopic g-factor [98].

In the case of a deep Coulomb blockade regime and |eV |, kBT ¿ |∆|, one can
derive an approximate formula for the plateau in differential conductance due to
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the suppression of spin-flip cotunneling. Writing ε↑ = ε−∆/2 and ε↓ = ε+∆/2,
one finds then the following expression

G =
Γ2e2

4h

[
(1 + pL cos ϕL)(1 + pR cos ϕR)

(ε−∆/2)2

+
(1− pL cos ϕL)(1− pR cos ϕR)

(ε + U + ∆/2)2

− 8pLpR sin ϕL sin ϕR

(ε−∆/2)(ε + U + ∆/2)

]
. (5.12)

The above equation is valid for an arbitrary magnetic configuration and is a gen-
eralization of Eqs. (4.48) and (4.49). Formula (5.12) approximates the plateaus
shown in Fig. 5.5. When assuming ϕL = ϕR = 0 (which corresponds to the
parallel configuration), Eq. (5.12) simplifies to the following form

GP =
Γ2e2

4h

[
(1 + pL)(1 + pR)

(ε−∆/2)2
+

(1− pL)(1− pR)

(ε + U + ∆/2)2

]
, (5.13)

whereas for the antiparallel alignment (ϕL = 0, ϕR = π) it becomes

GAP =
Γ2e2

4h

[
(1 + pL)(1− pR)

(ε−∆/2)2
+

(1− pL)(1 + pR)

(ε + U + ∆/2)2

]
. (5.14)

The above two expressions describe the plateaus in differential conductance shown
in Fig. 5.7. It is also worth noting that generally GP > GAP. Furthermore, both
GP and GAP vary monotonically with spin polarization of the leads – in the case
of nonmagnetic leads (pL = pR = 0) GP = GAP, whereas for pL = pR = 1 (which
corresponds to half-metallic leads) GP is maximal and GAP = 0.

Transport characteristics in the second situation, i.e., for the case when ϕR =
−ϕL = ϕ, are displayed in Fig. 5.8. One can note that the current is now almost
independent of the magnetic configuration, see Fig. 5.8a and c. Nevertheless,
the angular dependence of the current becomes more visible in the corresponding
differential conductance, plotted in Fig. 5.9a for different values of the angle ϕ,
and also in Fig. 5.9b for the same situation, but for much lower temperature.
The cotunneling gap due to suppression of the spin-flip processes is also clearly
visible. The plateau in differential conductance for |eV | ¿ kBT, |∆| is described
by Eq. (5.12). Since the system is now symmetric, the current-voltage curves
(and consequently also the differential conductance) are symmetric with respect
to the bias reversal.

The TMR effect reaches maximum in the zero-bias limit, V = 0, as shown
in Fig. 5.8b. At low temperatures this maximum develops into a broad plateau,
whose width is conditioned by the onset of sequential tunneling. This situation is
illustrated in Fig. 5.10, which presents the bias voltage dependence of the TMR
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Figure 5.8: The cotunneling current (a,c) and the TMR effect (b,d) as a function
of the bias voltage (left column) and ϕ = ϕR = −ϕL (right column). The other
parameters are the same as in Fig. 5.4.

effect for several values of angle ϕ. In the low temperature limit the plateau in
TMR at low bias voltage can be approximated by the following formula

TMR =
[1− cos(ϕL − ϕR)] pLpR

1 + pLpR cos(ϕL − ϕR)
. (5.15)

The above expression describes the linear response TMR for arbitrary angles
ϕL and ϕR, and presents, thereby, a generalization of Eq. (5.11). For ϕR =
−ϕL = π/2, TMR is given by the Jullière’s value. This is due to the fact that
for |∆| À kBT, |eV | the current is mediated only by non-spin-flip cotunneling,
which is fully coherent, thus, leading to the TMR of a single ferromagnetic tunnel
junction, see Eq. (1.5).

The angular variation of TMR, shown in Fig. 5.8d, reveals two maxima (and
also two minima), similarly as it was in the case of empty dot, but now the
maxima appear strictly for ϕ = π/2 and ϕ = 3π/2. On the other hand, one
minimum of TMR occurs at ϕR = ϕL = 0, where TMR vanishes by definition.
Tunnel magnetoresistance vanishes also in the second parallel configuration, when
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Figure 5.11: The angular dependence of the differential conductance and tunnel
magnetoresistance for several values of the Coulomb interaction parameter U at
the bias voltage eV = 2Γ. The other parameters are the same as in Fig. 5.8.

both magnetizations are antiparallel to the molecular field (ϕR = −ϕL = π).
This is due to the fact that the parameters assumed for numerical calculations
correspond to a symmetric Anderson model, i.e., U = −ε↑ − ε↓. When the
system becomes asymmetric, e.g., when U increases (decreases) while the other
parameters are constant, the minimum in TMR at ϕ = π is shifted down (up)
and, when U À −ε↑ − ε↓, TMR has only one maximum at ϕ = π, as shown
in Fig. 5.11b. On the other hand, if U < −ε↑ − ε↓, the minimum in tunnel
magnetoresistance at ϕ = π becomes negative, which is illustrated in Fig. 5.11b
for U = 35Γ. Thus, by changing the model parameters one may significantly
enhance or reduce the TMR effect.

In the limit of |eV |, kBT ¿ |∆| and for pL = pR = p, the TMR ratio for
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ϕR = −ϕL = π can be expressed as

TMR =
4p(2ε + U)(U + ∆)

(1− p)2(ε + U + ∆/2)2 + (1 + p)2(ε−∆/2)2
. (5.16)

From the above expression it can be seen that the sign of TMR at ϕ = π depends
on the ratio ε/U . If U = −2ε, TMR vanishes, whereas for U > −2ε TMR is
positive, while for U < −2ε TMR becomes negative. In the case of U À −2ε,
the TMR effect is given by 4p/(1− p)2.

The corresponding angular dependence of the differential conductance is shown
in Fig. 5.11a. Now, the maximum in the conductance at ϕ = π for a symmetric
model changes into a minimum for U À −ε↑ − ε↓.

In this chapter the cotunneling current and associated tunnel magnetoresis-
tance through a single-level quantum dot coupled to two external ferromagnetic
leads with noncollinear magnetizations was considered both numerically and ana-
lytically. The dot level was assumed to be spin-split due to an effective molecular
field originating from a magnetic substrate on which the dot is deposited, and
the splitting was assumed to be larger than the characteristic parameter Γ (level
width) describing the dot-lead interaction. Several interesting features in the an-
gular and bias dependence of transport characteristics were found. In the case of
empty dot, TMR was found to be roughly independent of the bias voltage, but
strongly dependent on the angle between magnetic moments. When magnetic mo-
ments of both leads rotate in opposite directions, both electric current and TMR
vary nonmonotonously with increasing angle between the magnetic moments of
the leads, and maximum of TMR may occur at a noncollinear configuration. For
a singly occupied dot and for the case (i) (ϕL = 0), strong asymmetry in electric
current and TMR with respect to the bias reversal was found, which disappears
for the case (ii) (ϕR = −ϕL). This diode-like behavior of the current-voltage char-
acteristics may be of some interest from the application point of view. Moreover,
the asymmetry in current-voltage curves leads to associated asymmetry in TMR
which may become even negative for one bias polarization. An important and
interesting result is also an enhancement of TMR due to the dot level splitting.
Finally, the evolution of the cotunneling gap with the splitting of the dot level
and magnetic configuration of the system was also demonstrated numerically and
analytically.
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Chapter 6

Conclusions

In this dissertation the spin-dependent electronic transport in magnetic nanos-
tructures with Coulomb blockade was considered. Several novel features and
effects were predicted for the case of ferromagnetic single-electron devices as well
as quantum dots coupled to ferromagnetic leads both in the sequential tunneling
and cotunneling regimes. The thesis was divided into two parts: the first part
concerned the spin-polarized transport in single-electron devices, including fer-
romagnetic single-electron transistors and double-island devices, whereas in the
second part transport through quantum dots coupled to ferromagnetic leads was
analyzed.

