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Abstract

The subject of the present PhD thesis belongs to a branch of theoretical physics devoted

to determination of transport properties of strongly correlated nanoscale systems. It con-

centrates on mesoscopic structures, in particular these, in which electron correlations lead

to the Kondo effect. Single and double quantum-dot structures, coupled to two or three

conducting leads, are considered here. A major part of the present dissertation concerns

the systems, in which electrodes exhibit ferromagnetic or superconducting correlations,

although the case of normal metallic leads is also analyzed. In such structures a diversity

of phenomena occur, among which the Coulomb blockade, the Kondo screening, the Fano

interference and the Andreev transport are only a few examples of primary interest.

The emphasis is put on the interplay of different correlations. It is shown how the Kondo

effect in the structures under consideration is affected by ferromagnetism or superconduc-

tivity of the leads. In general, Kondo correlations compete with the exchange field induced

by the ferromagnetic leads, as well as with pairing potential induced by superconductor.

However, this is not always the case. Under some circumstances, the Kondo temperature

may even increase, when the coupling between quantum-dot device and a superconduc-

tor is strengthened. The exchange field may compensate for the external magnetic field

effects and lead to restoration of the Kondo effect even in strong fields. Thus, the main

conclusion of these studies is that complex many-body phenomena taking place in the

correlated quantum-dot systems manifest themselves in a diversity of nontrivial transport

properties of these systems.

The dissertation has the form of a series of eight articles published in international peer-

reviewed journals, preceded by an introductory part. Each of the articles addresses a

specific problem concerning a particular correlated quantum-dot system. The methodol-

ogy was optimized for the description of nonperturbative phenomena. For this purpose,

the numerical renormalization group procedure is employed as the main calculation tech-

nique, and whenever necessary it is complemented by other suitable methods.
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Chapter 1

Motivation and aims

The giant magnetoresistance effect, discovered in thin layers of ferromagnetic materials

by Grünberg and Fert in 1988 [1,2], has found its commercial appliance in reading heads

of computer hard disks already in 1997 [3], not even a decade later. Having published

his General Theory of Relativity in 1916 [4], Einstein could not have expected that the

atomic clocks, build to verify his predictions, will allow the creation of Global Positioning

System almost a century later [5]. These two examples illustrate, how strong the impact

on the everyday life of society can be exerted by discoveries made by researchers mo-

tivated primarily by curiosity, exploring the fields seemingly unrelated to the problems

absorbing attention of vast majority of people. Such instances have convinced the author

to follow his own interests and to undertake the studies, whose results are described in the

following.

The investigations presented in this dissertation are a part of a direction in theoretical ba-

sic research, concerning determination of the transport properties of strongly correlated

nanoscopic systems. The system is said to be nanoscopic, when its characteristic spa-

tial dimensions are within the range of several to a few hundreds nanometers (1nm =

10−9m). It can be envisioned that development in this field will lead to new discoveries,

which could give rise to extraordinary and potentially useful properties of relevant sys-

tems. Such findings could be of importance for future applications in nanoelectronics,

spintronics, caloritronics or other, possibly yet unknown, fields. However, the main mo-

tivation stems from the fact that the low-temperature phenomena at the nanoscale are not

yet fully understood, even though appropriate nanoscopic systems can be in practice fab-

ricated, and put under extensive experimental investigations. In particular, systems where

different types of correlations compete with each other have recently attracted a great

interest. These correlations include the electronic correlations leading to the Kondo ef-
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fect, ferromagnetism, superconductivity, and others. Due to the recent rapid development

in experimental techniques, the implementation of such systems becomes now possible,

so that one can expect experimental verification of theoretical predictions at a relatively

short timescale compared to many other basic research areas, such as cosmology or ele-

mentary particle physics. At the same time, theoretical description of nanoscale physics

is challenging owing to many-body nature of the related phenomena.

The important examples of nanoscopic systems, widely analyzed both theoretically and

experimentally, are the systems of quantum dots – the objects of the size smaller than

the respective Fermi wavelength, which can be tunnel-coupled to external leads [6]. A

quantum dot is usually expected to exhibit single-electron charging effects, which means

that the charging energyEC = e2/(2C) fulfills the conditionEC � kBT . Here, e denotes

the absolute value of the electron charge, C stands for electric capacity of the considered

object, and kB is the Boltzmann constant. Hereafter, kB = 1 by the appropriate choice

of units. Moreover, the tunnel junctions need to have a sufficient resistance, large enough

for the thermal fluctuations of the number of electrons in the quantum dot to be strongly

suppressed.

In the present disertation quantum dots are often thought of as spatially restricted semi-

conductor structures, coupled to the electrodes by tunnel junctions [7]. The characteristic

feature of such quantum dots is their tunability, i.e. the possibility to arbitrarily adjust

their basic parameters in experimental setups [8]. Additionally, their rich physical behav-

ior can be often captured by relatively simple model Hamiltonians. Although the solution

of them is usually not an easy task, it is still far simpler and computationally less demand-

ing than performing calculations based on first principles. This makes quantum dots an

ideal playground for studying the most complicated many-body phenomena. The aim of

the present dissertation is to contribute to this field.

The dissertation is focused on determining the transport properties of a few systems, pos-

sessing at least two competing energy scales. One could expect that the physics of such

systems should be governed by the scale corresponding to the stronger correlation, at least

at sufficiently low temperatures. In such cases, the electrical and thermal conductance, the

Seebeck coefficient, and other transport coefficients are supposed to resemble the corre-

sponding quantities in the simpler systems. However, there are regimes of parameters,

where none of the correlations is dominant. These are the most interesting, since one can

hope to find substantially new properties there. Nevertheless, things are not necessarily

as simple as one could suppose, and the correlations that may seem to compete can co-

operate under some circumstances. For example, as shown in article [A], the coupling to

the superconducting lead can actually increase the Kondo temperature. Thus, the conclu-
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sion of this study can be formulated as follows: Complex many-body phenomena taking

place in correlated quantum-dot systems manifest themselves in a diversity of nontrivial

transport properties of these systems.

The form of this dissertation is imposed by the fact that it has the form of a series of pub-

lished articles. The thesis is divided into three parts. Part I is intended to give a possibly

simple introduction. It begins with the present chapter outlining the motivation and aims.

Subsequently, Chapter 2 is devoted to the methodology. Then, in Chapter 3, the basic

physical phenomena occurring in quantum-dot systems are explained and illustrated with

calculations performed with the aid of techniques described in Chapter 2. Finally, Chap-

ter 4 contains the summary of the results and conclusions, while Chapter 5 is (somewhat

extended) translation of Chapter 4 into polish. Such a form of the introductory part al-

lows for avoiding repetition of the content of introductions of articles constituting Part II,

where the history of research in the relevant fields is always discussed. On the contrary,

this general introduction aims at showing the basic building blocks of the models analyzed

in Part II and at increasing the self-consistency of the thesis.

Being the core of the dissertation, Part II presents the most important results and is consti-

tuted by eight articles, written by the author of the present dissertation under the guidance

of his supervisor and published in peer-reviewed international journals. Each article cor-

responds to one chapter of the dissertation (Chapters 6-13).

At last, Part III contains appendices, such as the list of author’s academic achievements

and statements concerning authors’ contributions to the articles constituting Part II.

Part I: Introduction 19
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Chapter 2

Outline of the methodology

In the following chapter, the most important aspects of the methodology used in the dis-

sertation are described. The general Hamiltonian of a quantum dot (abbreviated as QD

henceforth) system is described in Sec. 2.1. Then, the transport coefficients in the linear

response regime are defined and discussed in Sec. 2.2. The numerical renormalization

group procedure, being one of the most reliable tools for studying quantum-dot systems

at equilibrium, is briefly explained in Sec. 2.3. Finally, in Sec. 2.4 other methods used in

Part II are described.

2.1. General form of the Hamiltonian

The studied nanostructures can be naturally divided into two parts: quantum dots and

leads. The boundary between the two, namely the tunnel junctions, is also an impor-

tant part of the system, which determines the interaction between QDs and electrodes.

Consequently, the total Hamiltonian of a quantum-dot system takes the general form

H = HQDs +
∑

r

Hr +
∑

r

HTr, (2.1)

where HQDs denotes the Hamiltonian of the quantum dots, including all the interactions

between them, r is an index labeling the contacts, Hr describes the electrons in the lead

r, while HTr accounts for tunneling between lead r and QDs. In this Hamiltonian it has

been already assumed that there is no direct hopping between the leads.

Before the respective elements of the Hamiltonian are discussed separately in the follow-

ing subsections, one point seems worth mentioning. Although the quantum dots coupled

to the leads and the impurities in the metallic host may seem completely different physical
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systems, their spectral properties are in fact nearly identical. For this reason, the models

used for the description of QDs are very similar to the well-known quantum impurity

models, such as the Anderson model [9] or the Kondo model [10]. These two models

are actually closely related [11], although the Anderson model is more general, because

it allows for the study of the impurity (or the quantum dot) with a fluctuating occupation

number. This is also reflected in richer spectrum of possible low-temperature behavior,

especially in the particle-hole asymmetric case [12, 13]. In the present dissertation, de-

scription of QDs is based on the Anderson model, to allow for exploration of this wide

range of phenomena.

2.1.1. Hamiltonian of quantum dots

For the description of quantum dots one usually uses a model Hamiltonian, which cap-

tures their basic properties, relevant for the experimentally accessible quantities of the

system of interest. In particular, aiming at the calculation of low-temperature transport

properties, one can usually restrict the model to only one single-electron orbital per QD.

This is justified, because the corresponding level spacing is usually large, due to their

limited spatial dimensions. The energy of the orbital relevant for QD labeled by i is

henceforth denoted by εi. It is usually spin-degenerate, unless an external magnetic field

B is present. In the considered model the interaction between respective QDs takes the

form of an electron hopping. Of course, the QD on-site Coulomb (electrostatic) interac-

tions, traditionally denoted by Ui, should also be taken into account. In the dissertation,

the direct exchange coupling between QDs and the inter-dot Coulomb interactions are

neglected. These considerations enable one to write the Hamiltonian of QDs in the form

suitable for the present analysis,

HQDs =
∑

iσ

(εi + σB)niσ +
∑

i

Uini↑ni↓ +
∑

i,j>i
σσ′

(tiσ,jσ′d†iσdjσ′ + h.c.). (2.2)

Here, i indexes the quantum dots. niσ is the occupation number operator for spin-σ elec-

trons in the relevant orbital in i-th QD, which can be written as a product of respective

creation and annihilation operators, niσ = d†iσdiσ. The first term of Eq. (2.2) describes the

energy of an electron residing in i-th QD, where the magnetic fieldB is assumed to be ex-

pressed in energy units, such that gµB = 1. The second term describes on-site Coulomb

interactions. The last term contains the sum over all pairs of QDs. For each pair, one can

define the hopping matrix elements tiσ,jσ′ . Phrase h.c. stands for Hermitean conjugation

of the preceding term. Hopping between quantum dots often conserves spin (i.e., matrix

elements tiσ,jσ′ are nonzero only for σ = σ′).
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Although systems with a relatively large number of quantum dots are experimentally real-

izable [14], structures containing only one or two QDs strongly coupled to correlated leads

already host a huge variety of physical phenomena. Moreover, preparation of samples of

quality sufficient for measurements of many-body phenomena is even more challenging

for more complex nanostructures. For these reasons the present dissertation focuses on

single and double quantum-dot systems.

2.1.2. Hamiltonians of leads

The leads play a very important role in QD-based structures. Not only are they the reser-

voirs of electrons and heat, but also strongly affect properties of QDs via interaction with

them. In fact, most of the articles constituting the present dissertation analyze the influ-

ence of ferromagnetic or superconducting correlations in the leads on the properties of a

system of QDs [A, B, C, D, E, F, H]. All leads are normal metals only in article [G].

The typical metallic leads can be modeled as partially filled free-electron sea, with ap-

propriate dispersion relation. Then, the Hamiltonian of each such lead takes the simple

form

HN
r =

∑

kσ

εrknrkσ, (2.3)

where εrk denotes energy dispersion relation of lead r for an electron of spin σ and

pseudo-momentum k, and nrkσ = c†rkσcrkσ with c(†)
rkσ being annihilation (creation) op-

erator of that electron. The summation over k runs through the first Brillouin zone. The

superscript N was added to Hr to indicate that the equation applies only to the case of

normal metallic lead.

At first sight, the form of the Hamiltonian of a ferromagnetic electrode,

HFM
r =

∑

kσ

εrkσnrkσ, (2.4)

does not really differ from the nonmagnetic case. The only, yet crucial, difference is that

the dispersion relation becomes then spin-dependent.

On the contrary, Hamiltonian of a superconducting lead is more complicated. There are

various types of superconductors, however, in the dissertation only these described by

the BCS theory [15, 16] are considered. The corresponding Hamiltonian is written in the

mean-field form,

HSC
r =

∑

kσ

εrknrkσ +
∑

k

(∆rkc
†
rk↑c

†
r−k↓ + h.c.). (2.5)
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The dispersion relation εrk does not depend on spin. The superconducting order parameter

is denoted by ∆rk and in general it depends on k. Here, it is assumed that this can be

neglected, so that the corresponding subscript is omitted, ∆rk = ∆r. Note that ∆r is

a complex number with an arbitrary phase factor. However, only a difference of such

phases between the two superconductors is of physical significance. Thus, in the case of

a single superconductor, not only can the subscript be omitted (∆r = ∆), but also ∆ may

be chosen real.

The Hamiltonian given by Eq. (2.5) can be solved by the Bogoliubov transformation [17].

It leads to a new dispersion relation for the quasi-particles, which introduces energy gap

of 2∆r, symmetrical around the Fermi level. Additionally, exactly at the Fermi level a

condensate of Cooper pairs occurs.

All the lead Hamiltonians presented so far can be combined in a universal form,

Hr =
∑

kσ

εrkσnrkσ +
∑

k

(∆rc
†
rk↑c

†
rk↓ + h.c.). (2.6)

Of course, none material should be expected to be a ferromagnet and a superconductor at

the same time. The purpose of writing Eq. (2.6) is only to give a universal expression for

all types of leads considered in this dissertation. Moreover, Hamiltonian given by (2.6)

can be also written in the continuous notation,

Hr =

∫
d3k

(2π)3

[∑

σ

εrkσnrkσ + (∆rc
†
rk↑c

†
rk↓ + h.c.)

]
. (2.7)

Here, operators c(†)
rkσ are normalized such that the commutation relation contains the vol-

ume of the crystal times the Kronecker delta function, which becomes the Dirac delta

function in the limit of an infinite crystal, corresponding to dense Brillouin zone.

2.1.3. Tunneling Hamiltonian

Within this dissertation the tunneling Hamiltonian is taken simply as

HTr =
∑

iσkσ′

(viσ,rkσ′c†rkσ′diσ + h.c.), (2.8)

where viσ,rkσ′ is the hopping matrix element between the spin-σ state in i-th QD and

spin-σ′ state with momentum k in the lead r. Since viσ,rkσ′ is a coupling between plain-

wave-like state in the lead and a localized stated in QD, it is inversely proportional to

square root of volume of the crystal. With the appropriate changes of normalization of
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viσ,rkσ′ and operators c(†)
rkσ′ , also this part can be expressed in the continuous notation,

HTr =
∑

iσσ′

∫
d3k

(2π)3
(viσ,rkσ′c†rkσ′diσ + h.c.). (2.9)

When written in the spherical basis in the k-space, the coefficients viσ,rkσ′ are usually

negligible for leads’ states of angular momentum different from that of the state localized

in QD i. Then, the 3-dimensional integral may be reduced to the integral over k =

|k|, while the integrals over angular coordinates give either unity (for states of correct

angular momentum) or zero (for the other states). Note, that such decoupled states do

not contribute to the transport properties of the system and can be discarded from the

Hamiltonian completely (not only from HTr). Moreover, one can use dispersion relation

to change the variable from k to ε. Finally, in the present dissertation only co-linear

orientations of leads’ magnetizations are considered and the assumption concerning spin-

conserving tunneling is made. Altogether, these simplifications allow one to write the

tunneling Hamiltonian in the form

HTr =
∑

iσ

∫
dε
√
ρrσ(ε)(virεσc

†
rεσdiσ + h.c.), (2.10)

where ρrσ(ε) is the density of states (per unit cell) of lead r, and the integration is per-

formed over the relevant energy band. In practice, at low temperatures ρrσ and virεσ

usually do not change significantly for ε within the range of a few kBT around the Fermi

level, so one can consider them as constants without introducing a significant error. In

particular, in the present thesis ρrσ(ε) is substituted by the constant corresponding to the

Fermi level. The tunnel coupling between the lead r and i-th QD can then be parametrized

by

Γirσ = πρrσ|virEF σ|2 (2.11)

and the phase of virEF σ, which is often irrelevant. In all the systems considered in the

present dissertation, there is only one QD directly coupled to the leads —say QD labeled

with i = 1 or simply QD1. This means that Γrσ ≡ Γ1rσ is a parameter of the model and

Γirσ = 0 for i 6= 1.

At low temperatures, Γrσ also plays the role of the interaction-induced broadening of QD1

level for spin-σ electron. One can further define the (spin-resolved) level broadening as a

sum of couplings corresponding to the relevant leads,

Γ(σ) =
∑

r

Γr(σ). (2.12)

It is convenient to introduce the spin polarization pr of lead r, which obeys

Γrσ = Γr(1± prσ). (2.13)
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In the above equation, the upper sign corresponds to the situation that spin moment of lead

r is parallel to the quantization axis, while the lower one to its anti-parallel alignment.

In this notation, assuming that v1rεσ may be taken real and positive, the corresponding

tunneling Hamiltonian becomes

HTr =
∑

σ

√
Γrσ
π

∫
dε(c†rεσd1σ + h.c.). (2.14)

Finally, at equilibrium, in the case of two symmetrically coupled and not superconducting

leads, i.e. r ∈ {L,R}, a following canonical transformation of the leads states,

cεσ = uσcLεσ + vσcRεσ, (2.15)

c̃εσ = −vσcLεσ + uσcRεσ, (2.16)

with uσ =
√

ΓLσ/(ΓLσ + ΓRσ) and vσ =
√

1− u2
σ, results in the decoupling of states

described by c̃εσ [18]. Note that for ΓL = ΓR these are simply the states odd with respect

to exchange of the leads. This allows for writing the total Hamiltonian in an effective

single-channel form,

∑

r

HTr =
∑

σ

√
Γσ
π

∫
dε(c†εσd1σ + h.c.), (2.17)

∑

r

Hr =
∑

σ

∫
dε ε nεσ. (2.18)

The integrals in principle run through the whole conduction band, but in practice one can

restrict oneself to the section of energies lying within the range EF ± D, with cutoff D

being greater than the largest relevant energy scale.

2.1.4. Effective Hamiltonian for a quantum dot coupled to a supercon-
ductor

In general, in the presence of a superconducting lead, the Hamiltonian of the system can-

not be transformed to the single-channel form, as described in the previous section, unless

the superconducting lead is the only one to which the quantum dot is attached. This stems

from the fact, that states not tunnel-coupled directly to the QDs, i.e. described by c̃εσ
in Eq. (2.16), can still interact with the coupled states (described by cεσ) via a term pro-

portional to ∆. Moreover, even in the absence of the voltage bias, the presence of two

superconductors characterized by a different phase of their corresponding order parame-

ters is in fact a non-equilibrium situation, as this induces the flow of the Josephson current

in the system. On the other hand, if there is only one superconductor, all tunneling pro-

cesses can be divided into two categories: tunneling of quasi-particles, which is strongly
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suppressed at temperatures T � ∆ and low bias, and the Andreev (Cooper pair) tunnel-

ing. In the limit of the infinitely large superconducting gap, ∆ → ∞, the former can be

neglected, and description of the latter can be significantly simplified.

A new Cooper pair can be created in the superconductor, when two electrons are provided,

so that their total energy equals the doubled Fermi energy, 2EF . Thus, when an electron

incident on the superconductor interface has an energy ε > EF , to form a Cooper pair

it needs another electron of opposite spin from the Fermi sea. As a result, a hole is left

behind in the normal region. Such a process is referred to as the Andreev reflection, in

memory of a Russian physicist who predicted it [19]. In restricted geometries, due to

multiple Andreev reflections, the bound sates can form [20, 21], called Andreev bound

states or Yu-Shiba-Rusinov states [22–24]. They can be investigated exprimentally by

means of scanning tunneling microscopy [25–27]. Moreover, these states determine the

transport properties of a QD coupled to the superconductor [28–31].

In order to gain a better insight into the role of the bound states in the transport, consider

a single QD coupled to a superconductor (SC) as an example. The subscript i numbering

QDs is now redundant and can be omitted (in particular, ε denotes QD level). Addition-

ally, the SC order parameter ∆ is taken as real and negative, which occurs to be convenient

choice. The Hamiltonian of the system under consideration can be written then as

HQD +HS +HT S =
∑

σ

(ε+ σB)nσ + Un↑n↓ +
∑

kσ

εSknSkσ (2.19)

+∆
∑

k

(c†Sk↑c
†
Sk↓ + h.c.) +

∑

σk

(vSkc
†
Skσdσ + h.c.).

Importantly, the Hamiltonian above can be extremely simplified if one integrates out the

quasi-particle excitations. This generates the induced action, which in the limit |∆| → ∞
is equal to the action corresponding to the effective Hamiltonian [20],

Heff =
∑

σ

(ε+ σB)nσ + Un↑n↓ + ΓS(d†↑d
†
↓ + h.c.), (2.20)

where ΓS = πρS|vS|2 and ρS denotes normalized density of states of SC lead at the Fermi

level in the normal state, and vS equals k-independent vSk in the wide-band limit. The

positive sign of the term proportional to ΓS is implied by a negative ∆. Note that although

SC degrees of freedom were excluded from Heff , the Hamiltonian does not conserve the

number of electrons. In fact, a pair of them may be created or annihilated in QD. This is

described by the term proportional to ΓS , which plays a role of a pairing potential here.