The introduction and the review of basic phenomena and concepts in single-
electron tunneling was presented in chapter 1. In chapter 2 the results on spin-
polarized transport in ferromagnetic single-electron transistors in both the pres-
ence and absence of nonequilibrium spin accumulation on the island were pre-
sented. In particular, it was shown that in the case of transistors with nonmag-
netic islands the spin accumulation is crucial for observation of a nonzero TMR
effect.

The transport properties of ferromagnetic double-island devices were consid-
ered in chapter 3. In section 3.2 the spin-polarized transport in a device built
of two ferromagnetic islands in the absence of spin accumulation was analyzed.
It was shown that such systems can serve as magnetoresistive elements with the
gate-controlled magnitude of tunnel magnetoresistance. The results in the pres-
ence of spin accumulation on the islands for various configurations of the system
were presented in section 3.3. In particular, it was demonstrated that spin ac-
cumulation induced on the islands may considerably influence the dependence of
both the conductance and the TMR effect. First of all, it was shown that in the
case of nonmagnetic islands a finite TMR occurs due to spin accumulation. Fur-
thermore, the TMR oscillates between positive and negative values as a function
of the bias voltage. In turn, if the islands are ferromagnetic, spin accumulation
may lead to negative differential conductance. This nontrivial behavior of differ-
ential conductance strongly depends on the parameters of the system and may
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occur in both the parallel and antiparallel magnetic configurations. In addition,
the dependence of the above mentioned features on the spin relaxation time was
also analyzed. It was shown that when the relaxation time is shortened, both the
negative tunnel magnetoresistance and negative differential conductance become
suppressed and eventually vanish in the limit of fast spin relaxation. Moreover,
in section 3.4 it was demonstrated that ferromagnetic double-island devices can
be used for pumping of single electrons with a given spin orientation.

Transport through quantum dots coupled to ferromagnetic leads in the first-
order and second-order tunneling regimes was considered in the second part of the
thesis. In chapter 4 the case of quantum dots coupled to ferromagnetic leads with
collinear alignment of magnetic moments was analyzed. The model of the system
was described in section 4.1, whereas the real-time diagrammatic technique used
in calculations was presented in section 4.2. Within this technique it was possible
to calculate the current through the system in the full range of parameters. In the
deep Coulomb blockade regime where the second-processes dominate, however,
transport can be alternatively calculated within the Averin-Nazarov approach.
This method was outlined in section 4.3.

The relevant numerical results on conductance and the TMR effect were pre-
sented and discussed in section 4.4. In particular, a parity effect was found in
the TMR in the linear response regime. More precisely, it was shown that TMR
reaches the Jullière’s value for Coulomb blockade valleys with even number of elec-
trons on the dot, whereas in the case of an odd dot electron number, the TMR
is much reduced as compared to the Jullière’s TMR. In the nonlinear response
regime, in turn, TMR exhibits a minimum in the zero-bias limit. This minimum
is a consequence of a maximum in differential conductance in the antiparallel
configuration of the leads’ magnetizations. The main properties and mechanism
of this zero-bias anomaly were the subject of section 4.5. It was shown that
the anomaly results from the interplay of the single-barrier and double-barrier
cotunneling processes. The zero-bias peak exists in the antiparallel configura-
tion and vanishes when the leads’ magnetizations are parallel. Moreover, the
influence of external magnetic filed was also analyzed. In the case of spin-split
dot level the spin-flip cotunneling processes are suppressed for |eV | < |∆| and
the current is mediated only by non-spin-flip cotunneling. This effectively leads
to a deep plateau in differential conductance which is present in both magnetic
configurations.

The influence of the intrinsic spin relaxation processes in the dot on transport
characteristics in the Coulomb blockade valley with odd number of electrons on
the dot was considered in section 4.6. First, the case of symmetric systems was
analyzed. It was shown that both the zero-bias anomaly in differential conduc-
tance and the minimum in TMR at low bias voltage become suppressed in the
limit of fast spin relaxation on the dot. Furthermore, the TMR effect was found
to be negative in this limit. In the case of quantum dots asymmetrically coupled
to the leads the system exhibits a diode-like behavior. Moreover, it was shown
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that the zero-bias anomaly found previously in differential conductance may also
exist in systems with only one ferromagnetic electrode, while the other one is
nonmagnetic. In the limit of fast spin relaxation on the dot, however, both the
asymmetry with respect to the bias reversal and the zero-bias peak disappear.

Transport through quantum dots coupled to ferromagnetic leads with non-
collinear alignment of magnetizations was considered in chapter 5. The method
and model were described in section 5.1. It was assumed that the dot level was
spin-split due to the interaction with molecular field exerted by ferromagnetic
background. The current through the system was calculated with the aid of
the Averin-Nazarov approach. The numerical results in the case of empty dot
were presented in section 5.2. In this situation the TMR effect was found to be
strongly dependent on the angle between the leads’ magnetizations. The angular
dependence of conductance and the TMR in the case of singly-occupied dot was
analyzed in section 5.3. In particular, the dependence of the asymmetry with re-
spect to the bias voltage on the relative angle between leads’ magnetic moments
was presented. Furthermore, it was shown that the TMR effect may be enhanced
due to the spin splitting of the dot level. In addition, the impact of the system
magnetic configuration and splitting of the dot level on the gap in differential
conductance due to the suppression of spin-flip cotunneling was also analyzed.
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Niniejsza rozprawa przedstawia teoretyczna̧ analizȩ spinowo spolaryzowanego
transportu w magnetycznych nanostrukturach z blokada̧ kulombowska̧. Praca
skÃlada siȩ z dwóch czȩści: pierwsza dotyczy transportu sekwencyjnego w tranzys-
torach jednoelektronowych i ukÃladach zbudowanych z dwóch nanoskopowych
wysp, natomiast w czȩści drugiej rozpatrzono problem tunelowania sekwencyjnego
oraz kotunelowania przez kropki kwantowe sprzȩżone z ferromagnetycznymi elek-
trodami. Otrzymane charakterystyki transportowe zawieraja̧ szereg nowych, inte-
resuja̧cych rezultatów, wynikaja̧cych z poÃla̧czenia efektów zwia̧zanych z dyskret-
nościa̧ Ãladunku elektrycznego oraz ferromagnetyzmu.

RozdziaÃl 1 zawiera ogólne wprowadzenie do problematyki tunelowania przez
nanostruktury. Przedstawiono w nim podstawowe efekty charakterystyczne dla
ukÃladów analizowanych w niniejszej rozprawie, a zwia̧zane z dyskretnym Ãladowa-
niem pojedynczymi elektronami. Efekty Ãladowania wystȩpuja̧ wtedy, gdy energia
zwia̧zana z dodaniem do nanostruktury jednego elektronu jest znacznie wiȩksza
od energii termicznej. Ponadto, w rozdziale 1 opisany zostaÃl model Jullière’a
tunelowego magnetooporu dla pojedynczego zÃla̧cza magnetycznego.