The tremendous simplification obtained by introduction ofHeff rests in the fact, that it can

be represented in terms of local states of QD, i.e., as a 4-dimensional matrix, instead of

an operator acting on infinitely many degrees of freedom, as in Eq. (2.20).
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2.2. Linear-response transport coefficients

As explained in Sec. 2.3, numerical renormalization group approach can be used to find

the spectrum of the system at equilibrium. However, at equilibrium there is no transport

in the system, in particular, there is neither electric nor spin current, and heat does not

flow either. Nevertheless, the dynamical properties of the system, such as conductances

corresponding to respective currents, can be defined within the linear response theory

and calculated from the equilibrium spectrum of the Hamiltonian, as discussed in the

following1.

Using the Boltzmann equation approach or Kubo linear response theory, and assuming

well-defined Fermi level to be the reference point for energy scale, one can derive the

linear-response kinetic coefficients connecting currents (the x-current is denoted by Ix,

where x = C for charge, x = S for spin, x = Q for heat) with forces that induce these

currents: voltage V , spin voltage VS and temperature difference ∆T [32, 33],


IC

IS

IQ


 =

∑

σ




e2L0σ σe2L0σ −eL1σ/T

−σe}
2
L0σ −e}2L0σ σ }

2
L1σ/T

−eL1σ −σeL1σ L2σ/T







V

VS

∆T


 , (2.21)

where e is the absolute value of electron charge, σ corresponds to different spin species,

Lnσ = −1

h

∫
ωn

∂f(ω)

∂ω
Tσ(ω)dω (2.22)

is the appropriate kinetic coefficient, f(ω) is the Fermi-Dirac distribution function, and

Tσ(ω) is the spin-resolved transmission coefficient. Henceforth the notation Ln = Ln↑ +

Ln↓ and Mn = Ln↑ − Ln↓ will be also used.

The transport properties can be calculated from integrals Lnσ using Eq. (2.21). In partic-

ular, the electrical and spin conductances are

G ≡ ∂V IC | VS=0
∆T=0

= e2L0, (2.23)

GS ≡ ∂VSIS| V=0
∆T=0

= −e}
2
· L0, (2.24)

respectively, where ∂xA|y=0 denotes partial derivative of A(x, y) with respect to x, while

the condition y = 0 is fulfilled. Similarly, the heat conductance is given by

κ ≡ ∂∆T IQ| IC=0
VS=0

=
1

T

(
L2 −

L2
1

L0

)
, (2.25)

where the conditions IC = 0 and VS = 0 in fact determine V as a function of ∆T .
1This section is partially based on article [H] constituting Chapter 13.
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The difference between the conductances of respective spin channels can be conveniently

described by the linear-response spin polarization of the current,

P =
I↑ − I↓
I

=
G↑ −G↓

G
=
M0

L0

. (2.26)

Another important property of the systems with two ferromagnetic leads is their tunneling

magnetoresistance [34],

TMR =
GP −GAP

GAP
, (2.27)

where the superscript P refers to the parallel magnetic configuration of the leads, while

AP corresponds to the anti-parallel configuration. In the case of direct tunneling between

the two ferromagnets, GP > GAP and TMR > 0. However, if the two ferromagnets

are separated with a strongly interacting quantum-dot system, TMR may reach negative

values.

The major thermoelectric property of a nano-device is the Seebeck coefficient, denoted by

S and describing the voltage necessary to prevent the electric current flow in the presence

of temperature difference between the two leads. It can be expressed as

S = G−1∂∆T IC

∣∣∣
V=0
VS=0

= − 1

eT

L1

L0

. (2.28)

Seebeck coefficient is related to the Peltier coefficient Π = ∂ICIQ| VS=0
∆T=0

by Π = ST .

However, at low temperatures it is more useful to study S instead of Π, because Peltier

coefficient is then very small. Indeed, at low temperatures the experimentally realizable

temperature differences are also small, so the heat flows are in general reduced.

The spin Seebeck coefficient, known also as the spin thermopower, is conventionally

defined in analogy to Eq. (2.28) as

SS = G−1
S ∂∆T IS| V=0

VS=0
= − 2

}T
M1

L0

. (2.29)

Indeed, this definition is used in article [H] (Chapter 13) and corresponds to spin volt-

age necessary to ensure vanishing spin current in the presence of temperature differences.

However, in articles [A] and [G] (i.e. Chapters 6 and 12), it was defined somewhat dif-

ferently. In fact, the situation described in these articles corresponds to complete inde-

pendence of spin channels. Then, the Seebeck coefficient can be defined for each spin

channel individually,

Sσ = G−1
σ ∂∆T Iσ

∣∣∣
Vσ=0

= − 1

eT

L1σ

L0σ

, (2.30)

where Gσ, Iσ and Vσ denote (correspondingly): the conductance, the electric current, and

the voltage, in each case in spin-channel σ. Then,

S̃S =
1

2
(S↑ − S↓) (2.31)

Part I: Introduction 29



can also be called spin thermopower. Note that the two definitions are not equivalent, i.e.

S̃S 6= SS . This is caused by the fact that the condition VS = 0 is in general not fulfilled for

independent spin channels. Nevertheless, in Part II SS is used to denote both quantities

(they do not occur together in any article).

Finally, the (spin) figure of merit can be defined by

Z(S)T = S2
(S)G(S)T/κ. (2.32)

It is a measure of thermodynamic efficiency of the device treated as a heat engine. The

corresponding power factor

P = S2G (2.33)

is related to maximal power of the device and the performance under the fixed flow con-

ditions [35].

2.3. Numerical renormalization group procedure

Numerical renormalization group procedure, commonly abbreviated NRG, is an algo-

rithm allowing for very accurate numerical computation of the spectrum of impurity mod-

els in equilibrium [38]. The method, proposed by Kenneth G. Wilson, is not based on the

perturbative expansion in the coupling constant or interaction strength, but rather relies on

obtaining a sequence of effective Hamiltonians and was inspired by earlier ideas concern-

ing renormalization. The procedure consists of three major steps: logarithmic discretiza-

tion of the conduction band, mapping the model onto effective semi-infinite chain, which

determines the sequence of effective Hamiltonians and, finally, iterative diagonalization

of them. The respective steps are discussed in detail in the following subsections.

2.3.1. Logarithmic discretization

The starting point for application of NRG can be a Hamiltonian of a form of Eq. (2.1), with

Eq. (2.2) accounting for a single QD (corresponding to single value of i), and Eqs. (2.17)

and (2.18) representing the tunneling and leads Hamiltonians, respectively. The general-

ization to the case of a double QD in a T-shaped configuration is rather trivial, as explained

further. From now on, we set the Fermi energy to be the reference point for measuring

single-particle energies, EF = 0, and use the half-bandwidth as a unit of energy, D = 1.
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The first step of NRG is the logarithmic discretization of the conduction band. It is

achieved in a few stages, which aim at the optimal choice of basis for single-particle

states. At the beginning, the energy band is divided into logarithmic intervals,

I+
n = [Λ−(n+1),Λ−n], n ≥ 0, (2.34)

and I− defined analogously for negative energies. Λ is called a discretization parameter

and at the moment it is an arbitrary number greater than unity. Large Λ implies large

intervals I±n , while Λ → 1 leads to small intervals. Then, in each interval, the Fourier

basis is introduced. Note that electron states labeled by energy ε and spin σ correspond

to a spherically symmetric electronic wave functions extending over the entire volume

of the system. Thus, the Fourier basis corresponds to some spatially localized states. In

fact, the zero-frequency Fourier state is localized around the center of spherical symmetry,

while the remaining states —around some spherical shells surrounding it [38]. The states

are said to be localized around, not localized at some point or shell, because the Fourier

basis is introduced in each interval I±n separately, so it is not a true Fourier basis in the

entire momentum space. Therefore, one can expect a Heisenberg-like uncertainty relation

determining the spatial spread of these new basis states. Since QD is a small object and

by definition of conduction band basis it is located at the center of spherical symmetry,

one can claim that it couples only to the zero-frequency Fourier state. For this reason one

can discard the other states and only one state per a single interval I±n is left.

It seems worth stressing that logarithmic discretization is possible only if the effective

conduction band has a well-defined Fermi level. Clearly, this is not the case for a non-

equilibrium systems, which is the strongest restriction upon the applicability of NRG.

On the other hand, at equilibrium logarithmic discretization occurs to be very efficient,

allowing for separation of energy scales in the Hamiltonian under investigation. This

idea has provided the main motivation for the introduction of NRG since its conception

proposed by Wilson in his seminal, albeit still rarely mentioned paper [39].

2.3.2. Mapping onto the Wilson chain

The next step of the NRG procedure is a tri-diagonalization of the single-particle sub-

space of the Hamiltonian leading to its mapping onto the semi-infinite chain, the so-

called Wilson chain. This chain corresponds to conduction band degrees of freedom and

is coupled to the unaffected Hamiltonian of QD. In the case of flat conduction band the

tri-diagonalization can be realized analytically [38]. In more complex situations, some

integrals have to be calculated numerically, or the whole tri-diagonalization can be per-
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formed e.g with the aid of the Lanczos method. In both cases one can define a sequence

of Hamiltonians, which for a particle-hole symmetric conduction band has the form

HN = Λ(N−1)/2
[
HQD +

∑

σ

√
Γσ
π

(f †0σdσ + d†σf0σ) (2.35)

+
1

2
(1 + Λ−1)

∑

σ

N∑

n=0

Λ−n/2ξn(f †nσf(n+1)σ + f †(n+1)σfnσ)
]
− EGS(N),

where fnσ annihilates an electron of spin σ at site n of the chain, the term −EGS(N)

indicates, that HN contains additional constant chosen such, that its ground state has

energy equal to 0, and

ξn =
1− Λ−(n+1)

√
(1− Λ−(2n+1))(1− Λ−(2n+3))

. (2.36)

The discretization scheme ensures that ξn → 1 for n → ∞ [38]. In the limit N → ∞,

HN becomes re-scaled discretized Hamiltonian with ground state shifted to 0 written in a

new basis. However, the scale factor becomes then infinite. The reason for introduction

of such re-scaling is to make the smallest hopping in the chain the number of the order

of unity. At this point it is easy to note that the only difference between the case of a

single QD and a T-shaped double QD is an additional QD attached to the first one. The

chain itself remains unaffected. Thus, although the second QD can completely change the

results, its presence does not alter the NRG procedure.

The sequence HN fulfills the following recursion relation, known also as the renormal-

ization group transformation,

HN+1 = Λ1/2HN +
∑

σ

ξN(f †Nσf(N+1)σ+f †(N+1)σfNσ)−EGS(N+1) ≡ R(HN). (2.37)

The idea behind the renormalization group is to solve this relation, i.e., understand how

HN evolves upon iteration of N . In NRG, one uses Eq. (2.37) as a basis for iterative

method of approximate determination of the spectrum of HN . Finally, note that although

the spectrum of HN is discrete, whereas the spectrum of the initial Hamiltonian is con-

tinuous, they can lead to practically identical thermodynamic properties, if the distance

between energies in a discrete spectrum is much smaller than the temperature. Thus, the

smaller T is, the more densely the spectrum must be probed. On the other hand, at small

T only states close to the ground state are relevant. Therefore, HN can be considered as a

(re-scaled) effective Hamiltonian at temperatures fulfilling

Λ−(N−1)/2 � T � 1. (2.38)
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2.3.3. Iterative diagonalization

The last step of NRG is an iterative procedure of diagonalization of NRG effective Hamil-

tonians (2.35). For some small N , the whole Hamiltonian HN can be diagonalized nu-

merically. Then, another site of the Wilson chain can be added (i.e. N can be increased

by unity) and the Hamiltonian re-scaled according to Eq. (2.37). However, for a single-

channel calculation the Hilbert space is then increased by a factor of 4. In this way, when

consecutive sites of the chain are added, the dimension of the Hilbert space rapidly ex-

pands and the problem quickly becomes unmanageable. To avoid such a scenario, before

adding a new site, one discards high-energy states and keeps only a fixed number Nkept

of low-energy states. Due to this truncation scheme, the number of states after adding

another site equals 4Nkept. Nkept must be chosen so that the matrix of this size can be

diagonalized numericaly, and the procedure can be iterated. The discarded states possess

energies much larger than the hopping to the newly-added site. Thus, it seems reasonable

to assume that they are not affected by the further part of the Wilson chain, corresponding

to the lower-energy scales. Such an energy scale separation is the most important feature

of the physical system for NRG procedure to be effective.

The postulate to keep Nkept states of the lowest energies actually cannot be treated lit-

erally, because it can lead to huge inaccuracy, if the last kept state and the first state to

be discarded are in fact degenerate. When such situation arises, the true eigenstates of

HN+1 can be very different from the eigenstates of HN extended to the larger Hilbert

space, provided that the interaction with the next site of the Wilson chain removes this de-

generacy. For this reason, degenerate multiplets should be either entirely kept or entirely

discarded. The same applies to almost degenerate states, i.e., when the difference in their

energy is much smaller than the interaction between them. In the present dissertation, as

in Ref. [38], such multiplets are entirely kept.

The number of kept states, Nkept, can be significantly decreased, if the Hamiltonian ex-

hibits some symmetries, for instance the ones resulting from the conservation of charge or

spin z-component. Also non-Abelian symmetries, such as the total spin SU(2) symmetry,

can be exploited. The Hamiltonian can be then written in the block-diagonal form on the

basis of quantum numbers only, and each block can be diagonalized separately. Since

CPU time needed for matrix diagonalization grows as cube of its dimension with matrix

size, this accelerates the computation tremendously.

The truncated HN can still be interpreted as a re-scaled effective Hamiltonian, but now at
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temperatures fulfilling much stronger criterion, namely

Λ−(N−1)/2 � T � Edis, (2.39)

where Edis is the energy of the lowest discarded state. The thermodynamics can then

be determined from the partition function ZN = exp(−HN/T ). Nevertheless, as it is

explained in Sec. 2.3.6, the effects of finite temperature should be taken into account

more precisely.

2.3.4. Fixed points of the renormalization group

Except for very small N , the transformation R: HN 7→ HN+1 conserves a dimension of

a Hamiltonian matrix —assuming that one can choose Nkept so that keeping more states

due to their degeneracy is not necessary. Thus, it can happen that R has a fixed point,

i.e., there exists such an effective Hamiltonian H∗ that R(H∗) = H∗. Because of the

continuity of R, one can expect that if for some N the Hamiltonian HN is close to H∗,

then HN+1 is also close to H∗, so HN and HN+1 are close to each other. Furthermore, if

HN has any limit for N →∞, this limit must be a fixed point of R. In impurity models,

thought, such a limit does not exist. On the contrary, R causes oscillations for large N

with a period of 2. However, some fixed points exist for the transformation R2, i.e. R
applied twice. In fact, for large N the Hamiltonian HN oscillates between the two fixed

points ofR2.

The fixed points are important, because they are properties of the renormalization group

transformation itself, and not of the initial effective Hamiltonian H0; see Eq. (2.35). If

there are many fixed points, and they are not isolated, then small change in the model

parameters may change the fixed point to which HN converges (for a given parity of N ).

However, in the case of isolated fixed points, the large N limits may be the same for

a wide range of model parameters. Since large N corresponds to a small temperature,

this means a universal low-temperature behavior, a characteristic feature of many Kondo

systems.

At the end it seems worth mentioning, that although the term numerical renormalization

group is nowadays usually identified with the procedure proposed by Wilson in Ref. [38]

and described above, there exist other numerical procedures based on the renormalization

group ideas. One of many examples is described in Ref. [40].
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2.3.5. The renormalization group and the transmission coefficient

The transmission coefficient Tσ(ω), which needs to be known for the calculation of the

integrals Lnσ, see Eq. (2.22), is proportional to the imaginary part of a relevant retarded

Green function. In the case of a T-shaped double QD, the Green’s function of the QD

coupled to the leads needs to be calculated. Using d1σ as the notation for the annihilation

operator of the electron with spin σ in this QD irrespective of the number of QDs, the

transmission coefficient for the normal or ferromagnetic leads can be written as [36]

Tσ(ω) = −ΓσIm〈〈d†1σ|d1σ〉〉ret(ω), (2.40)

where the corresponding Green’s function is denoted by 〈〈d†1σ|d1σ〉〉ret(ω) and defined in

Sec. 2.4.2. It can be calculated directly in the Lehmann representation, from the spectrum

obtained with NRG. Then, Tσ(ω) is a sum of the Dirac delta functions, which is easy to

integrate directly. This allows for the calculation of coefficients Lnσ given by Eq. (2.22).

On the other hand, in the case of transport between the normal lead and the superconductor

(via QD), the transmission coefficient for Andreev reflection processes reads [37]

Tσ(ω) = 4ΓσΓσ̄
∣∣〈〈d1σ|d1σ̄〉〉ret(ω)

∣∣2 , (2.41)

where Γσ is spin-dependent coupling to the normal/ferromagnetic lead and σ̄ ≡ −σ.

Eq. (2.41) is valid only in the continuum limit (with dense Brillouin zone). Otherwise the

square of the relevant Green’s function is not well-defined (it contains terms proportional

to the Dirac delta functions, which cannot be squared). For this reason, 〈〈d1σ|d1σ̄〉〉ret(ω)

calculated with NRG (i.e. for a discretized system) must be numerically smoothed. This

can be obtained e.g. by Gaussian broadening of corresponding delta peaks on the log-

arithmic scale and performing a numerical Hilbert transform to obtain real part of the

Green’s function. Then, the calculation of squared module of 〈〈d1σ|d1σ̄〉〉ret(ω) is possible.

However, one needs to carefully verify the lack of dependence of that result on mesh grid

or discretization parameter, because the Hilbert transform is in general difficult to realize

numerically.

2.3.6. Implementation of numerical renormalization group procedure
in the dissertation

In the preceding sections, the NRG procedure was discussed in the form originally pre-

sented by Wilson in the famous paper [38]. Since then, NRG has been technically im-

proved in a few points. In particular, in the original formulation, the truncated HN is
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interpreted as a re-scaled effective Hamiltonian. However, taking into account that all

the states discarded during iteration form (after a trivial extension to the full space of

states) an approximate complete and ortho-normal set [41, 42], one can obtain the effec-

tive density matrix of the system [43]. More precisely, let |N, k〉 denote the k-th discarded

eigenstate of HN , HN |N, k〉 = ẼNk|N, k〉, with ẼNk = Λ(N−1)/2ENk − EGS(N); com-

pare Eq. (2.35). The states |N, k〉 can be extended to the full Hilbert space of the chain,

H, which is 4Nmax+2-dimensional for a single QD described with the Anderson model

(the Wilson chain has Nmax + 1 sites, and there are 4 QD states). However, this exten-

sion is not unique. In fact, the subspace of H spanned by different extensions of |N, k〉
is 4Nmax−N -dimensional. The important point is that the full Hamiltonian of the chain

restricted to this subspace can be approximated by the eigenvalue of HN corresponding

to |N, k〉 namely ENk. Moreover, for |φ〉Nk and |ψ〉N ′k′ denoting arbitrary extensions of

|N, k〉 and |N ′, k′〉, respectively, Nk〈φ|ψ〉N ′k′ = 0 for N 6= N ′ or k 6= k′. With this

observation one can write the partition function for the full chain as

Zeff =
∑

Nk

4Nmax−N exp(−ENk/T ). (2.42)

Since the number of different energies ENk is (for a single QD) bounded from above

by (Nmax + 2)Nkept, the partition function can be in practice calculated, and so can the

thermodynamic quantities as well as the relevant Green functions.

In the present dissertation, calculations were performed with slightly modified version of

logarithmic discretization [44–46]. The difference is that instead of states whose wave

functions are exact plain waves within interval I±n , one uses optimized representative

states for each interval. The basis states are orthogonal, despite their continuity at the

edges of the intervals.

Finally, the so-called z-averaging trick [47] is in some cases used to enhance the quality

of obtained spectral functions. This means that the results are averaged over a few runs

of NRG procedure with shifted discretizations. Instead of Eq. (2.34), the discretization

intervals are defined by

I+
0 = [Λ−z, 1], (2.43)

I+
n = [Λ−n−z,Λ−n+1−z] for n > 0, (2.44)

and the results obtained for a number Nz of values of z are averaged. The used z-values

are z = i/Nz with i running from 1 to Nz. The intervals I−n are defined analogously at

the negative energies.

In most of calculations described in the present dissertation Λ = 2 was used. All the

calculations were performed with the use of the open-access Flexible DM-NRG code, de-

36 K. P. Wójcik, PhD thesis



veloped at Budapest University of Technology and Economics [48], accordingly adapted

to the performed calculations.

2.4. Other methods

In the present dissertation also other methods are used whenever suitable. Some of them

give some qualitatively correct insight into the problems solved with the numerical renor-

malization group, and help to understand the characteristic features of numerical results in

a simple manner. They also complement the numerical renormalization group, allowing

for non-equilibrium calculations in the weak coupling regime. In the following section,

the most important ones are briefly described.

2.4.1. Master equation

Although the numerical renormalization group is a very strong, non-perturbative tool for

studying transport in quantum-dot systems, it does not allow for treating the systems

outside the equilibrium, even in the weak coupling regime. For this purpose, the master

equation based on the Fermi golden rule is used [6,49]. In principle, it can be formulated

for any HQDs. The Hamiltonian of QDs can be written in the diagonal form,

HQDs =
∑

α

|α〉Eα〈α|, (2.45)

where α runs through the eigenstates of HQDs. In the case of particle-number-conserving

Hamiltonian, states |α〉 can possess definite occupation numbers. Only such case is con-

sidered in the dissertation.

The time-independent tunneling Hamiltonian HT =
∑

rHTr is treated as a perturbation.

The transition rate from the initial state |i〉 to the final state |f〉 (of the whole system)

reads

Rfi =
2π

}
|〈f |HT |i〉|2 δ(ξf − ξi), (2.46)

where ξx is the unperturbed energy of state x. This is in fact the Fermi golden rule, which

is obtained within time-dependent perturbation theory in the first order in Γ. Thus, the

validity of the approach is limited to the weak coupling regime, when Γ . T . Let W r
αβ

for α 6= β be the rate, at which the electron tunnels between lead r and QDs, causing QDs
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to change their state from β to α. Then, for α 6= β and ωαβ = Eα − Eβ ,

W r
αβ =

1

}
∑

σ

{
Γrσ(ωαβ)

∣∣∣〈α|d†1σ|β〉
∣∣∣
2

fr(ωαβ)+Γrσ(−ωαβ) |〈α|d1σ|β〉|2 [1− fr(−ωαβ)]
}
,

(2.47)

where fr(ω) is the Fermi-Dirac distribution function in the lead r, and Γrσ(ω) is to be

understood as Γrσ for ω in the band of lead r and as zero for ω outside the band. Moreover,

W r
αβ may be understood as the elements of the matrix Wr. Is occurs convenient to define

its diagonal by

W r
αα = −

∑

β 6=α
W r
βα, (2.48)

and denote by P the vector of probabilities Pα of respective QDs’ states |α〉. P is de-

termined by the initial state and the rates encapsulated in W =
∑

rW
r. The master

equation can be written in the following matrix form,

∂

∂t
P = WP. (2.49)

For determination of a steady state, for which ∂
∂t
P = 0, the initial state is irrelevant, and

one needs to take into account the constraint of probability normalization,
∑

α Pα = 1,

to guarantee the uniqueness of the solution. Then, the current flowing from the lead r to

QDs can be found from

Ir =
∑

αβ

e sgn(nβ − nα)W r
αβPβ, (2.50)

with sgn - sign function (equal zero for zero argument) and nα - number of electrons on

QDs in state α.

2.4.2. Equation of motion for Green’s functions

The Hamiltonians which are quadratic forms of the annihilation and creation operators,

can be exactly solved with the technique known as the equation of motion (EOM) for

Green’s functions [50,51]. This method also allows for calculations of more complicated

models, however, in the present dissertation the method is used only in exactly solvable

cases or in simple approximations, to present some basic properties of the considered

systems. In this section } = 1.

The retarded Green’s function for operators A and B is defined in the Heisenberg picture

as

〈〈A|B〉〉ret(t, t′) = −iθ(t− t′)〈{A(t), B(t′)}〉, (2.51)
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where θ denotes the Heaviside step function, while 〈. . .〉 denotes thermal averaging with

a density matrix corresponding to the initial conditions (density matrix does not change

in the Heisenberg picture). For time-independent H , the Green function depends only on

the difference of the two times [50, 51],

〈〈A|B〉〉ret(t, t′) = 〈〈A|B〉〉ret(t− t′). (2.52)

Then, one can define the Fourier-transformed Green’s function 〈〈A|B〉〉ret(ω) as fulfilling

〈〈A|B〉〉ret(t) =
1

2π

∫
e−iωt〈〈A|B〉〉ret(ω)dω. (2.53)

Setting in Eq. (2.51) t′ = 0 and differentiating over t one can obtain the "equation of

motion" for Green’s function, which after the Fourier transform translates to

ω〈〈A|B〉〉ret(ω) = 〈{A,B}〉 − 〈〈[H,A] |B〉〉ret(ω). (2.54)

When A and B are some annihilation or creation operators, and H is a quadratic form of

such operators, then in the right-hand side a similar Green’s function appears. Solution of

equation of motion in such a case is reduced to the solution of a set of linear equations.

These equations are algebraic in the frequency domain and differential in the time domain.

However, if H is not a quadratic form of annihilation or creation operators, e.g., contains

terms representing the Coulomb repulsion, then [H,A] is not a linear combination of

creation or annihilation operators. Thus, the right-hand side of Eq. (2.54) contains the

Green’s function of a different type (one says : of higher order), and the exact solution is

in general not possible.
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Chapter 3

Basic phenomena in transport through
quantum dot systems

Due to spatial restrictions, phenomena in systems of QDs can be different than the corre-

sponding phenomena in the bulk. In particular, their quantum nature may become evident.

Moreover, some phenomena are present only in the nanoscale systems. The purpose of

the present chapter is to give a brief introduction to the basic phenomena determining

transport properties of QD systems, in particular, systems considered in Part II.

3.1. Sequential tunneling and the Coulomb blockade

Probably the simplest example of a transport phenomenon in QD systems is tunneling of

electrons from one lead to the other via a single QD, weakly coupled to the leads through

the tunneling junctions. For a sufficiently weak coupling different tunneling processes

can be seen as practically independent from each other. In such a case, an electron can

spontaneously tunnel from the leads to QD and vice versa, as long as there exist an unoc-

cupied electron orbital at QD to hop in. At equilibrium the hoppings from/to each of the

leads are equally probable and the net current vanishes, even if in QD there is an orbital

at the Fermi level. However, the voltage bias introduces asymmetry and the current can

flow.

One can consider a more general situation, when the temperature is lower than the charg-

ing energy, T � Ec, and resistance of tunnel junctions is much larger than the quantum

resistance h/(2e2). This condition does not imply independence of the respective tun-

neling events. In fact, they can be correlated quite strongly. Nevertheless, electrons are
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Figure 3.1: Current I flowing through a single-level non-interacting QD for T =

0.01meV.

forced to tunnel one after another, i.e. sequentially, and not simultaneously. Therefore, the

phenomenon is known as sequential tunneling. Here, to give a possibly simple example

of a system exhibiting sequential tunneling, the single-level QD is considered.

This system can be treated quantitatively by means of the master equation described in

Sec. 2.4.1. The results for a single-level non-interacting QD coupled to two metallic leads

with coupling strengths ΓL = ΓR = Γ/2 are presented in the following. A symmetric

bias voltage V was assumed, which essentially means that the chemical potentials fulfill

µL = −µR = eV/2. Then, the probability of occupation of QD by an electron of a given

spin equals

PQD =
1

2
[fR(ε1) + fL(ε1)] , (3.1)

where fr denotes the Fermi-Dirac distribution function for the lead r and ε1 denotes the

energy level of QD (the subscript was added for consistency with Sec. 2.1). The obtained

electric current equals

I = I↑ + I↓ =
−e
2}

Γ [fL(ε1)− fR(ε1)] (3.2)

(Iσ denotes current in spin-channel σ). Note, that I is proportional to Γ, which is the

consequence of performing the perturbation theory only to the first order in Γ (second

order in hopping matrix element). The differential conductance is at low temperatures

given by peaks at V = ±2ε1/e, which corresponds to the situation when QD energy level

equals the chemical level of one of the leads. The result for the current is presented in the

form of a density plot in Fig. 3.1 for the case of T = 0.01meV= 0.116K. For a realistic

value of Γ = 10µeV [7], the maximal current equals I = 0.5Γe/} = 61.7pA.
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Figure 3.2: Current I flowing through a single-level interacting QD for a realistic U =

1meV, and all other parameters the same as in Fig. 3.1.

Up to this point, the non-interacting QD has been considered. However, since QDs are

small objects, their charging energies are usually quite large and cannot be neglected.

Thus, the model is further extended to the case of finite Coulomb repulsion U between

two electrons occupying QD. The result concerning the current flowing through QD is

presented in Fig. 3.2 and discussed below.

In the case of ε1 close to the Fermi level and small V , the plot resembles that in Fig. 3.1,

but with the current smaller by a factor of 2/3. This decrease is caused by the fact, that for

finite U the singly and doubly occupied states are no longer degenerate. Consequently,

the number of possibilities of tunneling through QD is effectively reduced. On the other

hand, the presence of doubly occupied energy level in the transport window allows for

low-bias transport for ε1 ≈ −U . The two aforementioned regimes of enhanced conduc-

tance are separated by the region −U � ε1 � 0 of low conductance and singly occupied

QD, sometimes called the Coulomb valley. The fact, that QD does not conduct the cur-

rent when the applied voltage is smaller than the charging energy (and consequently there

is no energy level in the transport window) is called the Coulomb blockade [6, 7]. At

this point a note seems justified. Although the current of sequentially tunneling electrons

is exponentially suppressed in the Coulomb blockade regime, the next-to-leading-order

processes (so-called co-tunneling processes) may give rise to the finite current also in

this region [52, 53]. Moreover, the electronic correlations may change the situation even

further, leading to the Kondo effect, as explained in Sec. 3.2. Nevertheless, those possi-

bilities are not taken into account in calculations leading to results presented in Fig. 3.2,
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and different Γ, obtained with the aid of the the numerical renormalization group for

U = 0.1D.

which stem from the Fermi golden rule.

The shape of a plot of differential conductance as a function of ε1 for V = 0 harmonizes

with the name of the region −U � ε1 � 0 (the Coulomb valley). The relevant plot is

presented in Fig. 3.3 and shows the peaks of conductance at the resonance positions of

ε1 and a valley between them. The results in Fig. 3.3 were obtained with the aid of the

the numerical renormalization group, which allowed for increasing Γ towards the strong

coupling regime. As can be easily seen in the figure, G is not proportional to Γ for

Γ > 0.2T , but the results are quantitatively similar also for Γ = T .

Finally, it should be stressed that sequential tunneling as well as the Coulomb blockade

phenomena are obviously present also in multilevel QDs. In fact, in experimentally real-

ized QDs the ε1 dependence of the linear conductance at low temperatures and for weak

coupling exhibits many resonance peaks separated by Coulomb valleys. The correspond-

ing density plots of differential conductance versus bias and gate voltage (the latter is

used to tune ε1), so-called stability diagrams, are known to contain the edges of Coulomb

diamonds, similar to that in Fig. 3.2 corresponding to each Coulomb valley.
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Figure 3.4: Linear conductance G as a function of ε1 for different T and Γ = U/10,

obtained from the numerical renormalization group with U = 0.1D.

3.2. The Kondo effect

In Fig. 3.3 presented in the preceding section, one can clearly see an increase of con-

ductance with increasing coupling strength Γ. This agrees with intuition based on un-

derstanding of sequential tunneling processes. In turn, the dependence G(ε1) will be

analyzed for fixed Γ and a few different temperatures. According to the simple picture

described in Sec. 3.1, one can expect two resonant peaks at ε1 = 0 and ε1 = −U , sepa-

rated by a Coulomb blockade regime. Moreover, one can think that the width of the peaks

decreases, when T is lowered. This is indeed the case at high temperatures, as clearly seen

in Fig. 3.4. However, the conductance at the particle-hole symmetry point (ε1 = −U/2,

i.e. in the middle of Coulomb valley) increases with lowering T . When the system is

cooled down sufficiently, it even reaches the limit of 2e2/h, which means a perfect trans-

mission in both spin channels. This effect is called the mesoscopic Kondo effect and the

purpose of the present section is to recall the basic explanation of this effect.

Before explaining the reason for the aforementioned increase of conductance at low tem-

peratures, one more property of this phenomenon will be discussed, on the basis of

Fig. 3.5, which presents a plot of the conductance as a function of temperature (the latter

on the logarithmic scale) for the case of ε1 = −U/2. As can be seen there, for all Γ

the increase of G(T ) has a logarithmic nature. Moreover, the stronger is the coupling

strength Γ, the higher is the temperature at which G starts to increase rapidly. In fact, this
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observation can be stated more quantitatively. The temperature at which G reaches the

half of its maximal value, Gmax/2, will be denoted TK and called the Kondo temperature.

It can be estimated from [54]

TK =

√
UΓ

2
exp

[
π

2

ε1(ε1 + U)

ΓU

]
(3.3)

on the basis of scaling theory [55]. The important property of the Kondo effect is that

the functions G(T ) are universal in this sense, that for all values of Γ (at temperatures

corresponding to the Kondo regime) G(T/TK)/Gmax is in fact the same function. The

increase of the conductance at T < TK may be described more precisely with the aid of

the asymptotic expansion in powers of [log(T/TK)]−1. The leading term gives [56],

G ≈ 3π2

16
Gmax

[
log

(
T

TK

)]−2

. (3.4)

The scaling property ofG(T ) resembles the properties of the Kondo effect in the bulk sys-

tems, which is described below for comparison. Since the thirties of the last century, the

resistance minimum at low temperatures has been observed for different bulk metals [57].

Explanation of this fact was elucidated by Kondo [10]. He pinpointed the fact that the
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effect is related to the presence of the magnetic impurities and showed, on the ground

of perturbation theory in the coupling of conduction band electrons to the impurity site,

that such impurities strongly enhance the scattering of the conduction band electrons. His

calculations also predicted a logarithmic increase of the resistance at very low tempera-

tures. However, the result that this increase persists till the smallest temperatures leading

to a divergence in resistivity seemed unphysical. Furthermore, more precise perturbative

calculation gave even more striking result, namely a divergence of resistivity at finite T ,

close to T corresponding to minimum of resistance [58], which was clearly in contradic-

tion with the experiments. The temperature of divergence is now one of many definitions

of TK for bulk systems used in the literature. The failure of obtaining the correct temper-

ature dependence of the resistance on the basis of perturbation theory became known as

the Kondo problem.

The correct theoretical description of the conducting metal with diluted magnetic impu-

rities was given by Wilson on the basis of the numerical renormalization group calcula-

tions [38]. While the source of the Kondo problem is the fact that electrons possessing en-

ergies of different scales contribute similarly to the perturbative expressions, in NRG the

problem is solved scale by scale with the aid of iterative procedure described in Sec. 2.3.

Thus, the correct impurity spectral function can be obtained. It occurs to have a peak at

the Fermi level with width at half-maximum of the order of TK , which is responsible for

the increased scattering off the impurity. Not only does NRG correctly predict the uni-

versality of resistance versus temperature curve, but also explains it as a consequence of

a fixed point structure of the Kondo model [38].

The Kondo effect in the mesoscopic physics has in fact the same physical nature. The

main difference is that in the case of QD coupled to the leads, the scattering through

QD is in fact the only possibility for an electron to be transmitted from one lead to the

other, as opposed to the scattering off the impurity in the bulk metal, which is an obstacle

for the transport. As a result, the peak in QD’s spectral function at the Fermi level (QD

plays a role of an impurity as already discussed in Sec. 2.1) is a source of a maximized

conductance through the QD system.

Finally, it is important to stress that the Kondo effect in QD systems is now not only well

understood theoretically, but also confirmed experimentally in numerous papers, with

the first experiments carried out in 1998 [59, 60]. The new and interesting content of

the present dissertation is described in Part II, which treats in particular the systems,

where the Kondo effect coexists and interplays with the other electron correlations, such

as ferromagnetism or superconductivity.
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Figure 3.6: Illustration of a T-shaped double quantum dot geometry. L and R denote

(correspondingly) left and right metallic lead. One of QDs, denoted QD1, is coupled

directly to both leads. The second dot, QD2, is not directly coupled to the leads, but only

to QD1. The figure comes from article [F].

3.3. The two-stage Kondo effect

In the three preceding sections a single QD was used as an example of a QD system.

In the present section, the Kondo effect is discussed in the case of a double QD in the

T-shaped geometry, shown and explained in Fig. 3.6.

Counter-intuitively, even very small coupling between the two QDs is sufficient for quite a

drastic change in the low-temperature behavior of the system. In fact, in the particle-hole

symmetric case the zero-temperature conductance of the T-shaped double QD vanishes

for any non-zero inter-dot hopping t. This is illustrated in Fig. 3.7, which presents a plot

of conductance as a function of T for ε1 = ε2 = −U/2. The temperature axis is again

logarithmic and scaled by TK corresponding to t = 0, i.e. completely decoupled QD2.

The coupling strength was set to Γ = U/5, with U = 0.5D. The temperature, at which

G is reduced to the half of its maximal value (while decreasing T ) will be denoted by T ∗.

Similarly to the dependence of TK on Γ, T ∗ strongly depends on t. As explained in the

following, this resemblance is not incidental.

The hopping between the two QDs gives rise to the inter-dot exchange coupling. Its

strength can be estimated perturbatively to be [61]

Jeff = 2t2
(

1

ε1 + U1 − ε2

+
1

ε2 + U2 − ε1

)
. (3.5)
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Figure 3.7: Conductance G as a function of T for different t, ε1 = ε2 = −U/2, and

Γ = U/5 obtained from the numerical renormalization group with U = 0.5D. The figure

was adopted from article [F].

In fact, the reason for suppression of the conductance of a T-shaped double QD at low

temperatures is again the Kondo effect. For T < TK , the role of the impurity is played by

QD2, while QD1 and the conduction bands of the leads serve as an effective continuum

(note, that the single QD Kondo system has a Fermi-liquid nature, i.e., its energy spectrum

can be seen as a quasi-free-particle one). Since QD2 is not directly coupled to the leads,

scattering off it is not a source of conductance, but rather an obstacle. Consequently,

the resonant scattering caused by the Kondo effect leads to complete suppression of the

conductance. T ∗ estimated on the basis of this correspondence can be expressed as [62,

63]

T ∗ = aTKe
−bTK/Jeff , (3.6)

where a and b are dimensionless numerical constants of the order of unity. Of course, this

picture brakes down for large t, when eigenstates of QD1 and QD2 strongly hybridize,

and the transport through a spin singlet formed between the two QDs is blocked.

3.4. The Fano effect

In general, the Fano effect is a consequence of an interference between a resonant scat-

tering process and a background process [64]. It can be observed in various nanostruc-

tures [65]. In the case of T-shaped double QDs, the considered processes correspond to the

transport through double QD single-electron levels. The strongly coupled level is broad-
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ened significantly and thus corresponds to the background [66]. The resonance’s role

is played by the weakly coupled level, whose energy lies within the strongly broadened

level. This phenomenon was in fact measured in the T-shaped double QD structure [67]

and can be understood within a very simple model.

Actually, with U1 = U2 = 0 and for normal metallic leads, the Hamiltonian presented in

Sec. 2.1 is quadratic in creation/annihilation operators and as such can be exactly solved

with the aid of the equation of motion technique. The spectral function of QD1 is then

A1(ω) =
2

π

Γ

[ω − ε1 − t2/(ω − ε2)]2 + Γ2
, (3.7)

which allows one to write the conductance at T = 0 as

G =
2e2

h

ε̃2
2

ε̃2
2 + (ε̃1ε̃2 − t̃2)2

, (3.8)

where the tilde was used to denote quantities expressed in units of Γ. For ε̃1 = 0, this

becomes the famous Fano formula for the symmetric case, with Γε2/t
2 being the energy

variable. This formula is illustrated in Fig. 3.8 for two different t values. For ε1 6= 0, the

dip in the conductance becomes asymmetric, with maximal conductance at ε2 = t2/ε1;

see Fig. 3.8.

It should be emphasized that this simple model cannot fully explain the results of an

experiment such as the ones described in Ref. [67], because in real quantum dots U1 and
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U2 cannot be neglected. For finite U2 the assumption of T = 0 may also be misleading,

because the corresponding T ∗ may be really criogenic [63].

3.5. The exchange field

So far, the consequences of (Coulomb) correlations in QDs were discussed. Now, the

focus is shifted to the correlations in the leads. In the present section the effects of ferro-

magnetic leads are considered.

The interaction with lead (or many leads) in general causes the renormalization of the po-

sition of energy levels of QDs. As an example, a single QD coupled to a single ferromag-

netic lead can be considered. The Hamiltonian is then given by Eq. (2.1) with respective

parts described by Eqs. (2.18), (2.17) and (2.2), where only i = 1 is allowed, B = 0 and

all the three terms containing sums over j vanish. The energy shift of QD level can be

calculated perturbatively, with Γσ treated as a small parameter. Let |σ〉∗ denote the state

corresponding to QD occupied by a single electron of spin σ and leads in their ground

states, i.e. with completely filled Fermi sea and completely empty single-electron states

above the Fermi level. The asterisk indicates that this is a state of the whole system, not

only of QD. For T = 0, the leading-order correction to the energy of the state |σ〉∗ equals

δEσ = −Γ

π

[
(1− σp) log

∣∣∣∣
D + (ε1 + U)

ε1 + U

∣∣∣∣+ (1 + σp) log

∣∣∣∣
D − ε1

ε1

∣∣∣∣
]
. (3.9)

Clearly, the result diverges for a wide band (D → ∞) and p < 1, which is definitely a

wrong result. To obtain the correct shift, one would need to use some renormalization

techniques. However, the difference between the shifts of the levels corresponding to

opposite spins converges in the limit of large D. In analogy to the magnetic field splitting

the spin doublet, the difference E↑ − E↓ is called the exchange filed and reads [68–70]

∆εex =
2pΓ

π
log

∣∣∣∣
ε1

ε1 + U

∣∣∣∣ . (3.10)

In the case of a single QD, the exchange field is in practice equivalent to application of

an external magnetic field. Importantly, it can be adjusted by electrical means (by tuning

ε1), which is convenient for application purposes. The splitting of the Kondo peak by the

exchange field can be predicted with the numerical renormalization group calculations.

This is shown in Fig. 3.9, presenting a density plot of the transmission coefficient as a

function of ω and ε1. The aforementioned splitting was also observed experimentally

and the results obtained with NRG were found to be in a quantitative agreement with

experiments [71]. For these reasons, NRG can be considered as a particularly convenient

tool for studying transport through QD systems coupled to ferromagnets.
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Figure 3.9: Transmission coefficient T (ω) of a single QD coupled to ferromagnetic leads

of spin polarization p = 0.5 with an effective coupling strength Γ = U/10, as a function

of frequency ω and QD level ε1, obtained from the numerical renormalization group cal-

culations for T = 0.

As explained in article [E], the exchange field in the case of multiple QDs is a much

more subtle quantity, because the energy levels of individual QDs are well defined only

for weak inter-dot couplings. Note also, that in the case of two leads with co-linear

magnetizations, the Hamiltonian used in the present section is still valid, with Γ and p

understood as effective quantities. For two leads, the magnetic configuration (parallel

or anti-parallel) and the asymmetry of couplings between the two leads and QD become

crucial parameters determining the occurring exchange field [72].

3.6. Superconducting proximity effect

As explained in the preceding section, the energy levels of QD proximized by the fer-

romagnet become spin-split, because the spin reversal symmetry, possessed by QD, is

broken by the lead. Similarly, QD proximized by a superconductor with large order pa-

rameter ∆ exhibits a tendency for pairing, as explained in Sec. 2.1.4. To illustrate this

aspect, the spectrum of such QD coupled to a superconductor is analyzed below.
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Figure 3.10: Energies of Andreev bound states as a function of ε1 for ΓS = U/5.

The effective Hamiltonian Heff given by Eq. (2.20) is just a 4 × 4 matrix, which can be

divided into two 2 × 2 diagonal blocks. Thus, its eigenvalues can be found analytically

and are given by ε1 for singly occupied states, whereas

E± = ε1 +
U

2
±
√(

ε1 +
U

2

)2

+ Γ2
S (3.11)

for combinations of unoccupied and doubly occupied states. This means that the excita-

tion energies between the singlets and the doublet are

EA
αβ = α

U

2
+ β

√(
ε1 +

U

2

)2

+ Γ2
S, (3.12)

where α and β can be +1 or −1, depending on the initial and final state. These are called

the Andreev bound state energies and are presented in Fig. 3.10 as functions of ε1. They

correspond to the sharp peaks in the spectral function of QD coupled to a superconductor,

thus, they govern the transport properties of such QD [21].