W rozdziale 2 przedstawiono wyniki dotycza̧ce sekwencyjnego transportu w
ferromagnetycznych tranzystorach jednoelektronowych. Analizȩ przeprowadzono
w oparciu o metodȩ równania typu ”master”, a poszczególne czȩstotliwości tune-
lowania obliczono ze zÃlotej reguÃly Fermiego. Najpierw rozpatrzony zostaÃl ukÃlad
zbudowany z magnetycznych elektrod i magnetycznej wyspy. Otrzymane charak-
terystyki pra̧dowo-napiȩciowe ukazuja̧ charakterystyczna̧ schodkowa̧ zależność
pra̧du od napiȩcia transportowego, tzw. schodki kulombowskie, oraz oscylacje
kulombowskie pra̧du w funkcji napiȩcia bramkuja̧cego. Ponadto, pokazano, iż
pra̧d tunelowy pÃlyna̧cy przez ukÃlad zależy od wzajemnego ustawienia momentów
magnetycznych elektrod: w konfiguracji równolegÃlej pra̧d jest wiȩkszy niż w
konfiguracji antyrównolegÃlej. Fakt ten prowadzi do pojawienia siȩ niezerowego
efektu tunelowego magnetooporu, który wykazuje oscylacyjny charakter w funkcji
napiȩcia transportowego. Otrzymane wyniki teoretyczne sa̧ zgodne z danymi
eksperymentalnymi. Kolejnym ukÃladem przeanalizowanym w rozdziale 2 jest
tranzystor jednoelektronowy zbudowany z magnetycznych elektrod oraz niemag-
netycznej wyspy. Tego typu ukÃlady moga̧ wykazywać efekt tunelowego magne-
tooporu tylko wtedy, gdy czas spinowej relaksacji na wyspie jest dÃluższy od czasu
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pomiȩdzy kolejnymi aktami tunelowania. Jeżeli speÃlniony jest powyższy warunek,
na wyspie indukuje siȩ nierównowagowy moment magnetyczny. Spinowa akumu-
lacja z kolei prowadzi do wysta̧pienia tunelowego magnetooporu, który oscyluje w
funkcji napiȩcia transportowego. Natomiast w granicy krótkiego czasu spinowej
relaksacji zarówno spinowa akumulacja, jak i tunelowy magnetoopór znikaja̧.

W rozdziale 3 zaprezentowano wyniki numeryczne dotycza̧ce transportu przez
ukÃlady zbudowane z dwóch wysp, sprzȩżonych z soba̧ i z zewnȩtrznymi elektro-
dami za pomoca̧ barier tunelowych. Analizȩ przeprowadzono w oparciu o metodȩ
opisana̧ w rozdziale 2. W szczególności, w podrozdziale 3.2 rozpatrzono transport
przez ukÃlad zÃlożony z dwóch ferromagnetycznych wysp oraz niemagnetycznych
elektrod w limicie krótkiego czasu relaksacji spinowej na wyspach. Pokazano
miȩdzy innymi, że tego typu ukÃlady moga̧ sÃlużyć jako elementy magnetooporowe,
w których wielkość tunelowego magnetooporu jest kontrolowana przez przyÃlożone
napiȩcia bramkuja̧ce. Jeżeli czas spinowej relaksacji jest dÃluższy niż czas pomiȩdzy
sukcesywnymi aktami tunelowania, na wyspie może pojawić siȩ spinowa aku-
mulacja. W analizie spinowa akumulacja na wyspach zostaÃla policzona metoda̧
samozgodna̧ z odpowiedniego równania balansu dla pra̧dów spinowych. Wyniki
numeryczne dla szeregu różnych konfiguracji ukÃladu zostaÃly przedstawione i omó-
wione w podrozdziale 3.3. W szczególności, w przypadku ukÃladu zÃlożonego z nie-
magnetycznych wysp i magnetycznych elektrod pokazano, że spinowa akumulacja
na wyspach prowadzi do różnicy miȩdzy pra̧dami pÃlyna̧cymi przez ukÃlad w konfi-
guracji równolegÃlej i antyrównolegÃlej, która jest źródÃlem wysta̧pienia tunelowego
magnetooporu. Tunelowy magnetoopór oscyluje w funkcji napiȩcia transporto-
wego, zmieniaja̧c znak w zależności od przyÃlożonego napiȩcia. Ponadto, ampli-
tuda tych oscylacji maleje wraz ze wzrostem napiȩcia. Wartościa̧ tunelowego mag-
netooporu można dodatkowo sterować poprzez odpowiednio przyÃlożone napiȩcia
bramek. Charakterystyki transportowe ukÃladu skÃladaja̧cego siȩ z dwóch magne-
tycznych wysp i niemagnetycznych elektrod w limicie dÃlugiego czasu relaksacji
spinowej wykazuja̧ kolejne ciekawe efekty, mianowicie nierównowagowa akumu-
lacja spinowa prowadzi do pojawienia siȩ ujemnej konduktancji różniczkowej. Jak
pokazano w podrozdziale 3.3, ujemna konduktancja różniczkowa może wysta̧pić
zarówno w konfiguracji równolegÃlej, jak i antyrównolegÃlej, ponadto konduktancjȩ
można zmieniać przez przyÃlożenie napiȩć bramkuja̧cych. Badania eksperymen-
talne przeprowadzone w ostatnich latach [42, 43, 54, 69, 80] pokazaÃly, że w
strukturach granularnych, które teoretycznie moga̧ być modelowane miȩdzy in-
nymi przez potrójne zÃla̧cza tunelowe, pojawia siȩ efekt ujemnej kondunktancji
różniczkowej oraz oscylacje tunelowego magnetooporu miȩdzy ujemnymi i dodat-
nimi wartościami w funkcji napiȩcia transportowego. Zasugerowano, iż efekty
te moga̧ wynikać z nierównowagowej akumulacji spinowej. Wyniki numeryczne
przedstawione w podrozdziale 3.3 pokazuja̧, że w wystȩpowaniu wyżej wymie-
nionych efektów zasadnicza̧ rolȩ odgrywa wÃlaśnie akumulacja spinowa. Jeżeli
czas relaksacji spinowej staje siȩ krótszy od czasu pomiȩdzy kolejnymi aktami
tunelowania, zarówno ujemna kondunktancja różniczkowa, jak i ujemne wartości
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tunelowego magnetooporu znikaja̧. Dodatkowo, w podrozdziale 3.4 pokazano,
że ukÃlady zbudowane z dwóch sprzȩżonych z soba̧ wysp moga̧ sÃlużyć do pom-
powania elektronów z określona̧ orientacja̧ spinu. Proces pompowania można
otrzymać poprzez przyÃlożenie zmiennych w czasie napiȩć bramkuja̧cych, prze-
suniȩtych odpowiednio w fazie.

Spinowo spolaryzowany transport przez jednopoziomowe kropki kwantowe
sprzȩżone z ferromagnetycznymi elektrodami zostaÃl przeanalizowany w drugiej
czȩści niniejszej rozprawy. W rozdziale 4 przedstawiono wyniki dotycza̧ce sytu-
acji, gdy momenty magnetyczne zewnȩtrznych elektrod sa̧ ustawione kolinearnie.
Natomiast teoretyczna analiza transportu przez kropki kwantowe w przypadku,
gdy magnetyzacje elektrod sa̧ ustawione pod dowolnym ka̧tem wzglȩdem siebie,
jest zawarta w rozdziale 5.