3.7. Andreev current through quantum dot

In a single QD coupled to a superconducting lead, the Kondo correlations in general

compete with the pairing potential. When ∆ is large, the effective Hamiltonian (2.20)

is a good approximation and the spectral properties of QD are determined by the Dirac

delta functions corresponding to the Andreev bound states energies (3.12). On the other
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Figure 3.11: Andreev transmission coefficient T (ω) for a single QD coupled to one

normal (coupling strength Γ = 0.01U ) and one superconducting (coupling strength ΓS =

0.2U ) lead at the particle-hole symmetry point and T = 0, calculated with the numerical

renormalization group for U = 0.1D.

hand, the situation changes quite dramatically, when ∆ is small. Then, the quasi-particle

degrees of freedom are relevant and the coupling between them and the QD level may

give rise to the Kondo effect, as soon as ∆ . TK . However, if two electrodes are attached

to QD, one being superconducting, and the other one metallic, the situation becomes

more interesting. Indeed, the sharp in-gap spectral features of QD are broadened by

the interaction with normal lead, and the Kondo effect may develop [37]. Moreover,

under some circumstances it can even be enhanced by the superconducting pairing [B,73].

Nevertheless, in the weak coupling regime, the Andreev transmission coefficient exhibits

peaks at Andreev bound states energies, as shown in Fig. 3.11.
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Chapter 4

Summary

This PhD thesis has the form of a sequence of published articles [A-H], preceded by the

introductory part. It deals with theoretical problems related to the transport properties of

a few selected strongly correlated quantum-dot systems. Results obtained for the subse-

quent systems are described in the following.

The article [A], constituting Chapter 6, presents the results concerning the system con-

taining a single QD coupled to three terminals: two ferromagnetic leads and a supercon-

ductor. Its main aim was to determine how the proximity of a superconductor influences

the electronic and thermal transport between the ferromagnetic leads.

Transport properties of hybrid QD systems, such as the one considered in article [A], are

governed by the interplay of the relevant energy scales. In this case an important role is

played by the exchange field generated by the ferromagnets. Another scale is set by the

strength of the coupling to the superconducting lead, which enhances pairing of electrons

occupying the quantum dot, effectively reducing their Coulomb repulsion. Finally, the

last crucial energy scale is given by the Kondo temperature. The superconducting elec-

trode is assumed to possess an energy gap ∆ much larger than the aforementioned scales.

This allows for the use of an effective Hamiltonian (2.20) and reduces the problem to a

single-channel one. Within the framework of the numerical renormalization group and

the linear response theory the quantities characterizing the transport were calculated. In

particular, electrical and heat conductances, as well as the Seebeck and the spin Seebeck

coefficients were obtained as functions of temperature, QD energy level, and the strength

of the coupling between QD and the superconductor. It was shown that the magnitude

of the exchange field in the considererd system is significantly changed with respect to a

similar system without a superconducting lead and can be expressed in terms of energies
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of Andreev bound states. Moreover, in some circumstances, the increase of the coupling

to the superconductor leads to an enhancement of the Kondo temperature and can even

restore the Kondo effect, otherwise destroyed by a strong exchange field. On the other

hand, strongly coupled superconductor destroys the Kondo effect. All these effects are

reflected in the electrical and thermal transport properties of the system.

Another vital aspect of hybrid QD systems is the Andreev tunneling through QD embed-

ded in between the ferromagnetic and the superconducting contacts. The results concern-

ing this topic were published in article [B], included in the dissertation as Chapter 7. The

main result is that the Andreev transport in the system under consideration is determined

by the relations between the relevant energy scales, similarly to the case of the system

discussed in article [A]. Indeed, NRG calculations show that the exchange field strongly

affects the low-energy properties of the Andreev transmission. In particular, the Kondo

resonance is split for strong enough coupling to the ferromagnet. Further consequence of

this fact is that the Andreev conductance is a non-monotonic function of the QD energy

level. Finally, at very low temperatures the conductance exhibits a peak at the particle-

hole symmetry point.

Both aforementioned articles [A, B] undoubtedly prove that in hybrid QD systems the

relevant transport characteristics reveal a subtle interplay of the important energy scales

and strongly support the thesis formulated in Chapter 1, that correlated quantum-dots

exhibit nontrivial transport properties, reflecting many-body nature of such systems. In

turn, a second branch of the research described in Part II is discussed, which is focused on

the transport properties of a double QD in the T-shaped configuration (further referred to

as T-DQD), presented in Fig. 3.6. This seemingly simple system in fact hosts a plethora

of interesting physical phenomena, which were described in Chapters 8-13.

The main result of the article [C], included in the dissertation as Chapter 8, is the de-

termination of the circumstances when T-DQD coupled to ferromagnetic leads becomes

a source of perfectly spin-polarized current. The phenomenon leading to this interest-

ing property is the Fano effect, which is the origin of an antiresonance in conductance

expressed as a function of T-DQD energy levels. The exchange field induced by the mag-

netism of leads spin-splits these levels, similarly to the magnetic field [74]. Thus, the

conductance minima in respective spin channels are also split. Since the exchange field

can be adjusted by changing the voltage gating any of the two QDs, the current spin po-

larization can also be tuned without the need for application of an external magnetic field.

The article also explains why the Coulomb interactions in QD not coupled directly to

the leads (i.e. QD2 in Fig. 3.6) are crucial for the effect to occur, while the Coulomb

correlations in QD1 are not necessary.
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Besides the explanation of the spin-dependent Fano interference, article [C] illustrates the

exchange field induced in the side QD with a plot of the corresponding spectral function,

which exhibits a Kondo peak split by the exchange field in a way similar to the single

QD coupled to magnetic leads (compare Fig. 3.9). Furthermore, the influence of various

conditions on the spin-dependent Fano effect was examined. In particular, the effects of

finite temperature were analyzed and the role of the Coulomb interaction strength, energy

level of a QD coupled to the leads, and the inter-QD hopping was determined.

Chapter 9, constituted by the article [D], is an extension of the work presented in ar-

ticle [C]. It addresses the problem of an external magnetic field acting on the system

analogous to considered in Chapter 8. It is based on NRG calculations. Specifically, the

role of external magnetic field is determined in particular in the range of its small mag-

nitude, which is the experimentally relevant limit in any system containing ferromagnetic

leads. The results presented in article [D] prove that the magnetic field in general does not

change the properties of the system qualitatively, although some quantitative differences

appear. Indeed, the magnetic field can even sharpen the spin-dependent Fano effect, when

it is parallel to the exchange field induced in the side QD. On the other hand, the appli-

cation of the appropriately tuned opposite magnetic field, i.e.antiparallel to the relevant

exchange field, may completely suppress the effect.

Further analysis of transport properties of T-DQD coupled to ferromagnetic leads was

preceded by a careful study of the exchange field induced in this structure. It was pre-

sented in article [E], see Chapter 10. Articles [C] and [D] were focused on the case when

the Coulomb interaction in QD coupled to the leads can be neglected. Then, the exchange

field induced in QD2 (as depicted in Fig. 3.6) is a well-defined quantity. However, in

the presence of Coulomb interactions in QD1, the situation becomes more complex and

the exchange field can be defined for all the multiplets of DQD eigenstates. Moreover,

although one can naively expect such defined exchange field to be only quantitatively de-

pendent on the inter-QD hopping t, in fact in some cases, expressed as a function of t,

it exhibits a few sign changes. Furthermore, a precise calculation of the exchange field

in all the relevant multiplets allowed for determination the current-voltage characteristics

of the system on the basis of the master equation described in Sec. 2.4.1. The manifes-

tation of the existence of the exchange field was predicted. Besides this, results of the

paper [E] were helpful for interpreting the results concerning the two-stage Kondo effect,

as described in the following.

Article [F], included as Chapter 11, involves the comprehensive analysis of transport

properties of T-DQD with ferromagnetic leads in the regime of two-stage Kondo effect,

i.e. in particular in the case when Coulomb interactions are present in both QDs. The
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motivation was to understand the interplay between the exchange field and the Kondo

correlations at different temperatures. For this reason, two magnetic configurations were

taken into account: the parallel one, when the exchange field is maximal, and the anti-

parallel, in which the exchange field vanishes. Not only did this allowed to examine the

conductance, but also the tunnel magnetoresistance. The influence of an external magnetic

field on the transport properties of the system was also thoroughly analyzed.

The results obtained mainly with the numerical renormalization group technique show

that the exchange field can destroy the second stage of the Kondo screening alone, as

well as both of them – depending on the leads’ spin polarization and a detuning from

the particle-hole symmetry point. In the regime of parameters corresponding to the sup-

pression of only the second stage, tunnel magnetoresistance can reach huge values. In

other parameter regimes, it can become negative. The article also shows that appropri-

ately strong magnetic field can restore the corresponding screening stage in a way similar

to the case of a single QD.

The results presented in Chapter 11 are complementary to those obtained in the preceding

chapters. They independently support the hypothesis presented in article [E], concerning

the possible role of the exchange field induced in a double QD for the two-stage Kondo

screening. Moreover, they also allow for re-interpretation of some of the results of paper

[C] as a consequence of the two-stage Kondo effect.

The studies of transport through T-DQD would not have been complete without determi-

nation of its caloritronic and spin caloritronic properties. These issues are addressed in

Chapter 12 constituted by the article [G], which is devoted to the case of T-DQD coupled

to nonmagnetic leads. In particular, the heat conductance and the Seebeck coefficient

(called also the thermopower) were calculated within the linear response theory with the

aid of NRG. Some of the results were then explained on the basis of simple analytic

methods proposed by Mahan and Sofo [75]. Moreover, the thermoelectric figure of merit

(related to the thermodynamic efficiency of the device) and the power factor (determining

its maximal power and the efficiency under fixed heat flow conditions [35]) were stud-

ied. The most important results concern the regime of singly occupied QDs, when the

two-stage Kondo effect occurs. The thermopower has a strong maximum at temperatures

corresponding to the second stage of the screening. Moreover, the heat conductance in the

regime of strong coupling fulfills a modified Wiedemann-Franz law, predicted earlier for

the single QD case [76]. The article presents also a systematic analysis of the influence

of external magnetic field on the caloritronic properties of the system. In particular, large

spin thermopower is reported for appropriately tuned field.
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Finally, the research concerning spin caloritronic properties of T-DQDs are closed with

the results for the case of magnetic leads, which are presented in article [H] (Chapter 13).

The most important conclusion is that for magnetic leads the spin thermopower is en-

hanced at temperatures corresponding to the second stage of Kondo screening even in

the absence of an external magnetic field. Moreover, the effect can be tuned by chang-

ing the gate voltage. This is explained in terms of the exchange field generated in QD2

(compare Fig. 3.6) by the continuum formed by QD1 and the leads. Interestingly, the

spin-thermoelectric response of the system is found to be highly sensitive to the spin po-

larization of the leads: in some cases spin polarization of the order of 1% is sufficient

for a strong spin Seebeck effect to occur. Additionally, the article proves that the thermal

conductance fulfills the modified Wiedemann-Franz law also in the regime of suppression

of subsequent stages of Kondo effect by the exchange field, which is also a surprising

result. The calculations presented in the paper were performed with the aid of NRG.

To summarize, the research devoted to the analysis of transport properties of T-DQD ap-

peared to give a lot of interesting results, many of which are caused by the two-stage

Kondo screening of QDs’ local moments. Together with the properties of QD in a hybrid

ferromagnet-superconductor heterostructure, they prove that the seemingly simple sys-

tems host very rich physics and allow one to state that, as already written in Chapter 1,

complex many-body phenomena taking place in correlated quantum dot systems manifest

themselves in a diversity of nontrivial transport properties of these systems.

Scientific research is a never-ending story and the results and answers obtained within this

dissertation gave rise to new questions and uncovered new horizons of knowledge. What

properties would a T-shaped double quantum dot have if one proximizes it with a super-

conducting STM tip? What would happen to the multistage Kondo physics in the system

with a tripple magnetically frustrated QD in T-shaped configuration with ferromagnetic

leads? Those questions seem particularly interesting to the author and are going to shape

his future efforts. Their story, however, is only just beginning and will not be described

here.
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Chapter 5

Streszczenie (Summary in polish)

Niniejsza rozprawa doktorska, zatytułowana „Zależne od spinu własności elektryczne

i termoelektryczne układów skorelowanych kropek kwantowych”, ma formę cyklu ośmiu

publikacji [A-H]. Odpowiednie artykuły stanowią kolejne rozdziały (Rozdziały 6-13)

w Części II pracy. Są one poprzedzone wprowadzeniem (Część I, Rozdziały 1-5), obej-

mującym opis motywacji i celów, zarys stosowanej metodologii, opis podstawowych

zjawisk zachodzących w rozważanych układach oraz streszczenie otrzymanych wyników,

a także niniejsze Streszczenie w języku polskim. Dysertacja przedstawia teoretyczną ana-

lizę własności transportowych kilku układów silnie skorelowanych kropek kwantowych.

Konkluduje ją teza, że złożone zjawiska wielociałowe zachodzące w rozważanych ukła-

dach skorelowanych kropek kwantowych objawiają się całą gamą nietrywialnych włas-

ności transportowych tych układów. Wyniki dotyczące poszczególnych analizowanych

układów są opisane poniżej.

Praca [A], zatytułowana „Wpływ bliskości nadprzewodnika na zależną od spinu konduk-

tancję oraz na termosiłę skorelowanych kropek kwantowych” i stanowiąca Rozdział 6,

przedstawia wyniki dotyczące układu zawierającego pojedynczą kropkę kwantową sprzę-

żoną do trzech zewnętrznych elektrod: dwóch ferromagnetycznych i jednej nadprze-

wodzącej. Jej głównym celem było określenie wpływu bliskości nadprzewodnika na

elektryczny i termiczny transport między elektrodami magnetycznymi.

Własności transportowe hybrydowych układów kropek kwantowych, takich jak ten roz-

ważany w publikacji [A], stanowią wynik oddziaływania między różnymi korelacjami,

scharakteryzowanymi przez odpowiadające im skale energii. W omawianym przypadku

szczególnie ważną rolę odgrywa pole wymiany indukowane przez ferromagnetyki. Drugą

istotną skalę wyznacza sprzężenie kropki kwantowej z elektrodą nadprzewodzącą. Powo-
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duje ona parowanie się elektronów w nanostrukturze, efektywnie redukując ich kulom-

bowskie odpychanie. Wreszcie, ostatnią skalą energii odpowiadającą występującym w

układzie korelacjom jest temperatura Kondo. O elektrodzie nadprzewodzącej założono,

że obecna w jej spektrum przerwa energetyczna ∆ jest znacznie większa od wszystkich

wymienionych wyżej skal energii. Pozwala to na skorzystanie z hamiltonianu efekty-

wnego, w którym stopnie swobody odpowiadające elektronom wewnątrz nadprzewod-

nika są wycałkowane, dzięki czemu zagadnienie transportu w rozważanej nanostrukturze

sprowadza się do problemu jednokanałowego. Wielkości fizyczne charakteryzujące ten

transport zostały obliczone w ramach teorii liniowej odpowiedzi za pomocą procedury nu-

merycznej grupy renormalizacji. W szczególności przewodnictwa: elektryczne i cieplne,

a także współczynniki: Seebecka i spinowy Seebecka, zostały określone jako funkcje

temperatury, poziomu energetycznego kropki kwantowej oraz sprzężenia między kropką

kwantową, a nadprzewodnikiem. Pokazano, że wielkość pola wymiany w rozważanym

układzie jest istotnie inna, niż w podobnym układzie bez elektody nadprzewodzącej;

co więcej, może być wyrażona jako funkcja stanów związanych Andriejewa. Ponadto,

w pewnych okolicznościach wzrost sprzężenia z nadprzewodnikiem prowadzi do wzrostu

temperatury Kondo, a nawet może przywrócić efekt Kondo stłumiony przez pole wy-

miany. Z drugiej strony, silnie sprzężony z nanostrukturą nadprzewodnik niszczy efekt

Kondo. Wszystkie te zjawiska znajdują odbicie w elektrycznych i termoelektrycznych

własnościach transportowych układu.

Ważnym aspektem badań hybrydowych układów kropek kwantowych są te dotyczące

tunelowania Andriejewa. Analizę tego zjawiska w układzie z kropką kwantową umie-

szczoną pomiędzy dwiema elektrodami, ferromagnetyczną i nadprzewodzącą, podjęto w

pracy [B], zatytułowanej „Transport Andriejewa w skorelowanych układach typu ferro-

magnetyk–kropka kwantowa–nadprzewodnik” i stanowiącej Rozdział 7 niniejszej rozpra-

wy. Najważniejszym z nich jest wykazanie, że transport Andriejewa przez rozważany

układ jest określony przez relacje pomiędzy odpowiednimi skalami energii, tak jak to ma

miejsce w układzie analizowanym w artykule [A]. Istotnie, rachunki przeprowadzone

metodą numerycznej grupy renormalizacji pokazują, że pole wymiany silnie wpływa na

niskoenergetyczne własności transportu Andriejewa przez rozważany układ. W szczegól-

ności, rezonans Kondo rozszczepia się, gdy sprzężenie z ferromagnetykiem jest wystar-

czająco silne. Dalszą konsekwencją tego faktu jest niemonotoniczna zależność przewod-

nictwa Andriejewa od poziomu energetycznego kropki kwantowej. Wreszcie, w bardzo

niskich temperaturach przewodnictwo wykazuje pik w punkcie symetrii elektronowo-

dziurowej.

Obydwie opisane wyżej publikacje [A,B] bez wątpienia potwierdzają, że własności trans-
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portowe hybrydowych układów kropek kwantowych ujawniają subtelne wzajemne od-

działywanie odpowiednich korelacji. Wyniki te stanowią więc silną przesłankę za tezą

rozprawy, przytoczoną wyżej. Pozostałe artykuły stanowiące Część II pracy omawiają

drugą poruszaną w niej gałąź badań, skoncentrowaną na własnościach transportowych

podwójnych kropkek kwantowych w konfiguracji T. Jej cechą szczególną jest to, że tylko

jedna z kropek kwantowych, oznaczana dalej QD1 (na podstawie akronimu od angiel-

skiego quantum dot – kropka kwantowa), jest bezpośrednio sprzężona z elektrodami,

druga natomiast, oznaczana QD2, oddziałuje z nimi wyłącznie za pośrednictwem pier-

wszej. W tym na pozór prostym układzie występuje w istocie całe mnóstwo interesują-

cych zjawisk fizycznych, omówionych w Rozdziałach 8-13.

Głównym wynikiem artykułu „Pełna polaryzacja spinowa w podwójnych kropkach kwan-

towych w konfiguracji T spowodowana zależnym od spinu efektem Fano” [C], stano-

wiącego Rozdział 8, jest określenie okoliczności, w których podwójna kropka kwan-

towa w konfiguracji T sprzężona z ferromagnetycznymi elektrodami staje się źródłem

w pełni spinowo-spolaryzowanego prądu. Prowadzącym do tego zjawiskiem jest efekt

Fano, powodujący antyrezonans w przewodnictwie wyrażonym jako funkcja poziomów

energetycznych podwójnej kropki kwantowej. Pole wymiany wyindukowane przez mag-

netyzm elektrod rozszczepia spinowo te poziomy. Stąd minima przewodnictwa w po-

szczególnych kanałach spinowych również ulegają rozszczepieniu. Jako że pole wymiany

może być regulowane za pomocą zmian napięcia bramkującego dowolną z kropek kwan-

towych, polaryzacja spinowa prądu także podlega strojeniu, bez konieczności umieszcze-

nia układu w zewnętrznym polu magnetycznym. Publikacja wyjaśnia również, dlaczego

oddziaływanie kulombowskie elektronów w kropce kwantowej QD2, a więc niesprzężonej

bezpośrednio z elektrodami, decyduje o wystąpieniu zjawiska, podczas gdy odpychanie

kulombowskie na kropce kwantowej QD1 nie jest ku temu niezbędne.

Poza wyjaśnieniem spinowo-zależnej interferencji Fano, w publikacji [C] pole wymiany

wyindukowane w kropce kwantowej QD2 zilustrowane jest za pomocą wykresu odpowied-

niej funkcji spektralnej, w której widać pik Kondo rozszczepiony przez pole wymiany –

w sposób podobny do piku Kondo dla pojedynczej kropki kwantowej umieszczonej w

polu magnetycznym. Co więcej, zbadany został wpływ różnych warunków na spinowo-

zależny efekt Fano. W szczególności, przeanalizowane zostały efekty skończonej tem-

peratury oraz określone role: siły oddziaływań kulombowskich, poziomu energetycznego

kropki kwantowej QD1, a także wielkości elementu macierzowego odpowiedzialnego za

przeskok między poszczególnymi kropkami kwantowymi.

Rozdział 9, stanowiony przez artykuł [D] zatytułowany „Wpływ pola magnetycznego

na polaryzację spinową podwójnych kropek kwantowych w konfiguracji T sprzężonych z
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ferromagnetycznymi elektrodami”, opisuje rozwinięcie badań zaprezentowanych w pub-

likacji [C]. Podjęta w nim analiza kwestii związanych z zewnętrznym polem magnety-

cznym w analogicznym układzie została oparta na obliczeniach wykonywanych metodą

numerycznej grupy renormalizacji. Rola pola magnetycznego jest określona w szczegól-

ności dla pola o małych wartościach, które zawsze występuje w fizycznych układach z

ferromagnetycznymi elektrodami. Zaprezentowane wyniki dowodzą, że w ogólności pole

magnetyczne nie zmienia jakościowo własności układu, aczkolwiek ilościowe różnice są

widoczne. Istotnie, pole magnetyczne może prowadzić do zaostrzenia spinowo-zależnego

efektu Fano, kiedy jest skierowane zgodnie z polem wymiany wyindukowanym na kropce

kwantowej QD2. Z drugiej strony, przyłożenie odpowiednio dostrojonego pola magne-

tycznego, przeciwnego do odpowiedniego pola wymiany, może skutkować całkowitym

wytłumieniem zjawiska.