W przypadku konfiguracji kolinearnych model analizowanego ukÃladu zostaÃl
przedstawiony w podrozdziale 4.1. Rozważania zostaÃly przeprowadzone w opar-
ciu o technikȩ diagramowa̧, która̧ opisano w podrozdziale 4.2. Technika dia-
gramowa uwzglȩdnia poprawnie efekty zwia̧zane z renormalizacja̧ poziomu ener-
getycznego kropki kwantowej, jego sprzȩżenia z elektrodami, oraz pozwala na
analizȩ transportu w peÃlnym zakresie parametrów, zarówno w obszarze liniowej,
jak i nieliniowej odpowiedzi. W obliczeniach uwzglȩdniono energie wÃlasne pierw-
szego i drugiego rzȩdu ze wzglȩdu na procesy tunelowe. Wyrażenia analityczne
na odpowiednie energie wÃlasne zostaÃly przedstawione w dodatku A. Ponadto,
pokazano, iż w obszarze gÃlȩbokiej blokady kulombowskiej, gdzie dominuja̧cy
wkÃlad do pra̧du pochodzi od procesów tunelowych drugiego rzȩdu, transport może
być alternatywnie policzony przy pomocy metody Averina-Nazarova. Metoda
ta polega na obliczeniu czȩstotliwości tunelowania ze zÃlotej reguÃly Fermiego w
drugim rzȩdzie rachunku zaburzeń, podczas gdy prawdopodobieństwa obsadzenia
poziomu kropki kwantowej sa̧ liczone z odpowiedniego równania typu ”master”.
Metoda Averina-Nazarova opisana zostaÃla w podrozdziale 4.3.

Wyniki numeryczne ukazuja̧ce zależność prawdopodobieństwa obsadzenia po-
ziomu kropki kwantowej, pra̧du, konduktancji różniczkowej oraz tunelowego mag-
netooporu od przyÃlożonego napiȩcia transportowego oraz poÃlożenia poziomu krop-
ki przedstawiono w podrozdziale 4.4. W celu pokazania wpÃlywu procesów ko-
tunelowania na charakterystyki transportowe, pokrótce przeanalizowany zostaÃl
przypadek kropki kwantowej sprzȩżonej z niemagnetycznymi elektrodami. Na
otrzymanych rysunkach wyraźnie widać, że, po pierwsze, procesy tunelowe dru-
giego rzȩdu daja̧ niezerowy wkÃlad do konduktancji w obszarze blokady kulom-
bowskiej. Po drugie, powoduja̧ one renormalizacjȩ poÃlożenia poziomu energety-
cznego kropki oraz, po trzecie, prowadza̧ do lekkiego rozmycia schodków ku-
lombowskich. Podobne efekty wystȩpuja̧ także w sytuacji, gdy zewnȩtrzne elek-
trody sa̧ magnetyczne. Jednakże w tym przypadku ukÃlad wykazuje szereg ko-
lejnych efektów zwia̧zanych z dodatkowym, spinowym stopniem swobody. W
szczególności, pokazano, że w obszarze liniowej odpowiedzi poziom kropki może
ulec efektywnemu rozszczepieniu. Dla symetrycznego ukÃladu rozszczepienie to
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wystȩpuje w konfiguracji równolegÃlej i jest wynikiem różnicy w sprzȩżeniu po-
ziomu kropki kwantowej dla elektronów o różnych kierunkach spinów. Rozszcze-
pienie poziomu kropki jest widoczne w prawdopodobieństwie obsadzenia kropki
kwantowej po uwzglȩdnieniu procesów tunelowych drugiego rzȩdu.

Ponadto, pokazano, że uwzglȩdnienie procesów tunelowych drugiego rzȩdu
prowadzi do znacznej modyfikacji tunelowego magnetooporu w obszarze blokady
kulombowskiej. W szczególności, tunelowy magnetoopór w obszarze liniowej
odpowiedzi zależy od liczby elektronów obsadzaja̧cych kropkȩ kwantowa̧: dla
nieparzystej liczby elektronów tunelowy magnetoopór jest znacznie mniejszy w
porównaniu z tunelowym magnetooporem w przypadku, gdy kropka jest obsadzo-
na przez parzysta̧ liczbȩ elektronów, gdzie tunelowy magnetoopór osia̧ga wartość
odpowiadaja̧ca̧ wartości Jullière’a. Tak duża wartość tunelowego magnetooporu
wynika sta̧d, że w przypadku parzystej liczby elektronów na kropce pra̧d pÃlynie
gÃlównie dziȩki procesom elastycznym, które sa̧ w peÃlni koherentne i nie zmieniaja̧
stanu kropki kwantowej. Natomiast w przypadku kropki obsadzonej nieparzysta̧
liczba̧ elektronów, pra̧d pÃlynie nie tylko dziȩki procesom elastycznym, ale także
wskutek procesów nieelastycznych, które prowadza̧ do obniżenia wartości tune-
lowego magnetooporu. Efekt parzystości tunelowego magnetooporu jest stosun-
kowo ciekawy z aplikacyjnego punktu widzenia. Poprzez przyÃlożenie napiȩcia
bramkuja̧cego możliwa jest zmiana liczby elektronów obsadzaja̧cych kropkȩ oraz,
konsekwentnie, tunelowego magnetooporu. Z kolei w obszarze nieliniowej odpo-
wiedzi tunelowy magnetoopór wykazuje charakterystyczne minimum w zakresie
niskiego napiȩcia transportowego i wzrasta wraz ze wzrostem napiȩcia osia̧gaja̧c
wartość Jullière’a dla |eV | À kBT . Minimum w tunelowym magnetooporze
wynika bezpośrednio z anomalnego zachowania konduktancji różniczkowej w kon-
figuracji antyrównolegÃlej, która wykazuje maksimum w limicie zerowego napiȩcia
transportowego.

Podstawowe wÃlasności i charakterystyki dotycza̧ce anomalii w konduktancji
różniczkowej w przypadku, gdy magnetyzacje elektrod tworza̧ konfiguracjȩ anty-
równolegÃla̧, sa̧ tematem podrozdziaÃlu 4.5. Maksimum w konduktancji różnicz-
kowej wystȩpuje w konfiguracji antyrównolegÃlej i znika w konfiguracji równolegÃlej.
Anomalne zachowanie konduktancji różniczkowej wynika z wzajemnego oddziaÃly-
wania oraz pewnego rodzaju wspóÃlzawodnictwa pomiȩdzy jednozÃla̧czowymi a
dwuzÃla̧czowymi procesami kotunelowania. W limicie niskiego napiȩcia transpor-
towego procesy jednozÃla̧czowe redukuja̧ spinowa̧ akumulacjȩ i powoduja̧ odbloko-
wanie kanaÃlu przewodnictwa dla szybkich procesów dwuzÃla̧czowych, w których
udziaÃl biora̧ tylko elektrony wiȩkszościowe. Fakt ten prowadzi efektywnie do
wzrostu konduktancji różniczkowej dla |eV | < kBT . Jeżeli natomiast |eV | > kBT ,
procesy jednozÃla̧czowe peÃlnia̧ znikoma̧ rolȩ, co prowadzi do spadku konduktancji.
Gdy ukÃlad znajduje siȩ w zewnȩtrznym polu magnetycznym, poziom kropki
kwantowej ulega rozszczepieniu. W takim przypadku procesy drugiego rzȩdu
powoduja̧ce zmianȩ stanu kropki sa̧ zablokowane dla |eV | < |∆|, co wynika z
zasady zachowania energii. Pra̧d pÃlynie zatem wtedy gÃlównie dziȩki procesom
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elastycznym, które pozostawiaja̧ stan kropki niezmieniony. W efekcie w konduk-
tancji różniczkowej widoczne jest gÃlȩbokie i szerokie minimum, które jest obecne
bez wzglȩdu na konfiguracjȩ magnetyczna̧ ukÃladu. Jeżeli energia dostarczona
przez zródÃlo napiȩcia jest porównywalna z energia̧ rozszczepienia poziomu kropki
kwantowej, procesy nieelastyczne zaczynaja̧ również dawać wkÃlad do pra̧du, wsku-
tek czego konduktancja wzrasta.