Dalsza analiza własności transportowych podwójnej kropki kwantowej w konfiguracji T

sprzężonej z ferromagnetycznymi elektrodami została poprzedzona uważnym badaniem

pola wymiany w tej strukturze. Zostało ono zaprezentowane w artykule [E], zatytułowa-

nym „Rozszczepienie stanów molekularnych podwójnych kropek kwantowych w konfigu-

racji T wyindukowane bliskością ferromagnetyków” i stanowiącym Rozdział 10. Wyniki

omawiane w publikacjach [C] i [D] były skupione na przypadku, gdy oddziaływania ku-

lombowskie na kropce kwantowej QD1 mogą być zaniedbane. Wtedy pole wymiany

wyindukowane na kropce kwantowej QD2 jest dobrze zdefiniowane. Jednakże w obec-

ności oddziaływań kulombowskich na kropce kwantowej QD1 sytuacja jest bardziej zło-

żona i pole wymiany można zdefiniować dla wszystkich multipletów stanów własnych

podwójnej kropki kwantowej. Co więcej, mimo że możnaby naiwnie przypuszczać,

że tak zdefiniowane pole wymiany powinno tylko jakościowo zależeć od elementu ma-

cierzowego t opisującego przeskok elektronu między poszczególnymi kropkami kwan-

towymi, w niektórych przypadkach okazuje się, że wyrażone jako funkcja t kilkukrotnie

zmienia ono znak. Ponadto precyzyjny rachunek pola wymiany w odpowiednich multi-

pletach pozwolił na określenie charakterystyki prądowo-napięciowej układu na podstawie

równania typu master, omówionego w podrozdziale 2.4.1. Istnienie pola wymiany znaj-

duje w niej swoje odbicie. Poza tym, wyniki opisane w artykule [E] były pomocne przy

interpretacji rezultatów dotyczących dwustopniowego efektu Kondo, jak opisano niżej.

Publikacja zatytułowana „Dwustopniowy efekt Kondo w podwójnych kropkach kwan-

towych w konfiguracji T z ferromagnetycznymi elektrodami” [F], stanowiąca Rozdział 11,

podejmuje wyczerpującą analizę własności transportowych podwójnej kropki kwantowej

w konfiguracji T sprzężonej z ferromagnetycznymi elektrodami w reżimie dwustopnio-

wego efektu Kondo, tzn. w szczególności w przypadku gdy oddziaływania kulombowskie
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są obecne na obu kropkach kwantowych. Motywacją do jej podjęcia była chęć zrozu-

mienia zależności między polem wymiany i korelacjami prowadzącymi do efektu Kondo

w różnych temperaturach. Z tego powodu pod uwagę zostały wzięte dwie konfiguracje

magnetyczne. W jednej z nich elektrody były namagnesowane zgodnie – wtedy pole

wymiany osiąga maksymalną wartość. W drugiej konfiguracji namagnesowanie elek-

trod było przeciwne, powodując znikanie pola wymiany. Porównanie wyników w tych

dwóch przypadkach pozwoliło zbadać nie tylko przewodnictwo, ale także tunelowy mag-

netoopór. Wpływ zewnętrznego pola magnetycznego na własności transportowe układu

również został dokładnie zbadany.

Wyniki otrzymane przede wszystkim za pomocą procedury numerycznej grupy renor-

malizacji pokazują, że pole wymiany może stłumić tak wyłącznie drugi stopień ekra-

nowania Kondo, jak i oba – zależnie od stopnia polaryzacji elektrod i odstrojenia od

punktu symetrii elektronowo-dziurowej. W zakresie parametrów odpowiadającym stłu-

mieniu tylko drugiego stopnia ekranowania, tunelowy magnetoopór może osiągać olbrzy-

mie wartości. W innych reżimach, może on stać się ujemny. W artykule pokazano także,

że odpowiednio silne pole magnetyczne może przywrócić odpowiedni stopień ekranowa-

nia, podobnie jak to jest w przypadku pojedynczej kropki kwantowej.

Badania przedstawione w Rozdziale 11 rzucają nowe światło na te opisane w rozdziałach

wcześniejszych. Ich wyniki potwierdzają hipotezę postawioną w Rozdziale 10 dotyczącą

roli, jaką pole wymiany wyindukowane w podwójnej kropce kwantowej może odgry-

wać w przypadku dwustopniowego efektu Kondo. Co więcej, pozwalają też na rein-

terpretację niektórych rezultatów przedstawionych w publikacji [C] jako konsekwencji

dwustopniowego efektu Kondo.

Badania dotyczące transportu przez podwójne kropki kwantowe w konfiguracji T nie

byłyby pełne bez określenia ich własności termoelektrycznych, w tym spinowych efektów

termoelektrycznych. Te problemy zostały podjęte w Rozdziale 12, stanowionym przez

artykuł [G] zatytułowany „Termosiła silnie skorelowanych podwójnych kropek kwan-

towych w konfiguracji w konfiguracji T”. Jest on poświęcony strukturze sprzężonej z

niemagnetycznymi elektrodami. W szczególności, przewodnictwo cieplne i współczyn-

nik Seebecka (nazywany także termosiłą) zostały obliczone w ramach teorii liniowej

odpowiedzi za pomocą metody numerycznej grupy renormalizacji. Niektóre spośród

wyników zostały następnie wyjaśnione przy użyciu prostych metod analitycznych. Co

więcej, termoelektryczna dobroć układu (związana z jego termodynamiczną wydajnoś-

cią) oraz związany z nią czynnik mocy (określający jego maksymalną moc oraz wyda-

jność w warunkach ustalonego strumienia cieplnego) zostały zbadane. Najważniejsze

wyniki dotyczą reżimu pojedynczo obsadzonych kropek kwantowych, kiedy to zachodzi
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dwustopniowy efekt Kondo. Termosiła posiada silne maksimum w temperaturach od-

powiadających drugiemu stopniowi ekranowania. Ponadto, przewodnictwo cieplne w

reżimie stałego sprzężenia spełnia zmodyfikowane prawo Wiedemanna-Franza, przewi-

dziane wcześniej dla pojedynczej kropki kwantowej. Publikacja przedstawia także sys-

tematyczną analizę wpływu zewnętrznego pola magnetycznego na termoelektryczne włas-

ności układu. W szczególności, zwraca uwagę na znaczną spinową termosiłę dla odpo-

wiednio dostrojonego pola.

Wreszcie, badania spinowych własności termoelektrycznych podwójnych kropkek kwan-

towych w konfiguracji T dopełniają wyniki uzyskane dla przypadku ferromagnetycznych

elektrod, zaprezentowane w artykule [H], zatytułowanym „Silny spinowy efekt Seebecka

w podwójnych kropkach kwantowych typu Kondo w konfiguracji T” i stanowiącym Roz-

dział 13. Najważniejszym płynącym z nich wnioskiem jest stwierdzenie, że w przypadku

magnetycznych elektrod w temperaturach odpowiadających drugiemu stopniowi ekra-

nowania Kondo następuje wzrost spinowej termosiły, nawet pod nieobecność zewnętrzne-

go pola magnetycznego. Co więcej, efekt może być strojony za pomocą zmian napięcia

na bramce. Wyniki te są wyjaśnione jako konsekwencja wyindukowania przez kontin-

uum stworzone przez kropkę kwantową QD1 oraz elektrody pola wymiany na kropce

kwantowej QD2. Co ciekawe, spinowa termoelektryczna odpowiedź układu okazuje się

bardzo czuła na stopień polaryzacji spinowej elektrod. W niektórych przypadkach nawet

polaryzacja rzędu 1% wystarcza, aby pojawił się silny spinowy efekt Seebecka. Ponadto,

w publikacji wykazano, że przewodnictwo cieplne rozważanego układu spełnia zmody-

fikowane prawo Wiedemanna-Franza także w reżimach, w których poszczególe stopnie

efektu Kondo ulegają stłumieniu przez pole wymiany, co można uznać za zaskakujące.

Wszystkie rachunki zostały przeprowadzone metodą numerycznej grupy renormalizacji.

Reasumując, badania poświęcone analizie własności transportowych podwójnych kropek

kwantowych w konfiguracji T przyniosły wiele interesujących wyników, z których zna-

czna część dotyczy konsekwencji dwustopniowego ekranowania Kondo momentów mag-

netycznych poszczególnych kropek kwantowych. Wraz z własnościami kropek kwan-

towych w hybrydowych heterostrukturach zawierających elektrody zarówno ferromagne-

tyczne, jak i nadprzewodzące, dowodzą one, że na pozór proste układy może charaktery-

zować bardzo bogata fizyka i potwierdzają postawioną w dysertacji tezę.
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affected by the superconducting proximity effect and is generally a function of Andreev bound-state energies.
Increasing the coupling to the superconductor may raise the Kondo temperature and partially restore the exchange-
field-split Kondo resonance. The competition between ferromagnetic and superconducting proximity effects is
reflected in the corresponding temperature and dot level dependence of both the linear conductance and the (spin)
thermopower.

DOI: 10.1103/PhysRevB.89.165303 PACS number(s): 72.25.−b, 72.15.Qm, 73.50.Lw, 74.45.+c

I. INTRODUCTION

Systems containing quantum dots (QDs) or molecules
coupled to different types of electrodes have been attracting
nondecreasing attention for a few decades [1–4]. As one of the
most interesting phenomena in such systems the Kondo effect
can be considered [5], in which the interaction with conduction
electrons gives rise to many-body screening of the localized
spin [6]. This results in an additional resonance at the Fermi
level in the local density of states and, consequently, to an
enhanced conductance through the system for temperatures
lower than the Kondo temperature TK [7,8].

When the electron reservoirs, to which the dot is coupled,
exhibit some correlations, the occurrence of the Kondo effect
is conditioned by the ratio of TK to the respective characteristic
energy scale of correlated leads. In particular, in the case
of superconducting electrodes, through multiple Andreev
reflections at the QD-superconductor interface, a Cooper pair
carrying two electron charges can be transferred through
the dot [9–12]. In the Kondo regime this may lead to the
conductance enhanced above the unitary limit 2e2/h, provided
TK is larger than the superconducting gap � [13]. If, however,
� > TK , the Kondo effect becomes suppressed and the
conductance displays only small side resonances at energies
corresponding to the energy gap [14]. On the other hand, in
the case of ferromagnetic leads, transport properties in the
Kondo regime strongly depend on the relative orientation of the
magnetizations of electrodes; the conductance usually drops
when the magnetic configuration switches from antiparallel to
parallel [15,16]. This is related with an exchange field �εexch

that emerges in the parallel configuration and acts in a similar
way as an external magnetic field, splitting the dot level and
thus suppressing the linear conductance [15,17–19]. It is thus
the magnitude of the ferromagnetic-contact-induced exchange

*kpwojcik@amu.edu.pl
†weymann@amu.edu.pl

field that determines the emergence of the Kondo resonance in
such systems [20–22].

For QDs coupled to both ferromagnetic and superconduct-
ing leads, transport properties are conditioned by a sensitive
interplay of the exchange field, correlations leading to the
Kondo effect, and the superconductivity. Although transport
through such hybrid devices in the Kondo regime has been
recently experimentally measured [23], theoretically this prob-
lem is still rather unexplored, although some considerations
exist [24–33]. These considerations, however, involved mainly
the case of rather weak tunnel couplings between the dot and
external leads, where the Kondo effect is not fully present and
the effects due to the exchange field are not systematically
included.

The goal of the present paper is therefore to provide a
systematic and reliable analysis of transport properties of QDs
with superconducting and ferromagnetic leads in the Kondo
regime. To achieve this goal, we employ the full density-
matrix numerical renormalization group (fDM-NRG) method
[34–37], which allows for calculating various linear-response
transport coefficients in an accurate way. In particular, we
focus on the role of Andreev reflection in transport through
a QD coupled to the left and right ferromagnetic leads in
a proximity with the third superconducting lead. We show
that the exchange field due to ferromagnetic leads becomes
modified by the coupling to the superconductor and is
determined by the Andreev bound-state energies. This fact
is correspondingly reflected in the dependence of the dot’s
spectral function and the linear conductance on the dot level
position and temperature. Moreover, we demonstrate that
the effects due to the proximity with the superconductor
can be also resolved in thermoelectric transport properties.
Thermoelectricity in confined nanostructures, such as QDs
or molecules, has recently attracted a lot of attention due
to relatively large values of the figure of merit [38], which
makes such nanoscale objects interesting for possible future
applications [39]. Besides applicatory aspects, it turns out
that measuring temperature dependence of the thermopower
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may provide additional information about (Kondo) correla-
tions in the system [40]. Recently, the Seebeck and spin
Seebeck coefficients in Kondo-correlated QDs were studied
for nonmagnetic and ferromagnetic leads [40–43]. Here we
extend these studies to hybrid QDs with superconducting and
ferromagnetic electrodes. To determine the thermopower in
these hybrid devices, we assume that there is a temperature
gradient between the ferromagnetic leads and analyze how the
proximity effect influences the heat conductance and (spin)
thermopower of the considered system in the Kondo regime.

The paper is organized as follows. In Sec. II we present
the theoretical framework for our calculations. The model,
relevant transport coefficients and method used in calculations
are described therein. In Sec. III the numerical results on
the dot’s spectral function are presented and the analytical
formula for the exchange field is derived. Section IV is
devoted to the discussion of the linear conductance and tunnel
magnetoresistance of the system, while in Sec. V we analyze
the thermoelectric transport properties for different coupling
strengths to the superconductor. Finally, the concluding re-
marks are given in Sec. VI.

II. THEORETICAL FRAMEWORK

A. Model

We consider a single-level QD coupled to two ferromag-
netic leads whose magnetizations can form either parallel (P)
or antiparallel (AP) magnetic configuration; see Fig. 1. There is
a temperature gradient δT applied between the ferromagnetic
leads and the dot is additionally coupled to a superconducting
lead. The Hamiltonian of the system is given by

H = HQD + HF + HS + HTF + HTS, (1)

where HQD = ∑
σ εd†

σ dσ + Ud
†
↑d↑d

†
↓d↓ describes the QD,

with d†
σ being the creation operator of an electron with

spin σ and energy ε in the dot and U denoting the
Coulomb correlations. The ferromagnetic leads are mod-
eled within the noninteracting quasiparticle approximation,

FIG. 1. (Color online) Schematic of the considered system.
Quantum dot, with dot level energy ε and Coulomb correlation U ,
is connected to two ferromagnetic leads and one superconducting
lead. �σ

L (�σ
R) describes the spin-dependent coupling between the dot

and the left (right) ferromagnetic lead and �S is the coupling to the
superconductor. The magnetizations of ferromagnets can form either
parallel or antiparallel magnetic configuration, as indicated. There is
a temperature gradient δT applied between the two ferromagnetic
leads.

HF = ∑
αkσ εαkσ c

†
αkσ cαkσ , where α = L (α = R) for the left

(right) lead and c
†
αkσ creates an electron of spin σ and momen-

tum k in lead α with the corresponding energy εαkσ . The s-
wave superconductor is described by HS = ∑

kσ ξkσ a
†
kσ akσ −

�
∑

k(a†
k↑a

†
−k↓ + a−k↓ak↑), where ξkσ denotes the relevant

single-particle energy, a
†
kσ is the corresponding creation

operator, and � is the superconducting order parameter, which
is assumed to be real and positive.

Finally, the last two terms of the Hamiltonian (1) describe
tunneling processes between the dot and ferromagnetic and
superconducting leads. They are respectively given by

HTF =
∑

α=L,R

∑
kσ

Vαkσ (d†
σ cαkσ + c

†
αkσ dσ ), (2)

HTS =
∑
kσ

VSkσ (d†
σ akσ + a

†
kσ dσ ), (3)

where Vαkσ denotes the tunnel matrix elements between the
dot and ferromagnetic leads, while VSkσ is the tunnel matrix
element between superconducting electrode and the dot. The
strength of the coupling to ferromagnetic lead α for spin σ is
given by �σ

α = (1 + σpα)�, where pα is the spin polarization
of ferromagnetic lead α, pα = (�↑

α − �↓
α )/(�↑

α + �↓
α ), and

� = �L + �R , with �α = (�↑
α + �↓

α )/2 and �σ
α = πρσ

α V 2
ασ .

Here ρσ
α is the spin-dependent density of states of lead α

and we assumed momentum independent matrix elements
Vαkσ ≡ Vασ . In the following we also assume that the system is
symmetric, pL = pR ≡ p and �L = �R ≡ �/2. On the other
hand, the coupling between the dot and the superconductor
is given by �S = πρSV

2
S , where ρS is the density of states

of the superconductor in the normal state and we assumed
momentum and spin-independent tunnel matrix elements
VSkσ ≡ VS .

In this paper we focus on the linear-response spin-
dependent transport properties of QDs in the proximity with
the superconductor. We assume that the superconducting gap
is larger than the corresponding charging energy of the dot. It
implies that at low temperatures the only processes between
the dot and superconducting lead are due to the Andreev
reflection. We note that the charging energy in typical QDs
can range from fractions of meV up to a few meV, while
the superconducting energy gap can be as large as a couple
of meV [44,45]. Consequently, there are systems where the
condition U < � is fulfilled. Aiming to focus on transport
between the two ferromagnets, we set the electrochemical
potential of the superconducting lead to zero and assume a
small symmetric bias between ferromagnetic electrodes. Then,
for symmetric couplings, the net current between the dot and
the superconductor vanishes. In the limit of large �, the QD
with superconducting lead can be modeled by the following
effective Hamiltonian [46–48]:

H eff
QD = HQD + �S(d†

↑d
†
↓ + d↓d↑). (4)

In this Hamiltonian the superconducting degrees of freedom
have been integrated out and the possibility of creating or anni-
hilating Cooper pairs in the superconductor is now included in
the last, particle-nonconserving term proportional to �S . This
effective Hamiltonian can be easily diagonalized and has the
following eigenstates: singly occupied dot states, |↑〉 and |↓〉,

165303-2

6 [A] Proximity effect on σ-dependent conductance & thermopower of correlated QDs

76 K. P. Wójcik, PhD thesis



PROXIMITY EFFECT ON SPIN-DEPENDENT . . . PHYSICAL REVIEW B 89, 165303 (2014)

with energy ε, and the two states being combinations of empty
(|0〉) and doubly occupied (|↑↓〉) dot states

|±〉 = α∓|0〉 ± α±|↑↓〉, (5)

with the coefficients α± =
√

1 ± δ/(δ2 + �2
S)/

√
2 and δ =

ε + U/2 denoting the detuning of the dot level from the
particle-hole symmetry point ε = −U/2. The eigenenergies
of the above eigenstates are given by E± = δ ±

√
δ2 + �2

S ,
correspondingly. The excitation energies of the effective
Hamiltonian (4) result in Andreev bound-state energies

EA
γη = γ

U

2
+ η

√
δ2 + �2

S , (6)

with γ,η = ±. They correspond to respective excitations
between the doublet and singlet states of the dot.

B. Transport coefficients

All the relevant linear-response transport coefficients can
be expressed in terms of the integral

Lnσ = − 1

h

∫
dω ωn ∂f (ω)

∂ω
Tσ (ω), (7)

where f (ω) is the Fermi-Dirac distribution function and Tσ (ω)
denotes the transmission coefficient. The spin-resolved linear
conductance is then given by

Gσ = e2L0σ . (8)

In the case of ferromagnetic leads, depending on the spin
relaxation time in ferromagnets, the voltage drop induced
by temperature gradient can become spin dependent, giving
rise to spin accumulation, δVσ = δV + σVS , where VS is the
spin voltage. One can thus generally distinguish two different
situations: (i) the first one when the spin relaxation is fast
enough to assure VS = 0 and (ii) the second one when spin
relaxation is slow and VS �= 0. Moreover, in the three-terminal
setup considered here, one needs to be careful about the current
which can flow to the superconducting lead [31]. To prevent
the average current from flowing into the superconductor,
we apply the temperature gradient δT symmetrically (see
Fig. 1) and assume that the voltage guaranteeing the absence
of the current J induced by temperature gradient is also
applied symmetrically; that is, μl = −μr = δV/2 and μS =
0. Consequently, in the absence of spin accumulation, VS = 0,
the thermal conductance is given by

κ ≡
(

δJQ

δT

)
J=0

= 1

T

[
L2 − L2

1

L0

]
, (9)

where Ln = ∑
σ Lnσ . On the other hand, the Seebeck coeffi-

cient is defined as

S ≡ −
(

δV

δT

)
J=0

= − 1

|e|T
L1

L0
. (10)

The spin-dependent thermopower in the case of finite spin
accumulation, VS �= 0, is defined by

Sσ ≡ −
(

δVσ

δT

)
Jσ =0

= − 1

|e|T
L1σ

L0σ

, (11)

where Jσ denotes the current flowing in the spin channel
σ . One can then define the thermopower and the spin
thermopower, respectively, as

Sac = 1
2 (S↑ + S↓), (12)

SS = 1
2 (S↑ − S↓). (13)

C. Method

To obtain reliable, experimentally testable predictions for
transport properties of correlated QDs with ferromagnetic
leads in the proximity with the superconductor, we employ the
fDM-NRG method [34–37]. This method allows us to study
the dot’s local density of states (dot-level spectral function) as
well as the electric and thermoelectric transport properties
in the full range of parameters in a very accurate way.
In NRG, the conduction band is discretized logarithmically
and the Hamiltonian is mapped onto a tight binding chain
with exponentially decaying hoppings, which can be then
diagonalized iteratively. In our calculations we kept 1024 states
per iteration and used the Abelian symmetry for the total spin
zth component.

To perform the analysis, we first applied an orthogonal left-
right transformation to map the effective two-lead Hamiltonian
to a new Hamiltonian, in which the dot couples only to an even
linear combination of electron operators of the left and right
leads, with a new coupling strength � = �L + �R . We note
that for left-right symmetric systems, such as considered in
this paper, in the AP configuration the effective coupling is
the same for spin-up and spin-down electrons. As a result,
transport characteristics are then qualitatively similar to those
observed for nonmagnetic systems, except for a polarization-
dependent factor. In the P configuration, on the other hand,
the effective couplings do depend on spin polarization of
ferromagnets, giving rise to various interesting effects.