W podrozdziale 4.6 przeanalizowano wpÃlyw procesów relaksacji na kropce
kwantowej na charakterystyki transportowe w obszarze blokady kulombowskiej.
Obliczenia oparto o metodȩ Averina-Nazarova, a poszczególne wyrażenia anali-
tyczne na odpowiednie czȩstotliwości tunelowania przedstawiono w dodatku B.1.
Rozpatrzone zostaÃly dwa przypadki: pierwszy dotyczy kropki kwantowej symet-
rycznie sprzȩżonej z elektrodami, drugi natomiast – kropki kwantowej niesymet-
rycznie sprzȩżonej z elektrodami zewnȩtrznymi. W pierwszej sytuacji pokazano,
że zarówno anomalne zachowanie konduktancji różniczkowej w konfiguracji anty-
równolegÃlej, jak i minimum w tunelowym magnetooporze zależa̧ od czasu relak-
sacji spinowej na kropce i w limicie szybkiego czasu relaksacji wyżej wymienione
efekty znikaja̧. Ponadto, w granicy szybkiej relaksacji tunelowy magnetoopór
osia̧ga ujemna̧ wartość. Jeżeli kropka kwantowa jest niesymetrycznie sprzȩżona z
elektrodami, charakterystyki transportowe wykazuja̧ cechy typowe dla diod: kon-
duktancja jest silnie asymetryczna wzglȩdem zerowego napiȩcia transportowego.
Ponadto, pokazano, że jeśli chodzi o ukÃlady niesymetryczne, maksimum w kon-
dunktancji różniczkowej istnieje także w przypadku, gdy tylko jedna z elektrod
jest magnetyczna, podczas gdy druga jest niemagnetyczna. Natomiast w limi-
cie szybkiej relaksacji spinowej zarówno asymetria wzglȩdem zerowego napiȩcia
transportowego, jak i anomalne zachowanie kondunktancji różniczkowej znikaja̧.

Spinowo spolaryzowany transport w obszarze blokady kulombowskiej przez
kropki kwantowe sprzȩżone z ferromagnetycznymi elektrodami, których mag-
netyzacje tworza̧ dowolna̧ konfiguracjȩ, zostaÃl przeanalizowany w rozdziale 5.
Rozważania zostaÃly przeprowadzone w oparciu o metodȩ Averina-Nazarova, która̧
opisano w podrozdziale 5.1. Wzory analityczne wyrażaja̧ce odpowiednie czȩstot-
liwości tunelowania przedstawiono w dodatku B.2. W obliczeniach zaÃlożono,
że poziom kropki kwantowej jest rozszczepiony wskutek oddziaÃlywania z polem
molekularnym pochodza̧cym od magnetycznego podÃloża, co pozwoliÃlo zaniedbać
wkÃlad pochodza̧cy od procesów pierwszego rzȩdu odpowiedzialnych za oddziaÃly-
wanie wymienne. Wyniki numeryczne dotycza̧ce transportu drugiego rzȩdu w
przypadku, gdy kropka kwantowa jest pusta, zostaÃly przedstawione w podroz-
dziale 5.2. Pokazano, że efekt tunelowego magnetooporu silnie zależy od ka̧ta
pomiȩdzy magnetyzacjami zewnȩtrznych elektrod. Z kolei zależność ka̧towa̧ tune-
lowego magnetooporu oraz konduktancji różniczkowej w przypadku kropki kwan-
towej obsadzonej przez jeden elektron przeanalizowano w podrozdziale 5.3. W
szczególności, przedstawiono zależność asymetrii wzglȩdem zerowego napiȩcia
transportowego od wzajemnego ustawienia magnetyzacji elektrod. Ponadto, poka-
zano, że efekt tunelowego magnetooporu może zostać zwiȩkszony poprzez rozszcze-
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pienie poziomu kropki kwantowej. Ponadto, szczegóÃlowo przeanalizowano wpÃlyw
konfiguracji magnetycznej ukÃladu i rozszczepienia poziomu kropki kwantowej na
kondunktancjȩ różniczkowa̧ i efekt blokady procesów nieelastycznych dla |eV | <
|∆|.
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Appendix A

Self-Energies in the First and
Second Order

In order to find the zeroth-order and first-order probabilities, one needs to deter-
mine all the self-energies of the first and second order in the dot-lead coupling
strength Γ. In this appendix we present the explicit expressions for the first-order
and second-order self-energies. Furthermore, an exemplary calculation of one of
the second-order self-energies, namely, Σ

(2)
σ̄σ is also demonstrated.

A.1 First-Order Self-Energies

Using the diagrammatic rules in energy space listed in subsection 4.2.4, for the
self-energies in the first order in the dot-lead coupling strength Γ one finds

Σ
(1)
00 = −2πi

∑
σ

∑
r

γ+σ
r (εσ) , (A.1)

Σ
(1)
0σ = 2πi

∑
r

γ−σ
r (εσ) , (A.2)

Σ
(1)
σ0 = 2πi

∑
r

γ+σ
r (εσ) , (A.3)

Σ(1)
σσ = −2πi

∑
r

[
γ−σ

r (εσ) + γ+σ̄
r (εσ̄ + U)

]
, (A.4)

Σ
(1)
σd = 2πi

∑
r

γ−σ̄
r (εσ̄ + U) , (A.5)

Σ
(1)
dσ = 2πi

∑
r

γ+σ̄
r (εσ̄ + U) , (A.6)

Σ
(1)
dd = −2πi

∑
σ

∑
r

γ−σ̄
r (εσ̄ + U) , (A.7)
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for r = L, R. The other first-order self-energies, namely, Σ
(1)
0d , Σ

(1)
d0 and Σ

(1)
σ̄σ are

equal to zero. This is because transitions between the states |0〉 and |d〉, |σ〉 and
|σ̄〉 can take place only by higher-order tunneling processes. A useful identity for
calculating the self-energies is

∑
χ Σχχ′ = 0.

From the self-energies contributing to electric current only Σ
I(1)
0σ , Σ

I(1)
σ0 , Σ

I(1)
σd ,

Σ
I(1)
dσ give nonzero contributions. They are given by

Σ
I(1)
σ0 = 2πi

[
γ+σ

L (εσ)− γ+σ
R (εσ)

]
, (A.8)

Σ
I(1)
0σ = −2πi

[
γ−σ

L (εσ)− γ−σ
R (εσ)

]
, (A.9)

Σ
I(1)
dσ = 2πi

[
γ+σ̄

L (εσ̄ + U)− γ+σ̄
R (εσ̄ + U)

]
, (A.10)

Σ
I(1)
σd = −2πi

[
γ−σ̄

L (εσ̄ + U)− γ−σ̄
R (εσ̄ + U)

]
. (A.11)

Using the above expressions one can calculate the zeroth-order occupation prob-
abilities from Eq. (4.15) and then the current using Eq. (4.18).

A.2 Second-Order Self-Energies

In the following, we present an exemplary calculation of the second-order self-
energy Σ

(2)
σ̄σ . The equation for Σ

(2)
σ̄σ can be graphically expressed as
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(A.12)
To calculate the self-energy, it is necessary to evaluate each contributing dia-
gram. As an example, we demonstrate the calculation of the third diagram of
Eq. (A.12). Following the general rules described in subsection 4.2.4, the corre-
sponding contribution, denoted as Λ3, is given by

Λ3 = (−1)2+1(−1)1
∑

r,r′=L,R

∫∫
dω1dω2γ

−σ
r (ω1)γ

+σ̄
r′ (ω2)

1

ω1 − εσ + i0+

× 1

ω1 + ω2 − εσ − εσ̄ − U + i0+

1

ω2 − εσ̄ + i0+
, (A.13)
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The first (second) factor on the right-hand side follows from the rule 4 (5) and
there are also three resolvents according to the rule 3, see subsection 4.2.4. Among
various diagrams contributing to Σ

(2)
σ̄σ , there is a diagram, eleventh in Eq. (A.12),

whose contribution is equal to minus complex conjugate of the contribution due to
the third diagram, Λ11 = −Re(Λ3)+iIm(Λ3). This can be shown by interchanging
the backward and forward propagators and changing the direction of tunneling
lines. As a consequence, the real parts of these diagrams cancel, whereas the
imaginary parts add to each other. Thus, it is necessary to determine only the
imaginary part of one of those two diagrams, Λ3 + Λ11 = 2iIm(Λ3). Finally, after
calculating contributions of all diagrams appearing in Eq. (A.12), one gets

Σ
(2)
σ̄σ = −2πi

∑

r,r′

{
γ−σ

r (εσ)B+σ̄
2r′ + γ+σ̄

r (εσ̄)B−σ
2r′

+γ−σ
r (εσ + U)C+σ̄

2r′ + γ+σ̄
r (εσ̄ + U)C−σ

2r′

+(2π)−1fB(εσ̄ − εσ + µr − µr′)
[
Γσ

r

(
B+σ̄

2r′ + C+σ̄
2r′ + 2U−1A+σ̄

1r′
)

−Γσ̄
r′

(
B+σ

2r + C+σ
2r + 2U−1A+σ

1r

)] }
, (A.14)

with fB(x) being the Bose-Einstein distribution function, fB(x) = 1/ [exp(x/kBT )− 1].
The corresponding coefficients are defined as, A±σ

nr = B±σ
nr − C±σ

nr , and

B±σ
nr =

Γσ
r

2π

∫
dω

f±(ω − µr)

(ω − εσ)n
, (A.15)

C±σ
nr =

Γσ
r

2π

∫
dω

f±(ω − µr)

(ω − εσ − U)n
, (A.16)

with f+ being the Fermi function and f− = 1− f+. The above integrals can be
solved using the contour integration technique and the Lorentzian cutoff function
of the form

gr(ω) = W2/[(ω − µr)
2 + W2] , (A.17)

with W being the cutoff parameter, see appendix B.1. Equations (A.15) and
(A.15) can be then expressed as

B±σ
n+1r = ±Γσ

r

2π

d(n)

dε
(n)
σ

Re

[
Ψ

(
1

2
+ i

εσ − µr

2πkBT

)
− ln

(
W

2πkBT

)]
, (A.18)

C±σ
n+1r = ±Γσ

r

2π

d(n)

dε
(n)
σ

Re

[
Ψ

(
1

2
+ i

εσ + U − µr

2πkBT

)
− ln

(
W

2πkBT

)]
, (A.19)

where Ψ(z) is the digamma function. As contribution coming from a single
diagram may depend on W, the final result does not. In the calculations the
cutoff parameter was taken to be equal to 100Γ.
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In order to calculate the occupation probabilities and the second-order cur-
rent, one needs to find all the corresponding self-energies of the second order in
tunneling processes. The other second-order self-energies are given by

Σ
(2)
00 = −2πi

∑
σ

∑

r,r′

{ [
(2π)−1Γσ

r + γ+σ̄
r (εσ̄)

]
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2r′

−{
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]
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}
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)] }
, (A.20)
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Σ
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In the case of the second-order self-energies that contribute to the current we
found Σ

I(2)
χχ = 0, for χ = 0, ↑, ↓, d. This is however only the case for the current

operator defined as Î = (ÎR− ÎL)/2, where Îr is the current operator for electrons
tunneling to the lead r. The other self-energies contributing to electric current
read
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σ0 + 2iU−1

∑
r

(Γσ
L − Γσ

R) A+σ̄
1r , (A.30)

Σ
I(2)
dσ = 2πi

∑
r

{[
(2π)−1Γσ̄

r + γ−σ
r (εσ) + γ−σ

r (εσ + U)
] (

C+σ̄
2L − C+σ̄

2R

)

+
{
∂

[
γ+σ̄

L (εσ̄ + U)− γ+σ̄
R (εσ̄ + U)

]

−2U−1
[
γ+σ̄

L (εσ̄ + U)− γ+σ̄
R (εσ̄ + U)

]}
A−σ

1r

}
, (A.31)
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Σ
I(2)
σd = Σ

I(2)
dσ + 2iU−1

∑
r

(Γσ̄
L − Γσ̄

R) A−σ
1r , (A.32)

Σ
I(2)
d0 = −4πi

∑
σ

{
γ+σ̄

L (εσ̄ + U)B+σ
2L − γ+σ̄

R (εσ̄ + U)B+σ
2R + γ+σ

L (εσ)C+σ̄
2L − γ+σ

R (εσ)C+σ̄
2R

+(2π)−1fB(εd − 2µL)
[
Γσ

L

(
B+σ̄

2L + C+σ̄
2L

)
+ 2U−1Γσ

LA+σ̄
1L

]

−(2π)−1fB(εd − 2µR)
[
Γσ

R

(
B+σ̄

2R + C+σ̄
2R

)
+ 2U−1Γσ

RA+σ̄
1R

] }
, (A.33)

Σ
I(2)
0d = −4πi

∑
σ

{
γ−σ

R (εσ + U)B−σ̄
2R − γ−σ

L (εσ + U)B−σ̄
2L + γ−σ̄

R (εσ̄)C−σ
2R − γ−σ̄

L (εσ̄)C−σ
2L

+(2π)−1fB(2µL − εd)
[
Γσ

L

(
B+σ̄

2L + C+σ̄
2L

)
+ 2U−1Γσ

LA+σ̄
1L

]

−(2π)−1fB(2µR − εd)
[
Γσ

R

(
B+σ̄

2R + C+σ̄
2R

)
+ 2U−1Γσ

RA+σ̄
1R

] }
, (A.34)

Σ
I(2)
σ̄σ = −4πi

{
γ−σ

R (εσ)B+σ̄
2L − γ−σ

L (εσ)B+σ̄
2R + γ+σ̄

L (εσ̄)B−σ
2R − γ+σ̄

R (εσ̄)B−σ
2L

+γ+σ̄
L (εσ̄ + U)C−σ

2R − γ+σ̄
R (εσ̄ + U)C−σ

2L + γ−σ
R (εσ + U)C+σ̄

2L − γ−σ
L (εσ + U)C+σ̄

2R

+(2π)−1fB(εσ̄ − εσ + µL − µR)
[
Γσ̄

R

(
B+σ

2L + C+σ
2L + 2U−1A+σ

1L

)

−Γσ
L

(
B+σ̄

2R + C+σ̄
2R + 2U−1A+σ̄

1R

)]

−(2π)−1fB(εσ̄ − εσ + µR − µL)
[
Γσ̄

L

(
B+σ

2R + C+σ
2R + 2U−1A+σ

1R

)

−Γσ
R

(
B+σ̄

2L + C+σ̄
2L + 2U−1A+σ̄

1L

)] }
. (A.35)

Having determined the expressions for the first-order and second-order self-energies,
one can solve the master equations, Eqs. (4.15) and (4.16), to get the correspond-
ing zeroth-order and first-order occupation probabilities. Then, the result can be
plugged into Eqs. (4.18) and (4.19) to calculate the first-order and second-order
electric current flowing through the system.
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Appendix B

Cotunneling Rates

In this appendix we present the explicit expressions for cotunneling rates deter-
mined within the second-order perturbation theory. Using the calculated rates
one can find the corresponding occupation probabilities from the appropriate
master equation, Eq. (4.28). This approach may be used alternatively to the
real-time diagrammatic technique in the case of deep Coulomb blockade regime,
i.e., when the effects due to the first-order processes are exponentially suppressed.