The main quantity we are interested in is the spin-dependent
transmission coefficient

Tσ (ω) = 4�σ
L�σ

R

�σ
L + �σ

R

πAσ (ω), (14)

with Aσ (ω) being the spin-dependent spectral function of
the dot, Aσ (ω) = − 1

π
ImGR

σ (ω), where GR
σ (ω) is the Fourier

transform of the retarded Green’s function of the QD for spin
σ . In the P and AP magnetic configurations the spin-resolved
transmission coefficient acquires relatively simple form,

T P
σ (ω) = (1 + σp)π�AP

σ (ω), (15)

T AP
σ (ω) = (1 − p2)π�AAP

σ (ω), (16)

respectively. Having determined the transmission, Tσ (ω), one
can then calculate the integrals Lnσ [Eq. (7)] and find the
respective electric and thermoelectric transport coefficients.
However, since in NRG one usually collects the spectral data
in logarithmic bins that are then broadened to obtain a smooth
curve, which may introduce some errors, we determine the
transport coefficients directly from the discrete, high-quality
NRG data [41,42]. Nevertheless, when discussing the behavior
of the dot spectral function, to improve its quality and suppress
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possible broadening artifacts [50], in calculations we employ
the z-averaging trick with the number of twist parameters
Nz = 5 [51].

III. LOCAL DENSITY OF STATES AND EXCHANGE FIELD

A. Antiparallel configuration

The normalized spectral function in the AP configuration,
AAP(ω) = ∑

σ π�AP
σ AAP

σ (ω), is shown in Fig. 2 for different
couplings to the superconductor �S . As mentioned above,
in the AP configuration the effective couplings �AP

σ become
spin-independent and the system behaves as if coupled to
nonmagnetic leads. Consequently, for �S = 0, the spectral
function exhibits the full Kondo resonance at ω = 0. The
Kondo temperature for the assumed parameters and for
�S = 0 is TK/U 	 1.8 × 10−3. There are also two Hubbard
resonances, which for δ = 0 occur at energies ω = ±U/2
(note the logarithmic scale in Fig. 2). The proximity of
superconducting lead results in gradual suppression of the
Kondo effect with increasing �S . For finite �S , the virtual
states for the spin-flip cotunneling processes driving the Kondo
effect are the states |+〉 and |−〉, the energy of which greatly
depends on �S . This leads to a strong dependence of the
Kondo temperature on the coupling to the superconductor.
As can be seen in Fig. 2, increasing �S generally raises the
Kondo temperature. Moreover, for finite �S , one can also
observe two resonances for larger ω, which correspond to
Andreev bound states of energies EA

++ and EA
+−; see Fig. 2 for,

e.g., �S/U = 0.2. When the coupling to the superconductor
increases, the energies of the bound states change and, for
larger �S , the resonance at ω = EA

+− merges with the Kondo
peak; see the curve for �S/U = 0.4 in Fig. 2.

The increase of the Kondo temperature for finite �S is
due to the fact that the excitation energies from the doublet
state to singlet states |+〉 and |−〉 become decreased. As a
consequence, an effective exchange interaction between the
spin in the dot and the conduction electrons becomes enhanced
with increasing �S .

0

0.5

1

1.5

2

10−5 10−4 10−3 10−2 10−1 100

AAP

ω/U

ΓS = 0
ΓS = 0.2U
ΓS = 0.3U
ΓS = 0.4U

FIG. 2. (Color online) The energy dependence of the normalized
spectral function in the AP magnetic configuration AAP calculated
for δ = 0 and different couplings to superconducting lead �S . The
parameters are U = 1, � = U/12, T = 0, and p = 0.4.

Another interesting feature visible in Fig. 2 is the decrease
of the spectral function at the Fermi level with increasing �S .
In the case of �S = 0, by the Friedel sum rule [6,52], the
spectral function Aσ (0) at ω = 0 is given by Aσ (0) = (π�)−1,
with �↑ = �↓ ≡ �. To understand the behavior of the spectral
function in the presence of superconducting lead, let us have a
look at the Green’s function 〈〈dσ |d†

σ 〉〉ω of the dot level, which
in the wide band approximation is given by

〈〈dσ |d†
σ 〉〉ω =

[
ω − ε − �σ + i� − �2

S

ω + ε + �S
σ̄ + i�

]−1

,

(17)

where the self-energies are defined as

�σ = U
〈〈dσ nσ̄ |d†

σ 〉〉
〈〈dσ |d†

σ 〉〉
and �S

σ = U
〈〈d†

σ nσ̄ |d†
σ̄ 〉〉

〈〈d†
σ |d†

σ̄ 〉〉
.

For the noninteracting case U = 0, and for ε = 0, the spectral
function at ω = 0 is Aσ (0) = (π�̃)−1, with a renormalized
coupling,

�̃ = �

(
1 + �2

S

�2

)
. (18)

Clearly, the presence of the superconducting lead results in an
enhancement of the effective level half width �̃. The height
of the spectral function at the Fermi level then decreases with
increasing �S . The same tendency also holds for the fully
interacting case (see Fig. 2); the increase in the effective
coupling is, however, smaller than in the noninteracting
case, since the denominator in Eq. (18) is larger due to
finite self-energy �S

σ ; see Eq. (17). Note that for ε = −U/2
(the particle-hole symmetry point of the Anderson model),
Re{�S

σ (ω = 0)} �= U/2, contrary to the self-energy �σ , which
then fulfills Re{�σ (ω = 0)} = U/2.

B. Parallel configuration

Figure 3 presents the energy and level detuning dependence
of the normalized spectral function in the P magnetic config-
uration, AP(ω) = ∑

σ π�P
σAP

σ (ω). AP(ω) is calculated for a
few different values of the coupling to the superconductor �S ,
as indicated in the figure. By changing the level detuning δ,
the occupancy of the dot changes. For |δ| <

√
U 2/4 − �2

S ,
the dot is singly occupied, while for |δ| >

√
U 2/4 − �2

S ,
the occupancy is even; i.e., the dot is in state |+〉 for
δ < −

√
U 2/4 − �2

S , and in state |−〉 for δ >
√

U 2/4 − �2
S .

In the singly occupied regime, for T < TK , the electronic
correlations may give rise to a resonance at the Fermi level
due to the Kondo effect. This is indeed what one observes
for the AP magnetic configuration; see Fig. 2. However, due
to the dependence of tunneling processes on spin, in the P
configuration the dot levels for spin-up and spin-down become
renormalized and shift in opposite directions, leading to a
spin splitting of the dot level, �εexch. This exchange field
created by the presence of ferromagnetic leads suppresses the
Kondo effect once |�εexch| > TK . Moreover, �εexch displays
a particular dependence on the level detuning δ, it vanishes for
δ = 0 and changes sign at the particle-hole symmetry point.
Although by splitting the dot level the exchange field acts in
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FIG. 3. (Color online) The normalized spectral function AP in
the P magnetic configuration as a function of energy ω and level
detuning δ = ε + U/2 for different couplings to superconducting
lead: (a) �S = 0, (b) �S/U = 0.2, (c) �S/U = 0.3, (d) �S/U = 0.4.
The dashed lines show the exchange field �εexch obtained from the
analytical formula (20). The parameters are the same as in Fig. 2.

a similar way as an external magnetic field, it possesses an
extra asset, namely that its magnitude and sign can be tuned
by purely electrical means, i.e., by changing δ with a gate
voltage.

All the above-mentioned features can be clearly visible in
Fig. 3(a), which presents the spectral function for �S = 0.
First, the zero-energy spectral function AP(0) has two maxima
broadened by 2� at resonant energies δ = ±U/2. Second,
in the singly occupied dot regime, one observes the Kondo
resonance for δ = 0, which then becomes split as the level
detuning increases, |δ| > 0. The split Kondo resonance due to
the presence of ferromagnetic leads has already been observed
in a number of experiments and is rather well understood
[15–22]. Here we in particular want to analyze how the
superconducting proximity effect affects the exchange field
and, thus, the split Kondo resonance. For finite �S , the resonant
energies are δ = ±

√
U 2/4 − �2

S . This implies that the singly
occupied regime shrinks with increasing the coupling to
the superconductor. Consequently, the Kondo temperature
increases, since the excitation energies from singly occupied to
evenly occupied virtual states, |+〉 and |−〉, become lowered.
Moreover, the magnitude of the exchange field also becomes
enhanced with increasing �S . However, while the increase of
�εexch with �S is algebraic, the TK dependence on �S is rather
exponential. Therefore, for large �S , the effects due to the
proximity with ferromagnets become eventually overwhelmed
by the Kondo correlations. This is visible in Fig. 3, where the
width of the split Kondo resonances become increased, until
they eventually merge for large �S ; see Fig. 3(d). In fact, for
�S = 0.4U , the local moment regime of the dot is relatively
narrow and due to the broadening of the resonant peaks, one

observes only a single low-energy resonance for δ = 0. The
height of this resonance is, however, lower as compared to
the case of smaller �S , which indicates that although the
strong coupling to the superconductor can suppress the effects
due to the exchange field, it may also destroy the Kondo
effect.

C. Perturbative analysis

To estimate the magnitude of the exchange field in the
P configuration in the presence of the superconductor, one
can use the second-order perturbation theory to determine
the spin-dependent dot level renormalization δεσ due to the
coupling to ferromagnets. We thus treat HTF as a perturbation
to H0 = H eff

QD + HF and find that the shift of the level is
given by

δεσ = −�σ

π

∫
dω

[
α2

+f −(ω)

ω − EA−+
+ α2

−f −(ω)

ω − EA−−

]

− �σ̄

π

∫
dω

[
α2

+f (ω)

ω − EA++
+ α2

−f (ω)

ω − EA+−

]
, (19)

where f −(ω) = 1 − f (ω). The exchange field can be then
obtained from �εexch = δε↑ − δε↓ and is given by

�εexch = 2p�

π

δ√
δ2 + �2

S

[φ(EA
+−) − φ(EA

++)], (20)

where φ(ω) = Re{�( 1
2 + i ω

2πT
)} and �(z) is the digamma

function. Clearly, the exchange field is a function of the
Andreev bound-state energies and can be tuned not only
by δ, but also by �S . Although �εexch results directly
from the proximity effect with the ferromagnetic leads, the
superconducting proximity effect may considerably affect
it. The formula for the exchange field, Eq. (20), can be
somewhat simplified at zero temperature when φ(EA

+−) −
φ(EA

++) = log |EA
+−/EA

++|, while for �S = 0 one gets [17,20–
22] �εexch = 2p�

π
log | δ−U/2

δ+U/2 |.
The exchange field obtained from Eq. (20) as a function of

level detuning δ is plotted in Fig. 4. The perturbation theory
breaks down at resonances for |δ| =

√
U 2/4 − �2

S , where the
exchange field diverges at T = 0. We plotted �εexch in the
full range of δ to present how the resonances move towards
the middle of the Coulomb blockade regime with increasing
�S . Another feature visible in Fig. 4 is the enhancement of
the magnitude of the exchange field in the singly occupied
dot regime with raising the coupling to the superconductor.
�εexch obtained from formula (20) is also shown in Fig. 3 by
dashed lines. One can see that the agreement between the split
Kondo resonances visible in the spectral function obtained
by NRG and the estimation for �εexch based on Eq. (20) is
indeed very good. For large coupling to the superconductor,
however, the spectral function displays only one broad Kondo
resonance and the splitting is no longer visible due to the
broadening of Andreev levels by the coupling to ferromagnetic
leads �.
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FIG. 4. (Color online) The exchange field in the P magnetic
configuration for a few values of �S obtained from Eq. (20) at T = 0.
The other parameters are as in Fig. 2.

IV. LINEAR CONDUCTANCE AND TUNNEL
MAGNETORESISTANCE

In this section we focus on the role of superconduct-
ing proximity effect on the spin-resolved electric transport
coefficients. In particular, we study the level detuning and
temperature dependence of the linear conductance in the P
(GP) and AP (GAP) magnetic configurations, as well as the
resulting tunnel magnetoresistance, which is defined as [49]
TMR = GP/GAP − 1.

A. Level detuning dependence

In Fig. 5 we show the level detuning dependence of the
linear conductance and the TMR for different temperatures
and couplings to the superconductor. At low temperatures,
T < TK , in the AP configuration there is a Kondo plateau
in the singly occupied regime where GAP = 2(1 − p2)e2/h

[see Fig. 5(a)], which becomes suppressed with increasing
�S . At intermediate temperatures, T/U = 10−2 [Fig. 5(b)],
for �S = 0, the Kondo effect is suppressed since T > TK ;
however, by increasing the coupling to the superconductor,
one also increases the Kondo temperature and for �S/U =
0.4 there is a single resonance around δ = 0. Note, however,
that this maximum in GAP is mainly due to the fact that the
resonant energies become very close and the two resonant
peaks merge due to the broadening of Andreev levels by the
coupling to ferromagnetic leads. In the case of relatively high
temperatures, T/U = 10−1, the general dependence is similar
to the previous case, but the conductance is suppressed.

In the P configuration, the linear conductance at low
temperatures shows a clear signature of the exchange field
that suppresses the Kondo effect for δ �= 0, while for δ = 0
the conductance is maximum, GP = 2e2/h; see Fig. 5(d).
With increasing �S , the effects due to the exchange field
are effectively decreased and almost completely disappear
for �S/U = 0.4, as explained in Sec. III. On the other
hand, for higher temperatures, |�εexch| < T , such that thermal
fluctuations smear out the effects due to the exchange field, the
dependence of GP on δ is qualitatively similar to that for GAP,
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FIG. 5. (Color online) The level detuning dependence of the
linear conductance in the AP (GAP) (a)–(c) and P (GP) (d)–(f)
magnetic configurations, as well as the resulting TMR (g)–(i) for
different couplings to the superconductor and temperatures. The left,
middle, and right columns correspond to T/U = 10−4, T/U = 10−2,
and T/U = 10−1, respectively. The other parameters are as in Fig. 2.

with a general tendency that for T � �, GP > GAP; compare
Figs. 5(c) and 5(f).

The difference in GP and GAP gives rise to nonzero TMR
presented in Figs. 5(g)–5(i). While for T < TK and �S = 0, the
TMR exhibits a highly nontrivial dependence on level detuning
δ [21], with increasing either �S or T , the TMR dependence
on T becomes less dramatic. First of all, when raising �S , the
effects due to the exchange field become suppressed and the
TMR becomes positive in the whole range of δ. Moreover, for
larger temperatures, the proximity of the superconductor plays
a smaller role and for T/U = 10−1 [see Fig. 5(i)], the TMR is
roughly independent of �S .

B. Temperature dependence

The behavior described above is also visible in the tempera-
ture dependence of the linear conductance and TMR shown in
Fig. 6, which is calculated for several values of δ and �S . For
the particle-hole symmetric case δ = 0 presented in the left
column of Fig. 6, both GP and GAP exhibit dependence on T ,
which is typical for QDs in the Kondo regime [21]. They just
differ by a polarization-dependent factor, which in the Kondo
regime is equal to 1 − p2, and with increasing temperature
becomes decreased for T ≈ TK to raise again once thermally
activated sequential processes become possible. As a result,
the TMR is given by TMR = p2/(1 − p2); in the Kondo
regime, T < TK , and in the sequential tunneling regime,
T � � and becomes suppressed for T ≈ TK [see Fig. 6(g)].
With increasing the coupling to the superconductor, these
features basically persist, but the Kondo temperature becomes
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FIG. 6. (Color online) The temperature dependence of GAP (a)–
(c), GP (d)–(f), and the TMR (g)–(i) for different couplings �S . The
left, middle, and right columns correspond to δ = 0, δ = U/6, and
δ = U/2, respectively. The other parameters are the same as in Fig. 2.

increased; see Figs. 6(a) and 6(d). In addition, one can observe
that the height of the Kondo resonance is gradually suppressed
with increasing �S . This can be understood by realizing that
the proximity of the superconductor effectively diminishes the
repulsion of electrons in the dot. Since the Coulomb repulsion
is necessary for the Kondo effect to occur, an increase of �S

will inevitably lead to the suppression of the Kondo resonance.
In the Coulomb blockade regime when the particle-hole

symmetry is broken, the exchange field starts playing an
important role. This situation is presented in the middle
column of Fig. 6, which is calculated for δ = U/6. While
the temperature dependence of GAP is very similar to the case
of δ = 0 [see Figs. 6(a) and 6(b)], the linear conductance in
the P configuration is completely different. GP is generally
suppressed as compared to the particle-hole symmetric case,
which is due to the presence of exchange field. The Kondo
resonance is suppressed and the linear conductance in P
configuration displays only a small maximum for temperatures
of the order of the Kondo temperature; see Fig. 6(e). This
results in highly nontrivial dependence of the TMR on T

[Fig. 6(h)], which now takes large negative values for T < TK

and then becomes positive with increasing temperature. How-
ever, when the coupling to superconducting lead increases,
there appears a competition between the exchange field and
the superconducting proximity effect, so that the role of the
exchange field becomes diminished and the difference in
conductances for both magnetic configurations is lowered;
see Figs. 6(b) and 6(e). Consequently, for relatively strong
coupling �S , the TMR becomes positive in the whole range of
temperatures; see the case of �S/U = 0.4 in Fig. 6(h).

The right column of Fig. 6 presents the case when δ = U/2;
i.e., for �S = 0 the system is on resonance. With increasing

�S , the resonance moves towards the middle of the Coulomb
blockade and the dot becomes occupied by the state |+〉. This
results in lowering of the linear conductance with increasing
�S , irrespective of the magnetic configuration of the system;
see Figs. 6(c) and 6(f). In fact, when raising the coupling
to the superconductor, the transport regime changes from
resonant to cotunneling regime. As a consequence, the TMR
increases with �S to reach the value TMR = 2p2/(1 − p2),
characteristic of non-spin-flip cotunneling regime [53]. How-
ever, for higher temperatures, T � �, the thermally activated
sequential transport dominates and TMR becomes lowered,
reaching TMR = p2/(1 − p2); see Fig. 6(i).

V. SEEBECK AND SPIN SEEBECK COEFFICIENTS

We now move to the discussion of thermoelectric transport
properties of the system. For this, we assume that there
is a temperature gradient δT applied to the left and right
ferromagnetic leads; see Fig. 1. The formulas for the relevant
thermoelectric coefficients are presented in Sec. IIB. First, we
study the influence of the proximity effect on the thermoelec-
tric coefficients in the case of no spin accumulation in the leads
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FIG. 7. (Color online) The thermal conductance κ as a function
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Each row corresponds to different temperature, as indicated. The
parameters are the same as in Fig. 2.
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and then proceed to the case of finite spin accumulation and
the analysis of the spin Seebeck effect.

A. Absence of spin accumulation in the leads

Before analyzing the behavior of the thermopower, in Fig. 7
we show the thermal conductance κ as a function of the
level detuning δ for different temperatures and couplings to
superconducting lead. The left column corresponds to the
AP configuration, while the right column shows the results
in the P configuration. When decreasing temperature, the
thermal conductance becomes generally suppressed; however,
specific shape of its dependence on δ also changes. At high
temperatures, T/U = 0.1, κ displays a maximum for δ = 0,
where the particle and hole processes equally contribute to
transport. This is visible in both magnetic configurations
[see Figs. 7(a) and 7(b)], although κ is larger in the P
configuration as compared to the AP one. With increasing the
coupling to the superconductor, the maximum changes into
local minimum, while two maxima for δ ≈ ±U/2 develop.
For intermediate temperatures, T/U = 0.01, the shape of the
δ dependence of κ becomes similar to the detuning dependence
of the linear conductance; cf. Fig. 5. A similar tendency
can be also observed for lower temperatures; however, while
the conductance increases with decreasing T , the thermal
conductance becomes suppressed to disappear completely at
zero temperature. Furthermore, at low temperatures, when
|�εexch| � T , the exchange field starts playing an important
role and the difference between both magnetic configurations
becomes clearly visible. When raising �S , the influence of
the exchange field on transport becomes relatively weakened.
The suppressed thermal conductance in the P configuration
in the Coulomb blockade regime then becomes enhanced.
On the other hand, in the AP configuration, the Kondo effect
becomes gradually destroyed and κ drops in the local moment
regime with increasing �S ; see Figs. 7(g) and 7(h).