B.1 Collinear Magnetic Configurations

The spin-flip cotunneling processes can take place through one of the two virtual
states in which the dot is either empty (|0〉) or doubly occupied (|d〉), respectively.
The corresponding energies are ε0 = 0 for the empty state and εd = ε↑ + ε↓ + U
for the doubly occupied state. The spin-flip cotunneling rate for transition from
lead r to lead r′ with a change of the dot state from |σ〉 to |σ̄〉 is given by

γrr′,σ⇒σ̄ =
2π

~

∫∫
dω1dω2ρrσ̄ρr′σ|trσ̄|2|tr′σ|2f(ω1)[1− f(ω2)]

×
[

1

ω2 − εσ + µr′
− 1

ω1 − εσ̄ − U + µr

]2

×δ(ω1 − ω2 + εσ − εσ̄ + µr − µr′) . (B.1)

Using Eq. (4.4) and properties of the delta function Eq. (B.1) becomes

γrr′,σ⇒σ̄ =
Γσ̄

r Γσ
r′

2π~

∫
dωf(ω)[1− f(ω + εσ − εσ̄ + µr − µr′)]

×
[

1

ω − εσ̄ + µr

− 1

ω − εσ̄ − U + µr

]2

. (B.2)

Then, by taking into account the identity

f(ω)[1− f(ω + ξ′)] = fB(−ξ′)[f(ω + ξ′)− f(ω)] , (B.3)
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Eq. (B.2) can be rewritten as a sum of integrals of type
∫

dωf(ω)/(ω − ξ)n

(n = 1, 2, . . . ). In principal, it is necessary to determine the integrals for n = 1,
whereas the ones for n > 1 can be found from the following identity

∫
dω

f(ω)

(ω − ξ)n+1
=

1

n!

d(n)

d(n)ξ

∫
dω

f(ω)

ω − ξ
. (B.4)

Below we demonstrate the calculation of one of the summands, namely

J =

∫
dω

f(ω)

ω − εσ̄ + µr

. (B.5)

To calculate this integral we use the Lorentzian cutoff given by Eq. (A.17). Con-
sequently, Eq. (B.5) can be expressed as

J =
W

2i

∫
dω

f(ω)

(ω − εσ̄ + µr)(ω − µr − iW )

−W

2i

∫
dω

f(ω)

(ω − εσ̄ + µr)(ω − µr + iW )
. (B.6)

The first (second) integral in the above formula has poles at ω = εσ̄ − µr, ω =
µr + (−)iW , and ω = i(2m + 1)π, with m = 0, 1, 2, . . . . However, because
we are interested in the deep Coulomb blockade regime (where the second-order
processes dominate), it is justifiable to assume ω ¿ εσ̄ and this way neglect the
contribution of the first pole. Then, by means of the contour integration and
assuming W to be the largest energy scale, one gets

J = ReΨ

(
1

2
+ i

εσ̄ − µr

2πkBT

)
− ln

(
W

2πkBT

)
. (B.7)

As a single integral depends on the cutoff parameter, the total rate does not.
The expressions depending on W cancel in pairs, which can be simply seen from
Eq. (B.3). The other summands of Eq. (B.2) can be found in a similar way with
the aid of the above mentioned identities. Then, the spin-flip cotunneling rate
reads

γrr′,σ⇒σ̄ =
Γσ̄

r Γσ
r′

2π~
fB(µr′ − µr − εσ + εσ̄)

[Bσ
2r′ − Bσ̄

2r + Cσ
2r′ − Cσ̄

2r

+2U−1 (Bσ
1r′ − Bσ̄

1r − Cσ
1r′ + Cσ̄

1r)
]
, (B.8)

with the coefficients defined as

Bσ
n+1r =

d(n)

dε
(n)
σ

ReΨ

(
1

2
+ i

εσ − µr

2πkBT

)
, (B.9)

Cσ
n+1r =

d(n)

dε
(n)
σ

ReΨ

(
1

2
+ i

εσ + U − µr

2πkBT

)
. (B.10)
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B Cotunneling Rates B.1 Noncollinear Configurations

The rate of a non-spin-flip process when the dot is in the state |σ〉 and an
electron with spin σ co-tunnels through the system is given by

γσ
rr′,σ⇒σ =

Γσ
r Γσ

r′

2π~

∫
dωf(ω)[1− f(ω + µr − µr′)]

(
1

ω − εσ + µr

)2

, (B.11)

whereas the rate in the case when a single electron with spin σ resides on the dot
while another one with spin σ̄ co-tunnels through the system reads

γσ̄
rr′,σ⇒σ =

Γσ̄
r Γσ̄

r′

2π~

∫
dωf(ω)[1− f(ω + µr − µr′)]

(
1

ω − εσ̄ + U + µr

)2

. (B.12)

The above expressions can be calculated in a similar way as Eq. (B.2), then, the
non-spin-flip cotunneling rate when the dot is in state |σ〉 is

γrr′,σ⇒σ =
fB(µr′ − µr)

2π~
[Γσ

r Γσ
r′ (Bσ

2r′ − Bσ
2r) + Γσ̄

r Γσ̄
r′ (Cσ̄

2r′ − Cσ̄
2r)] . (B.13)

Using the calculated rates one can determine the occupation probabilities from
Eq. (4.28) and then the electric current from Eq. (4.30).

B.2 Noncollinear Magnetic Configurations

In this section we present the cotunneling rates in the case when the leads are
magnetized noncollinearly. In this situation, there may be nonzero matrix ele-
ments for transitions that were not allowed in the case when the magnetic mo-
ments of the leads formed a collinear configuration.

B.2.1 Case of Empty Dot

In the case of empty dot the current is mediated only by non-spin-flip cotunneling
processes. The transition rate for electrons tunneling from the majority spin band
in the lead r to the majority spin band in the lead r′ is given by

γ+⇒+
rr′,0⇒0 =

Γ+
r Γ+

r′

2π~

∫
dωf(ω)[1− f(ω + µr − µr′)]

×
[
cos (ϕr/2) cos (ϕr′/2)

ω + µr − ε↑
+

sin (ϕr/2) sin (ϕr′/2)

ω + µr − ε↓

]2

, (B.14)

The integrals in Eq. (B.14) can be calculated quite easily using the contour in-
tegration method, as described in previous section. Following this procedure one
finds

γ+⇒+
rr′,0⇒0 =

Γ+
r Γ+

r′

2π~
fB(µr′ − µr)

[
cos2 ϕr

2
cos2 ϕr′

2
(B↑2r′ − B↑2r)

+ sin2 ϕr

2
sin2 ϕr′

2
(B↓2r′ − B↓2r)

+
sin ϕr sin ϕr′

2(ε↑ − ε↓)

(
B↑1r′ − B↑1r − B↓1r′ + B↓1r

)]
, (B.15)
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with the coefficients given by Eqs. (B.9) and (B.10). The other cotunneling rates
when a majority (σ = +) or minority (σ = −) electron of the lead r co-tunnels
to the majority (σ = +) or minority (σ = −) electron band of the lead r′ are
given by

γ+⇒−
rr′,0⇒0 =

Γ+
r Γ−r′
2π~

fB(µr′ − µr)
[
cos2 ϕr

2
sin2 ϕr′

2
(B↑2r′ − B↑2r)

+ sin2 ϕr

2
cos2 ϕr′

2
(B↓2r′ − B↓2r)

−sin ϕr sin ϕr′

2(ε↑ − ε↓)

(
B↑1r′ − B↑1r − B↓1r′ + B↓1r

)]
, (B.16)