Figure 8 shows the δ dependence of the Seebeck coefficient
in both magnetic configurations for different temperatures and
couplings �S . The behavior of the thermopower is mostly
determined by the shape of the Kondo peak in the local density
of states. For δ = 0, the Kondo resonance is fully symmetric
around the Fermi level and, consequently, the particle and hole
currents compensate each other and the thermopower vanishes.
When moving away from the particle-hole symmetry point, the
Seebeck coefficient becomes nonzero and its sign depends on
the relative magnitude of the particle and hole currents. S is
thus an odd function of δ. At higher temperatures, the behavior
of S is qualitatively similar in both magnetic configurations;
see Figs. 8(a) and 8(b). The thermopower has a local maximum
(minimum) for 0 < δ < U/2 (−U/2 > δ > 0). The differ-
ences between S in the P and AP configuration start showing
up with lowering temperature, when the exchange field starts
playing a role. In the AP configuration, for 0 < δ < U/2, the
local maximum in S for T/U = 0.1 gradually merges with
a local minimum, the position of which moves from δ ≈ U

towards δ = 0 with lowering temperature. When increasing
the coupling to superconducting lead, the thermopower in the
AP configuration (and in the P configuration for T > |�εexch|)
becomes generally suppressed; however, its qualitative depen-
dence on δ remains the same. This is opposite to what we have
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FIG. 8. (Color online) The thermopower as a function of δ for the
AP (left column) and P (right column) configurations and for different
�S and T , as indicated. The other parameters are as in Fig. 2.

in the P configuration, especially at low temperatures, when
T < |�εexch|; see Figs. 8(f) and 8(h). Then, for 0 < δ < U/2,
S exhibits a local minimum, which becomes sharper and
moves towards δ = 0 with lowering T . With increasing δ,
this minimum changes into a local maximum to drop again
for δ ≈ U/2. As a consequence, for δ > 0, S changes sign
twice in the Coulomb blockade regime. This is related to the
exchange field, which suppresses the Kondo resonance, once
|�εexch| > TK,T . Since �εexch depends strongly on δ, it leads
to the aforementioned behavior of the thermopower around the
particle-hole symmetry point δ = 0. Interestingly, when the
coupling to the superconductor is increased, the δ dependence
of S changes drastically. In particular, for large �S , when
the exchange field effects are suppressed by superconducting
proximity effect, the difference between the two magnetic
configurations is decreased, and S in the P configuration
behaves similarly to S in the AP configuration. Altogether, this
gives rise to a nontrivial dependence of the low-temperature
thermopower on �S in the P configuration. The interplay
of the three relevant energy scales—superconducting gap,
exchange field, and Kondo temperature—is then clearly
revealed; see Fig. 8.
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B. Finite spin accumulation in the leads

We now discuss the behavior of the spin thermopower in the
P magnetic configuration in the case of finite spin accumulation
in the leads. Such a situation arises when the spin relaxation
in the leads is slow and the shifts of the chemical potential for
spin-up and spin-down electrons induced by the temperature
gradient are not equal. The δ dependence of the spin Seebeck
coefficient is presented in Fig. 9 for different temperatures
and couplings to the superconductor. For T/U = 0.1, the spin
thermopower changes monotonically with sweeping δ from
−U to U ; see Fig. 9(a). Finite coupling to the superconductor
leads only to the suppression of SS . For smaller temperatures,
however, SS exhibits a maximum (minimum) for δ > 0 (δ <

0); see the case of T/U = 0.01 in Fig. 9. This maximum is
still present when the coupling to the superconductor becomes
stronger, while its position moves towards the middle of
the Coulomb blockade with increasing �S . Moreover, for
relatively strong coupling to the superconductor, �S/U = 0.4,
one can see that the δ dependence of the spin thermopower
has changed qualitatively. Now, SS for δ > 0 exhibits a
sign change in the Coulomb blockade regime, which was
not present in the case of �S = 0. When further decreasing
the temperature, the maximum in SS for positive detuning
moves towards the particle-hole symmetry point δ = 0 and
its magnitude becomes suppressed; see Figs. 9(c) and 9(d).
For given temperature, increasing the strength of the coupling
to superconducting lead results in a large suppression of the
spin thermopower. The spin Seebeck coefficient for T � TK

becomes almost fully suppressed in the case of strong coupling
to the superconductor.

For completeness, in Fig. 10 we show the detuning depen-
dence of the Seebeck coefficient for different temperatures
and couplings �S in the case of finite spin accumulation
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FIG. 10. (Color online) The thermopower in the P configuration
as a function of δ for different �S and for different temperatures in
the case of finite spin accumulation. The parameters are the same as
in Fig. 2.

in the leads. Except for opposite sign, the dependence of
Sac on δ, T , and �S is quite similar to the dependence of
the spin Seebeck coefficient (cf. Figs. 9 and 10), although
some differences still appear. First of all, for temperatures
considered in Fig. 10, Sac exhibits a nonmonotonic dependence
on δ, contrary to SS , which for T/U = 0.1 changed rather
monotonically. Moreover, the dependence on �S for Sac is
now weaker as compared to SS . Increasing the coupling to the
superconductor results only in quantitative changes, leading
generally to the suppression of the thermopower Sac; see
Fig. 10.

Finally, it is also interesting to study the temperature
dependence of SS and Sac in the P configuration for different
coupling �S ; see Fig. 11. The left (right) column corresponds to
δ = U/6 (δ = U/2). Let us first consider the case of δ = U/6,
when the system is in the Coulomb blockade regime. For
very high (T > U ) or very low (T < TK ) temperatures, both
SS and Sac tend to zero for all values of �S ; see Figs. 11(a)
and 11(c). However, for intermediate temperatures, T ∼ TK ,
the spin Seebeck coefficient exhibits a maximum, the height
of which diminishes with increasing �S . The temperature
at which the maximum occurs increases when the coupling
to the superconductor is stronger. In addition, for �S = 0
there is also a small local maximum for T ≈ �, however,
which merges with the large peak when �S is increased;
see Fig. 11(a). Contrary to SS , the temperature dependence
of Sac reveals two sign changes. With increasing T , Sac

first drops to a local minimum for T ∼ TK , then changes
sign and reaches a local maximum for T ∼ � to drop again
for T ∼ U with another sign change; see Fig. 11(c). When
increasing the coupling to the superconductor, the temperature
at which the first minimum occurs increases, while the
positions of other extrema are rather unchanged. Moreover,
the overall magnitude of Sac becomes generally suppressed
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mopower (c),(d) in the P configuration as a function of temperature for
different �S in the case of finite spin accumulation. The left column
corresponds to δ = U/6, while the right column to δ = U/2. The
parameters are as in Fig. 2.

with increasing �S , which is especially visible for T ∼ �; see
Fig. 11(c).

For larger detuning, δ = U/2, the system is on resonance
for �S = 0. The temperature dependence of the spin ther-
mopower displays then a single maximum for temperatures
of the order of the coupling �. With increasing the coupling
to the superconductor, this maximum transforms into a local
minimum and SS exhibits a sign change when increasing
temperature; see Fig. 11(b). This is opposite to Sac, which is
now negative in the whole range of temperatures, irrespective
of �S ; see Fig. 11(d). The Seebeck coefficient has two
local minima for T ∼ � and T ∼ U , separated by a local
maximum, which merge together with increasing �S into a
large single minimum for T ∼ �. Consequently, the prox-
imity of the superconductor generally enhances the Seebeck
coefficient Sac. This behavior is opposite to that of SS and
Sac in the case of δ = U/6 discussed above, for which the
proximity effect led to a general suppression of the (spin)
thermopower.

Finally, we would like to note that although the range of
temperatures studied in Fig. 11 may be slightly too large to

assure that the description based on effective Hamiltonian
in the limit of large superconducting gap is reasonable, we
showed the data at high temperatures T � U for completeness
and consistency. Nevertheless, the most interesting behavior
of the Seebeck and spin Seebeck coefficients discussed above
occurs in the temperature range where the assumptions used
are correct.

VI. CONCLUDING REMARKS

In the present paper we analyzed the electric and thermo-
electric transport properties of Kondo-correlated QDs coupled
to the left and right ferromagnetic leads and additionally
coupled to one superconducting lead. In such hybrid devices,
transport characteristics are determined by the interplay of
ferromagnetic-contact-induced exchange field, the supercon-
ducting proximity effect and correlations leading to the Kondo
effect. By using the fDM-NRG method, we determined the
dot’s spectral function, linear electric and thermal conduc-
tances, the TMR, and the (spin) Seebeck coefficient for
different temperatures, level positions, and couplings to the
superconductor in the limit of large superconducting gap.
We showed that the superconducting proximity effect may
considerably affect the exchange field, which is a function
of Andreev bound-state energies. For the exchange field, we
provided an approximative analytical formula that agrees well
with the NRG calculations. The exchange field leads to a
spin-splitting of the dot level, which can suppress the Kondo
resonance. We demonstrated that increasing the coupling to
the superconductor may raise the Kondo temperature and
partially restore the exchange-field-split Kondo resonance.
This subtle competition between ferromagnetic and supercon-
ducting proximity effects is clearly visible in the corresponding
temperature and level detuning dependence of both the
electric and the thermoelectric transport coefficients of the
system.
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Andreev transport in a correlated ferromagnet-quantum-dot-superconductor device
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The spin-resolved Andreev reflection processes in a hybrid ferromagnet-quantum-dot-superconductor device
are theoretically studied. In particular, the transport coefficients, such as the Andreev transmission as well
as the linear-response Andreev conductance, are calculated by means of the numerical renormalization group
method. It is shown that, generally, transport properties are conditioned by the interplay of correlations leading
to the Kondo effect, superconducting proximity effect, and ferromagnetic-contact-induced exchange field. The
exchange field is shown to greatly affect the low-energy behavior of the Andreev transmission by splitting the
Kondo resonance. Moreover, it leads to a nonmonotonic dependence of the Andreev conductance on the dot level
position. At low temperatures, the conductance has a peak at the particle-hole symmetry point, which however
becomes quickly suppressed with increasing the temperature. The mechanisms responsible for those effects are
thoroughly discussed.

DOI: 10.1103/PhysRevB.92.245307 PACS number(s): 73.23.−b, 72.15.Qm, 74.45.+c, 72.25.−b

I. INTRODUCTION

Transport properties of hybrid quantum dot systems, in-
volving both superconducting and normal electrodes, have
recently been extensively studied both theoretically [1–28]
and experimentally [29–34]. In such systems, at sufficiently
low temperatures, the physics is determined by an interplay
between the superconducting proximity effect and the corre-
lations leading to the Kondo effect [35–38]. For a magnetic
impurity coupled to a superconductor, the existence of the
Kondo phenomenon is conditioned by the relative ratio of
the Kondo temperature TK to the superconducting energy
gap � [39–41]. The Kondo phenomenon is present when
TK > �. On the other hand, in the opposite situation when
� exceeds TK, the Kondo effect is suppressed and the so-
called Yu-Shiba-Rusinov bound states form inside the energy
gap [42–44]. Such proximity-induced bound states can be
probed in a mesoscopic device consisting of a quantum dot,
in which Andreev reflection [45] leads to the formation of
similar long-lived states. In fact, Andreev bound states have
been recently measured in bias spectroscopy experiments by
attaching a second normal electrode to the dot acting as a
weakly coupled probe [30–34]. However, when the coupling
to the second electrode increases, such that the Kondo temper-
ature associated with this normal reservoir becomes relevant,
the system can again exhibit conductance enhancement due
to the Kondo correlations. It was shown recently in the limit
of large superconducting energy gap that, quite counterintu-
itively, in a hybrid normal-metal-quantum-dot-superconductor
system increasing the strength of the coupling to supercon-
ducting electrode can lead to an enhancement of the Kondo
temperature [26–28]. This is associated with the fact that the
pairing correlations induced in the dot decrease the excitation
energies to virtual states of the dot, leading to an increase in
the effective exchange interaction, which consequently results
in an increase of TK.

An even more interesting situation occurs when the normal
lead is ferromagnetic. Then, another energy scale becomes

*weymann@amu.edu.pl

relevant, namely, the one associated with a spin-splitting of
the dot level caused by the so-called effective exchange field
[46–51]. When the exchange field is large enough, it can
affect the Kondo state in a very considerable way by splitting
or even fully suppressing the Kondo peak. The interplay of
exchange field, Kondo, and proximity effects has been recently
studied experimentally in a hybrid ferromagnet-quantum-dot-
superconductor device [52]. It was shown that the coexistence
of itinerant ferromagnetism with superconducting and Kondo
correlations leads to a very complex differential conductance
spectra, containing both signatures of subgap states and split
Kondo resonance.

The main goal of this paper is to provide further in-
sight into Andreev transport properties of such systems. By
employing the nonperturbative and very accurate numerical
renormalization group (NRG) method [53–55], we determine
transport due to Andreev reflection in the full parameter
space, where both the Kondo correlations, superconducting
proximity effect, and ferromagnet-induced exchange field
coexist. We analyze the dot level and temperature dependence
of the Andreev transmission coefficient and the associated
linear-response conductance for various coupling strengths
to both superconducting and normal leads. We show that
generally the transport properties are conditioned by a subtle
interplay of the aforementioned energy scales. In particular,
for relatively weak couplings to superconducting electrode,
the Kondo resonance becomes split due to the exchange field.
However, with increasing the coupling strength, the proximity
effect leads to an enhancement of TK and the Kondo resonance
becomes reinstated.

The paper is organized in the following way. Theoretical
framework is presented in Sec. II, where we first describe
the model Hamiltonian (Sec. II A), define the quantities of
interest (Sec. II B), and briefly describe the method used
in calculations (Sec. II C). The main part of the paper is
presented in Sec. III, in which we first describe the behavior
of the local density of states of the dot (Sec. III A) and
then analyze the Andreev transmission and the linear-response
conductance (Sec. III B). Finally, the conclusions are given in
Sec. IV.
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II. THEORETICAL DESCRIPTION

A. Effective Hamiltonian

The schematic of the system is shown in Fig. 1. It consists
of a quantum dot coupled to one ferromagnetic (FM) and one
s-wave superconducting (SC) lead. Since in this paper we
are mainly interested in the Andreev reflection processes, we
consider the superconducting energy gap � to be the largest
energy scale in the problem. In such a case, the system can be
described by the following effective Hamiltonian [56]:

H = H eff
QD + HF + HTF, (1)

where

H eff
QD =

∑
σ

εd†
σ dσ + Ud

†
↑d↑d

†
↓d↓ + �S(d†

↑d
†
↓ + d↓d↑). (2)

Here, d†
σ creates a spin-σ electron of energy ε in the quantum

dot and U is the correlation energy between two electrons
occupying the dot. The last term takes into account the creation
and annihilation of Cooper pairs in the superconductor, the
degrees of freedom of which were integrated out in the limit
of � → ∞, where �S denotes the strength of the coupling
between the SC lead and the quantum dot [56]. The electrons in
the ferromagnetic lead are modeled as noninteracting particles,
HF = ∑

kσ εkσ c
†
kσ ckσ , with c

†
kσ being the creation operator

of a spin-σ electron with momentum k and energy εkσ .
The last term of the Hamiltonian, HTF, describes tunneling
processes between the FM lead and the quantum dot. It is given
by HTF = ∑

kσ Vkσ (d†
σ ckσ + c

†
kσ dσ ), where Vkσ denotes the

tunnel matrix elements between the dot and the ferromagnet,
which are assumed to be energy independent. The coupling to
the FM lead gives rise to the broadening of the dot level, the
half width of which is given by � = (�↑ + �↓)/2. Assuming
the flat density of states of width 2D, with D ≡ 1 used as
energy unit, the spin-dependent coupling strength is given by
�σ = π |Vσ |2/2. It can be further expressed in terms of the
spin polarization p = (�↑ − �↓)/(�↑ + �↓) of the FM lead
as �σ = (1 ± p)� [46,48,50].

The effective quantum dot Hamiltonian (2) is not diagonal
in the local basis spanned by the following four states: |0〉,
|σ 〉, |d〉, for empty, singly occupied with spin σ and doubly
occupied dot. However, it can be easily diagonalized and its

FIG. 1. (Color online) Schematic of the considered system. A
single-level quantum dot is coupled to a ferromagnetic and supercon-
ducting (SC) lead with coupling strengths �σ and �S , respectively.
The dot level energy is denoted by ε, while U is the Coulomb
correlation energy. The superconducting energy gap � is assumed to
be the largest energy scale in the problem, so that the only tunneling
processes are exclusively due to the Andreev reflection.

eigenstates are |σ 〉, |+〉, |−〉, where

|±〉 = 1√
2

⎛
⎜⎝
√√√√1∓ δ√

δ2 + �2
S

|0〉 ±
√√√√1± δ√

δ2 + �2
S

|d〉

⎞
⎟⎠,

(3)
and δ = ε + U/2 denotes the detuning from the particle-hole
symmetry point of the dot. On the other hand, the energies
of the above states are correspondingly given by E± =
δ ± √

δ2 + �2
S . The excitation energies of the effective dot

Hamiltonian H eff
QD result in the following Andreev bound-state

energies [16,18,25,26]:

EA
αβ = α

U

2
+ β

√
δ2 + �2

S , (4)

with α,β = ±.

B. Andreev transmission and conductance

The transmission coefficient for Andreev processes be-
tween the ferromagnetic and superconducting lead is given
by [2,4,5,11]

TA(ω) =
∑

σ

4�σ�σ̄
∣∣〈〈dσ |dσ̄ 〉〉rω

∣∣2
, (5)

where 〈〈dσ |dσ̄ 〉〉rω is the Fourier transform of the corre-
sponding off-diagonal retarded Green’s function, 〈〈dσ |dσ̄ 〉〉rt =
−i�(t)〈{dσ (t),dσ̄ (0)}〉. The linear-response Andreev conduc-
tance can be then found from [2,4,5,11]

GA = 2e2

h

∫
dω TA(ω)

(
−∂f (ω)

∂ω

)
, (6)

with f (ω) denoting the Fermi-Dirac distribution function.

C. Calculation method

Because all the relevant linear-response transport coeffi-
cients are expressed in terms of the transmission coefficient,
TA(ω), the main task is to calculate its full energy and dot
level detuning dependence. To perform this task in the most
accurate manner, we employ the numerical renormalization
group method [53–55]. Within this method the conduction
band of FM lead is described by a tight-binding chain
with exponentially decaying hoppings, which allows one to
diagonalize the Hamiltonian iteratively and to find its full
many-body eigenstates and eigenenergies. These can then be
used to calculate any expectation value of both static and
dynamic observables. Since in calculations it is crucial to
keep a large number of states at each iteration, it is of vital
importance to exploit as many symmetries the Hamiltonian
possesses as possible. However, in the present problem, due to
the superconducting pairing term in the effective Hamiltonian
[cf. Eq. (2)] and the spin dependence of tunneling processes,
only the zth component of the total spin is conserved,
which makes the calculations challenging. In particular,
here we kept NK = 46 states at each iteration, exploiting
one Abelian symmetry for the total spin zth component,
and used the band discretization parameter 
 = 2. To find
the Andreev transmission coefficient, we first determined the
imaginary part of relevant Green’s functions and then, from the
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Kramers-Kronig relation, calculated the respective real parts.
To obtain most reliable spectral functions from discrete NRG
data, we employed the optimal broadening method [57] and
used a z-averaging trick [58], averaging over two different
discretizations.

III. RESULTS AND DISCUSSION

In this section we present and discuss the transport
properties of the quantum dot connected to superconducting
and ferromagnetic leads. We first study the behavior of the dot’s
local density of states in the Kondo regime on the strength
of the coupling to superconducting lead. In particular, we
analyze how the Kondo temperature TK changes when �S

increases. Then, we study the detuning dependence of the
Andreev transmission coefficient and the linear conductance
for different temperatures, different coupling strengths, and
spin polarization of the ferromagnetic lead.

A. Local density of states and the Kondo temperature

The local density of states of the dot is represented by
the normalized spectral function π�A(ω) ≡ ∑

σ π�σAσ (ω),
with Aσ (ω) = −(1/π )Im 〈〈dσ |d†

σ 〉〉rω and 〈〈dσ |d†
σ 〉〉rω being the

Fourier transform of 〈〈dσ |d†
σ 〉〉rt = −i�(t)〈{dσ (t),d†

σ (0)}〉. Fig-
ure 2 presents the energy dependence of the normalized
dot’s level spectral function for different couplings to the
superconducting lead �S , as indicated. The spectral function
is calculated both in the absence and presence of detunig, i.e.,
for ε/U = −0.5 (δ/U = 0) and for ε/U = −0.495 (δ/U =
0.005) Note that, in principle, in the case of the ferromagnetic
lead the Kondo effect is generally suppressed due to the
presence of ferromagnetic-contact-induced exchange field
�εexch. Such an exchange field splits the dot levels, removing
thus the degeneracy of the ground state, and the Kondo
effect becomes destroyed when |�εexch| � TK [46,47,49,51].
However, the exchange field has this special property that it
vanishes at the particle-hole symmetry point δ = 0. This is
why in Fig. 2(a) the signatures of the Kondo effect are clearly
visible, while in Fig. 2(b) the Kondo effect for small �S is
suppressed.

Let us first discuss the former case. When �S = 0, the spec-
tral function exhibits the Kondo-Abrikosov-Suhl resonance at
the Fermi energy due to the Kondo effect, where π�A(0) = 1
[36]. When the coupling to the superconducting lead increases,
the excitation energies between the singly occupied states and
the states |+〉 and |−〉 decrease. As a result, the effective
exchange interaction between the dot and the normal lead
is increased, and so is the Kondo temperature [28]. This
behavior can be clearly seen in Fig. 2(a). Moreover, when
�S is relatively large, the height of the resonance becomes
diminished. This is associated with the fact that for �S = U/2,
all the dot’s states become degenerate and the system is truly in
the mixed-valence regime, so that the Kondo effect is absent.

For the considered hybrid device, by performing the
Schrieffer-Wolff transformation, one can find the effective
exchange interaction between the dot and the ferromagnetic
lead, which then allows one to estimate the Kondo temperature
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FIG. 2. (Color online) The normalized spectral function of the
dot level, π�A(ω), as a function of energy ω for different coupling
strengths to the superconductor �S calculated for (a) δ/U = 0 and
(b) δ/U = 0.005. The inset in (a) shows the �S dependence of the
Kondo temperature extracted from the half width at half maximum
(HWHM) of the spectral function (points) and the fit as obtained from
Eq. (7) with η ≈ 1.5. The parameters are U/D = 0.1, �/U = 0.05,
T = 0, and p = 0.5. Note the logarithmic energy scale.

[27,28,59],

TK = η

√
�U

2
exp

{
π

[
ε(ε + U ) + �2

S

]
2�U

arctanh(p)

p

}
, (7)

with η being a constant of the order of unity. From the
above formula it clearly follows that increasing �S raises
TK. Moreover, in the case of ferromagnetic lead and in the
absence of exchange field, the Kondo temperature is decreased
by a spin polarization dependent factor [46]. The Kondo
temperature estimated from the half width at half maximum
(HWHM) of the spectral function plotted as a function of �S

is shown as bullets in the inset to Fig. 2(a). Clearly, the Kondo
temperature rises with increasing the strength of the coupling
to the superconducting lead. For comparison, the solid line
in the inset shows the Kondo temperature obtained by using
Eq. (7). The agreement with numerical data is indeed very
good and the numerical constant was found to be η ≈ 1.5.

In the case of finite detuning from the particle-hole
symmetry point, the Kondo effect is generally suppressed.
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Figure 2(b) shows the spectral function calculated for such
δ that for assumed parameters the exchange field is slightly
larger than TK. In this situation the interplay of relevant energy
scales is clearly visible. When �S = 0, the Kondo resonance is
suppressed since |�εexch| > TK. However, when increasing the
pairing correlations with �S , the Kondo temperature rises and,
once TK � |�εexch|, the Kondo peak becomes restored; see,
e.g., the curves for larger �S in Fig. 2(b). Further increase of
the coupling to the superconductor eventually kills the Kondo
effect, since the system enters the mixed-valence regime.