γ−⇒+
rr′,0⇒0 =

Γ−r Γ+
r′

2π~
fB(µr′ − µr)

[
sin2 ϕr

2
cos2 ϕr′

2
(B↑2r′ − B↑2r)

+ cos2 ϕr

2
sin2 ϕr′

2
(B↓2r′ − B↓2r)

−sin ϕr sin ϕr′

2(ε↑ − ε↓)

(
B↑1r′ − B↑1r − B↓1r′ + B↓1r

)]
, (B.17)

γ−⇒−rr′,0⇒0 =
Γ−r Γ−r′
2π~

fB(µr′ − µr)
[
sin2 ϕr

2
sin2 ϕr′

2
(B↑2r′ − B↑2r)

+ cos2 ϕr

2
cos2 ϕr′

2
(B↓2r′ − B↓2r)

+
sin ϕr sin ϕr′

2(ε↑ − ε↓)

(
B↑1r′ − B↑1r − B↓1r′ + B↓1r

)]
. (B.18)

The total rate is then given by

γrr′,0⇒0 =
∑

σ,σ′=+,−
γσ⇒σ′

rr′,0⇒0 . (B.19)

B.2.2 Case of Singly-Occupied Dot

In the case when the dot is occupied by a single electron, the current can flow due
to both the spin-flip and non-spin-flip cotunneling processes. The corresponding
cotunneling rates can be calculated in a similar way as described in previous
sections.

The rate of a spin-flip process which transfer a spin-majority electron from
the lead r to the spin-down level of the dot and a spin-up electron from the dot
to the spin-majority electron band in the lead r′ is given by

γ+⇒+
rr′,↑⇒↓ =

Γ+
r Γ+

r′

2π~
sin2 ϕr

2
cos2 ϕr′

2

∫
dωf(ω)[1− f(ω + ε↑ − ε↓ + µr − µr′)]

×
(

1

ω − ε↓ + µr

− 1

ω − ε↓ − U + µr

)2

. (B.20)
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The total rate of spin-flip cotunneling which changes the dot state from | ↑〉 to | ↓〉
can be found by summing up over the spin-majority and spin-minority electrons

γrr′,↑⇒↓ =
∑

σ,σ′=+,−
γσ⇒σ′

rr′,↑⇒↓ , (B.21)

then, one gets

γrr′,↑⇒↓ =
fB(µr′ − µr − ε↑ + ε↓)

2π~

[
Γ+

r Γ+
r′ sin

2 ϕr

2
cos2 ϕr′

2
+ Γ+

r Γ−r′ sin
2 ϕr

2
sin2 ϕr′

2

+Γ−r Γ+
r′ cos2 ϕr

2
cos2 ϕr′

2
+ Γ−r Γ−r′ cos2 ϕr

2
sin2 ϕr′

2

]

×
[
B↑2r′ − B↓2r + C↑2r′ − C↓2r + 2U−1

(
B↑1r′ − B↓1r − C↑1r′ + C↓1r

)]
. (B.22)

For the cotunneling rate which changes the dot state from | ↓〉 to | ↑〉 one finds

γrr′,↓⇒↑ =
fB(µr′ − µr + ε↑ − ε↓)

2π~

[
Γ+

r Γ+
r′ cos2 ϕr

2
sin2 ϕr′

2
+ Γ+

r Γ−r′ cos2 ϕr

2
cos2 ϕr′

2

+Γ−r Γ+
r′ sin

2 ϕr

2
sin2 ϕr′

2
+ Γ−r Γ−r′ sin

2 ϕr

2
cos2 ϕr′

2

]

×
[
B↓2r′ − B↑2r + C↓2r′ − C↑2r + 2U−1

(
B↓1r′ − B↑1r − C↓1r′ + C↑1r

)]
. (B.23)

The non-spin-flip cotunneling rate in the case when the dot is in the state | ↑〉
is given by

γrr′,↑⇒↑ =
fB(µr′ − µr)

2π~

{(
C↓2r′ − C↓2r

)

×
[
Γ+

r Γ+
r′ sin

2 ϕr

2
sin2 ϕr′

2
+ Γ+

r Γ−r′ sin
2 ϕr

2
cos2 ϕr′

2

+Γ−r Γ+
r′ cos2 ϕr

2
sin2 ϕr′

2
+ Γ−r Γ−r′ cos2 ϕr

2
cos2 ϕr′

2

]

+
(
B↑2r′ − B↑2r

) [
Γ+

r Γ+
r′ cos2 ϕr

2
cos2 ϕr′

2
+ Γ+

r Γ−r′ cos2 ϕr

2
sin2 ϕr′

2

+Γ−r Γ+
r′ sin

2 ϕr

2
cos2 ϕr′

2
+ Γ−r Γ−r′ sin

2 ϕr

2
sin2 ϕr′

2

]

− sin2 ϕr sin2 ϕr′

2 (ε↓ − ε↑ + U)

(
C↓1r′ − C↓1r − B↑1r′ + B↑1r

)

× (
Γ+

r Γ+
r′ − Γ+

r Γ−r′ − Γ−r Γ+
r′ + Γ−r Γ−r′

) }
, (B.24)

whereas the non-spin-flip cotunneling rate in the case when the dot is in the state
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| ↓〉 reads

γrr′,↓⇒↓ =
fB(µr′ − µr)

2π~

{(
C↑2r′ − C↑2r

)

×
[
Γ+

r Γ+
r′ cos2 ϕr

2
cos2 ϕr′

2
+ Γ+

r Γ−r′ cos2 ϕr

2
sin2 ϕr′

2

+Γ−r Γ+
r′ sin

2 ϕr

2
cos2 ϕr′

2
+ Γ−r Γ−r′ sin

2 ϕr

2
sin2 ϕr′

2

]

+
(
B↓2r′ − B↓2r

) [
Γ+

r Γ+
r′ sin

2 ϕr

2
sin2 ϕr′

2
+ Γ+

r Γ−r′ sin
2 ϕr

2
cos2 ϕr′

2

+Γ−r Γ+
r′ cos2 ϕr

2
sin2 ϕr′

2
+ Γ−r Γ−r′ cos2 ϕr

2
cos2 ϕr′

2

]

− sin2 ϕr sin2 ϕr′

2 (ε↑ − ε↓ + U)

(
C↑1r′ − C↑1r − B↓1r′ + B↓1r

)

× (
Γ+

r Γ+
r′ − Γ+

r Γ−r′ − Γ−r Γ+
r′ + Γ−r Γ−r′

) }
, (B.25)

where the corresponding coefficients are given by Eqs. (B.9) and (B.10). Using
the expressions for the second-order rates, one can calculate the occupation prob-
abilities from Eq. (4.28) and, then, the electric current flowing through system
from Eq. (4.30).
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[60] I. Weymann and J. Barnaś, Phys. Stat. Sol. b 236, 651 (2003).
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[104] I. Weymann, J. Barnaś, J. König, J. Martinek, and G. Schön, Phys. Rev.
B 72, 113 301 (2005).

[105] I. Weymann, J. König, J. Martinek, J. Barnaś and G. Schön, to be published
in Phys. Rev. B.
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[13] J. Barnaś, A. Fert, M. Gmitra, I. Weymann and V. K. Dugaev, Macroscopic
description of current induced switching due to spin-transfer, Phys. Rev. B 72,
024 426 (2005).
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[17] I. Weymann and J. Barnaś, Cotunneling through a magnetic quantum dot
coupled to ferromagnetic leads with noncollinear magnetizations, to be pre-
sented at The International Conference on Strongly Correlated Electron Sys-
tems 2005, Vienna; to be published in Physica B.

140