B. Andreev transmission and conductance

1. Dependence on the coupling strength �

The Andreev transmission coefficient plotted as a function
of energy ω and dot level detuning δ is shown in Fig. 3 for
different values of the coupling to the normal lead �. The
left column corresponds to the case of a nonmagnetic lead,
while the right column presents the case when the lead is
ferromagnetic. The dashed lines show the energy of respective
Andreev bound states; cf. Eq. (4). In the case of a nonmagnetic
lead and when the coupling is small, TA(ω) exhibits narrow
peaks around the energies corresponding to resonances be-
tween the bound states, which occur for δ = ±√

U 2/4 − �2
S .

FIG. 3. (Color online) The Andreev transmission coefficient
TA(ω) as a function of energy ω and dot level detuning δ = ε + U/2
in the case of nonmagnetic (left column, p = 0) and ferromagnetic
(right column, p = 0.5) lead calculated for different couplings to
normal lead �, as indicated in the figure. The dashed line shows the
Andreev bound-state energies obtained from Eq. (4). The parameters
are U/D = 0.1, �S/U = 0.2, and T = 0.

However, with increasing �, the width of those peaks increases
and, in addition, an extra resonance at ω = 0 develops for
|δ| �

√
U 2/4 − �2

S ; see Fig. 3(e). In this transport regime the
dot is singly occupied and the resonance in TA(ω), which
occurs at the Fermi energy, is due to the Kondo effect.

When the lead is ferromagnetic, the transmission coefficient
is suppressed by approximately a factor of 2 as compared
to the nonmagnetic case; see Fig. 3. This is due to the fact
that transferring Cooper pairs between the superconductor and
ferromagnet involves two electrons of opposite spins. While
one of those electrons belongs to the spin-majority subband of
ferromagnetic lead, the other one is a spin-minority electron.
The density of states of minority carriers becomes then a
bottleneck for Cooper pair transport [25,26].

While for detunings |δ| >
√

U 2/4 − �2
S , that is in the case

when the dot occupancy is even, the behavior of TA(ω) is
similar to that in the case of p = 0; this is completely not
the case when the dot is singly occupied, especially for larger
�. First, one can see that transmission coefficient is enhanced
in the singly occupied dot regime not only at low energies,
but this enlargement extends to high energies, |ω| ≈ U/2.
Second, the Kondo resonance is now split, which is most
visible in the case of �/U = 0.06; see Fig. 3(d). This splitting
is due to the proximity effect with a ferromagnetic lead,
which results in the exchange field. If |�εexch| � TK, the
Kondo resonance becomes suppressed and there are only side
resonances occurring at ω = ±�εexch. Moreover, one can also
see that the splitting of the zero-energy peak in TA(ω) changes
with δ. This is due to a particular dependence of �εexch on
the dot detuning: �εexch = 0 for δ = 0 and it changes sign
when δ crosses zero [26]. In fact, a similar split Kondo
resonance has recently been observed experimentally in a
ferromagnet-quantum-dot-superconductor device [52]. When
the coupling to the normal lead increases, both TK and �εexch

are enhanced. However, while �εexch grows algebraically
with � [26], TK increases in an exponential way [36]; cf.
Eq. (7). Consequently, for �/U = 0.1, the splitting of the
Kondo resonance becomes obscured, see Fig. 3(f), since the
condition |�εexch| � TK is only very weakly satisfied.

From the transmission coefficient, by using Eq. (6),
one can calculate the dot-level detuning dependence of the
linear-response conductance. This is presented in Fig. 4,
where the left (right) column corresponds to the nonmagnetic
(ferromagnetic) case. Note the different scale for GA in the left
and right columns of the figure: the conductance for p = 0.5 is
approximately two times smaller compared to that in the case
of p = 0. When the coupling is relatively small, see the case
for �/U = 0.02, the qualitative difference between the p = 0
and p > 0 cases is hardly visible. The linear conductance
shows then only two resonant peaks for δ = ±√

U 2/4 − �2
S ,

the height of which becomes suppressed with increasing the
temperature; see Figs. 4(a) and 4(b). However, for larger
couplings between the dot and the normal lead, the differences
become more pronounced. This is especially visible in the
transport regime where the dot is singly occupied and the
interplay of the exchange field and the correlations leading to
the Kondo effect become essential.

First of all, one can see that the resonance peaks occurring
for δ = ±√

U 2/4 − �2
S become broadened when increasing

the coupling strength �. Moreover, the low-temperature
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FIG. 4. (Color online) The detuning dependence of the linear-
response conductance due to Andreev processes calculated for
different temperatures T and couplings to normal lead �, as indicated.
The left column corresponds to the case of p = 0, while the right
column shows the case of p = 0.5. The parameters are the same as
in Fig. 3. Note that the scale in the case of p = 0.5 is smaller by a
factor of 2 compared to the case of p = 0.

conductance in the singly occupied regime, −√
U 2/4 − �2

S <

δ <
√

U 2/4 − �2
S , rises with enhancing �. These two ef-

fects result simply from the fact that increasing � leads to
broadening of the dot levels and to an increase of the Kondo
temperature. It reveals as a gradual enhancement of the low-T
conductance in the transport regime where the dot is singly
occupied. This general tendency can be seen in the case of
both nonmagnetic and ferromagnetic leads. However, there
are important differences visible especially for �/U = 0.1; see
Figs. 4(e) and 4(f). While in the case of a nonmagnetic lead, GA

in the Kondo valley rises rather uniformly with decreasing T ;
for a ferromagnetic lead, this enhancement is most pronounced
for δ = 0. In fact, when the dot level is detuned from the
particle-hole symmetry point the conductance suddenly drops.
This results in a peak in GA as a function of δ, occurring for
δ = 0. When the temperature increases, however, this peak
becomes smeared and disappears. The occurrence of this peak
can be understood by invoking the relevant energy scales in
this problem: TK and �εexch (for fixed �S). By detuning the
dot level from δ = 0, the exchange field becomes finite and
increases with increasing |δ|. Consequently, once δ is such
that |�εexch| � TK, the Kondo resonance becomes obscured
and the conductance drops. In fact, the maximum value of GA

for δ = 0 is comparable in both cases of p = 0 and p = 0.5;

see Figs. 4(e) and 4(f). In the nonmagnetic case, however,
GA changes monotonically when moving away from δ = 0
towards resonances, contrary to the ferromagnetic case, when
GA behaves in a nonmonotonic way.

2. Dependence on the coupling strength �S

The Andreev transmission coefficient as a function of
energy ω and dot level detuning δ for different couplings
to superconducting lead �S is shown in Fig. 5. Again, the
right column presents the ferromagnetic lead case, while the
left one, for comparison, corresponds to the nonmagnetic
case. This figure illustrates how the transmission coefficient
changes when �S increases from low to high values, where for

FIG. 5. (Color online) The Andreev transmission coefficient
TA(ω) as a function of energy ω and dot level detuning δ in the
case of nonmagnetic (left column, p = 0) and ferromagnetic (right
column, p = 0.5) lead for different couplings to superconducting
lead �S , as indicated in the figure. Parameters are the same as in
Fig. 3 with �/U = 0.1.
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�S = U/2 the Kondo valley is absent and all Andreev bound
states are at resonance for δ = 0.

First, let us discuss a general tendency, which is visible
irrespective of the spin polarization of the normal lead.
When �S increases, the resonances for δ = ±√

U 2/4 − �2
S

move towards the particle-hole symmetry point and merge
when �S = U/2. Increasing �S is also associated with an
enhancement of the Kondo temperature; cf. Eq. (7). As a
consequence, once can see that the width of the Kondo peak
slightly increases with �S . However, for larger values of �S ,
see, e.g., �S/U � 0.4, the Kondo peak gets merged with the
two resonant peaks and only a single resonant peak occurs
with TA(ω) = 2; see Figs. 5(i) and 5(j).

The difference between the ferromagnetic and nonmagnetic
cases is most visible when the coupling to superconductor
is relatively low; see the case of �S/U � 0.2 in Fig. 5. For
�S/U � 0.2, one can clearly see the split Kondo resonance
in the transmission coefficient. However, further increase of
�S decreases the ratio of |�εexch|/TK, such that the exchange
field effects become suppressed and TA(ω) shows the restored
Kondo peak. (Note that TK depends exponentially on �S and
increases with rising the coupling to the superconductor.)
In other words, superconducting correlations win over the
ferromagnetic contact proximity effects and the transmission
coefficient for �S/U � 0.3 starts behaving very similarly in
both the p = 0 and the finite-p case; see Fig. 5.

This tendency is also clearly visible in the detunig de-
pendence of the linear conductance calculated for different
temperatures and values of �S corresponding to Fig. 5, which
is shown in Fig. 6. In the nonmagnetic case, increasing �S leads
to an enhancement of the linear conductance, until it eventually
reaches its maximum value, GA = 4e2/h, for δ = 0 and �S =
U/2. Note that this value persists to relatively high tempera-
tures and starts decreasing when T/U � 0.01; see Fig. 6(i).

Comparing the left and right column of Fig. 6 reveals
the nontrivial differences between the case of ferromagnetic
and nonmagnetic leads. Moreover, the differences are now
much better resolved compared to Fig. 5, especially at low
temperatures. In the case of finite p, one can clearly see a
resonant peak at δ = 0 for �S/U � 0.3. As mentioned above,
this peak is associated with the fact that the exchange field
vanishes at the particle-hole symmetry point and the Kondo
peak develops, while it becomes suddenly suppressed at small
but finite detuning. For larger couplings to superconducting
lead, the superconducting proximity effects dominate, and
the differences between the ferromagnetic and nonmagnetic
cases are suppressed. Consequently, the detuning dependence
of the conductance is then qualitatively the same in both cases,
though small quantitative differences can still be observed; see
Fig. 6.

3. Dependence on the spin polarization p

In the previous sections we have discussed the detuning
dependence of both TA(ω) and GA when either � or �S

was varied. Now, we assume constant couplings and study
how the Andreev transport properties depend on the degree
of spin polarization of ferromagnetic lead. In other words,
while approximately keeping the same superconducting parity
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FIG. 6. (Color online) The detuning dependence of the linear
conductance due to Andreev reflection for different temperatures. The
left column corresponds to the case of p = 0, and the right column
to the case of p = 0.5. Each row presents the results obtained for
different coupling �S , as indicated in the panels on the right-hand
side. Parameters are the same as in Fig. 3 with �/U = 0.1.

correlations and correlations leading to the Kondo effect, we
gradually increase the ferromagnetic proximity effects.

The corresponding detuning and energy dependence of the
Andreev transmission coefficient is shown in Fig. 7, where
each panel corresponds to different p, starting from p = 0 to
p = 0.9. Two main features can be immediately noticed. First,
increasing spin polarization leads to an overall suppression of
TA(ω). The reason for it has already been explained earlier
and is related with the mismatch between the majority and
minority subbands of the ferromagnet. Injecting or subtracting
Cooper pairs involves two electrons of opposite spin, thus
in an ideal case of a half metal, the Andreev reflection will
be fully blocked. Second, the splitting of the Kondo peak
with increasing p can be clearly visible. It can be seen that
this splitting increases with increasing p, which is directly
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FIG. 7. (Color online) The energy and dot level detuning de-
pendence of the Andreev transmission coefficient for different spin
polarization p of ferromagnetic lead, as indicated. Parameters are the
same as in Fig. 3 with �/U = 0.1 and �S/U = 0.2.

associated with the fact that the magnitude of �εexch grows
with rising p [26].

Interestingly, one can also note that rising spin polarization
p leads to an enhancement of TA(ω) in the singly occupied
regime for energies much larger than those corresponding to
the split Kondo resonance. In fact, this enhancement can be
seen in the whole range of energy ω considered in the figure,
except for ω ≈ 0; see, e.g., Fig. 7(f). Moreover, a similar
enhancement could be also observed in other figures presenting
the energy and detunig dependence of TA(ω); cf. Figs. 3(d)
and 5(b). The maximum of TA(ω) in this energy range occurs
around the position of the Andreev bound states. Furthermore,
although such enhancement of Andreev transmission occurs
in both cases of ferromagnetic and nonmagnetic leads, it is
more pronounced in the former case. This finding implies
that ferromagnetic proximity effects are relevant not only at
low-energy scales, of the order of �εexch where they condition
the occurrence of the Kondo effect, but they also play an
important role at larger energy scales. This is in accordance
with an observation that the exchange field can lead to a full
spin polarization of the Hubbard resonances in the spectral
function of the dot level, even when |�εexch| � U [60].

Intuitively, the enhancement of the Andreev transmission
for p > 0 can be explained as follows. For ferromagnetic lead
the local density of states of the quantum dot Aσ (ω) becomes
spin polarized at all energy scales. This polarization is such
that if A↑(ω) is enhanced with respect to the p = 0 case,
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FIG. 8. (Color online) The dot level detuning dependence of the
Andreev conductance for different temperatures and for different spin
polarization p, as indicated. Parameters are the same as in Fig. 3 with
�/U = 0.1 and �S/U = 0.2.

then A↓(−ω) is also enhanced, while A↓(ω) and A↑(−ω) are
suppressed. Thus, the probability of finding a pair of electrons
with opposite spins and energies increases. Consequently,
in the case of ferromagnetic lead the Andreev transport
becomes enhanced. However, one needs to keep in mind that
since Andreev transmission is proportional to (1 − p2)�2, cf.
Eq. (5), increasing the spin polarization of the ferromagnetic
lead will eventually result in the suppression of TA(ω).

The dependence of the linear conductance on the detuning
parameter δ calculated for different spin polarization p and
temperature T is shown in Fig. 8. When the spin polarization
increases, the magnitude of the low-temperature Andreev
conductance gets suppressed and a peak for δ = 0 develops.
The relative height of this peak increases with rising p. This
is due to the fact that �εexch grows with p [26]. When the
temperature increases, the peak in GA as a function of δ in the
center of the Coulomb blockade becomes smeared out, since
thermal fluctuations suppress the Kondo effect. Interestingly,
at high temperatures the dependence of conductance on the
parameter δ in the singly occupied dot regime again becomes
nonmonotonic. GA shows then a small minimum, which
develops for δ = 0; see Fig. 8. This minimum is associated
with the fact that TA(ω) in the case of a ferromagnetic lead is
suppressed in a narrow region around δ = 0 for energies larger
than the Kondo temperature; see also Figs. 3(d), 5(b), and 7.
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IV. CONCLUSIONS

In this paper we have studied the transport properties
of a hybrid superconductor-quantum-dot-ferromagnet device,
focusing on the Andreev reflection processes. The system
was modeled by an effective Hamiltonian with an on-dot
pairing term in the limit of large superconducting energy
gap. The calculations were performed by using the numer-
ical renormalization group method, employing the optimal
broadening, and z-averaging tricks to obtain high quality
spectral data for the determination of the Andreev transmission
coefficient. Generally, all transport characteristics revealed a
subtle interplay of the three important energy scales in the
problem: the Kondo temperature, the superconducting pairing
correlations, and the effective exchange field.

In particular, it was shown that the Andreev transmission
exhibits the Kondo resonance in the singly occupied dot
regime, which can be split by the exchange field. Moreover,
a suppression of the Andreev transmission was found at
the particle-hole symmetry point for energies larger than the
Kondo temperature. These effects were also revealed in the
dot level detuning dependence of the Andreev conductance
for different temperatures. At low T , GA showed a peak for

δ = 0 due to the Kondo effect, however, for larger temperatures
this peak developed into a local minimum. Furthermore,
the exchange-field effects were shown to dominate transport
behavior by splitting the Kondo resonance for moderate
couplings to the superconducting lead. With increasing the
strength of this coupling, the ferromagnetic proximity effects
were however becoming less and less important. This was
associated with an increase of the Kondo temperature when
increasing the superconducting pairing correlations, which led
to a lowering of the relevant excitation energies and, thus, to
an enhancement of the exchange interaction between the spin
in the dot and spins of itinerant electrons.
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Rev. B 76, 104514 (2007).
[10] J. Bauer, A. Oguri, and A. C. Hewson, J. Phys.: Condens. Matter

19, 486211 (2007).
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Perfect spin polarization in T-shaped double quantum dots due to the spin-dependent Fano effect
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We study the spin-resolved transport properties of T-shaped double quantum dots coupled to ferromagnetic
leads. Using the numerical renormalization group method, we calculate the linear conductance and the spin
polarization of the current for various model parameters and at different temperatures. We show that an effective
exchange field due to the presence of ferromagnets results in different conditions for Fano destructive interference
in each spin channel. This spin dependence of the Fano effect leads to perfect spin polarization, the sign of which
can be changed by tuning the dots’ levels. Large spin polarization occurs due to Coulomb correlations in the dot,
which is not directly coupled to the leads, while finite correlations in the directly coupled dot can further enhance
this effect. Moreover, we complement accurate numerical results with a simple qualitative explanation based
on analytical expressions for the zero-temperature conductance. The proposed device provides a prospective
example of an electrically controlled, fully spin-polarized current source, which operates without an external
magnetic field.

DOI: 10.1103/PhysRevB.90.115308 PACS number(s): 72.25.Mk, 73.63.Kv, 85.75.−d, 73.23.Hk

I. INTRODUCTION

Efficient generation and control of spin currents at the
nanoscale is one of the main goals of spin nanoelectronics
[1–5]. This is because highly spin-polarized currents can
be used to address and detect the spin state of a magnetic
nanostructure, such as, e.g., a magnetic quantum dot or a
single molecular magnet [6–8], which is of vital importance
for applications in information storage technologies. One of
the easiest ways to generate high spin polarization P of the
current is to apply an external magnetic field to the system.
If one considers then a singly occupied quantum dot, the
current becomes fully spin-polarized provided the transport
voltage is smaller than the corresponding Zeeman splitting
of the dot’s level. However, this method has two drawbacks:
First, the magnetic field needs to be strong enough to ensure
that P ≈ 1 in a sufficiently large range of bias voltage, which,
however, can lead to undesired effects in the nanosystem, on
which the spin-polarized current is to act. Second, changing the
sign of P requires a change in the direction of the magnetic
field, which in typical experiments cannot be realized at a
rate comparable to operations one would like to perform in a
competitive spintronic device.

It has recently been shown that these disadvantages can
be overcome by using a quantum dot or a molecule strongly
coupled to ferromagnetic leads [9]. The presence of ferro-
magnets results then in the occurrence of an exchange field,
which leads to the splitting of the dot level similarly to an
external magnetic field [10–14]. Now one obtains a splitting,
whose sign and magnitude can be controlled by a gate voltage,
without any need to apply an external magnetic field. This
splitting can lead to an enhancement of the spin polarization.
However, to reach full spin polarization, the system needs to
be highly left-right asymmetric [9,15].

In this paper, we propose a device with which one can
induce perfect spin polarization without an external magnetic
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FIG. 1. (Color online) The spin-resolved linear conductance, Gσ ,
the total conductance, G, and the spin polarization, P , obtained by
the numerical renormalization group method, as a function of the first
dot level ε1 for typical DQD parameters indicated in the figure. The
spin-dependent Fano effect leads to perfect spin polarization, the sign
of which can be controlled by tuning the dot level position. See Sec. II
for details of the model and method.

field that can be controlled by purely electrical means. The
device does not need to be asymmetric either. It consists
of a double quantum dot (DQD) in a T-shaped geometry
coupled to external ferromagnetic leads. In this geometry,
only one of the dots is coupled directly to the leads, while
the second dot is coupled indirectly, through the first dot;
see the inset of Fig. 1. In T-shaped DQDs, the interference
of different conduction paths can lead to Fano antiresonance
in the linear conductance [16–18]. In addition, the exchange
field induced by the coupling to ferromagnets gives rise to
the spin splitting of the dots’ levels. We will show that this
leads to different conditions for destructive Fano interference
in each spin channel. As a result, there is a range of DQD
level positions where the difference between the conductance
in each spin channel is as large as a few orders of magnitude,
and the spin polarization becomes essentially perfect. This
is illustrated in Fig. 1, which shows the linear conductance
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and the spin polarization as a function of the first dot level
position for typical DQD parameters indicated in the figure,
calculated by using the numerical renormalization group
(NRG) method [19]. The mechanism leading to |P| → 1 is
clearly visible: the spin-resolved conductance Gσ displays
Fano antiresonance at different ε1. This gives rise to full spin
polarization, which changes sign just at the level position
where G is minimum. Importantly, the whole operation is
performed without any external magnetic field and can be
controlled by only electrical means.

Recently, the transport properties of T-shaped DQDs cou-
pled to nonmagnetic leads have been analyzed by Dias da Silva
et al. [20]. They focused on the role of an external magnetic
field and demonstrated that such a system may work as a spin
valve, producing spin polarization of the current P ≈ ±1 in
an appropriately adjusted field. This effect also stems from
the spin-dependent Fano effect, in which the positions of
Fano dips in respective spin channels are shifted with respect
to each other. Similar spin filtering effects have also been
studied in transport through a quantum dot side-coupled to
a quantum wire [21–23]. In our device with ferromagnetic
contacts, we show that the same is possible without applying
any magnetic field. The spin polarization is then controlled by
tuning the DQD’s levels, which is, no doubt, preferable from an
application point of view. We note that the transport properties
of T-shaped DQDs with ferromagnetic contacts have already
been addressed in a few papers [24–27]. These considerations
were, however, restricted to a rather weak-coupling regime,
and the effects of the exchange field were not properly taken
into account. Our analysis is performed with the aid of NRG,
which allows us to study the effects related to a ferromagnetic-
contact-induced exchange field in a very accurate way.

This paper has the following structure: Having introduced
the model and method in Sec. II, in Sec. III we discuss
the behavior of the spectral function determining the linear
conductance, and we explain the physical reasons for the
occurrence of enhanced spin polarization in the system.
We also provide approximate analytical formulas for the
exchange field, which agree well with the NRG results. Finally,
we present the results of NRG calculations for the linear
conductance and the spin polarization in Sec. IV, and we
conclude the paper in Sec. V.

II. MODEL AND METHOD

We consider a double quantum dot forming a T-shaped
configuration coupled to ferromagnetic leads whose magneti-
zations are oriented in parallel; see the inset of Fig. 1. The first
dot is coupled directly to the left (right) lead with coupling
strength �Lσ (�Rσ ), while the second dot is coupled to the first
one through the hopping parameter t . The Hamiltonian of the
system has the form

H = HF + HT + HDQD, (1)

where

HF =
∑

r=L,R

∑
kσ

εrkσ c
†
rkσ crkσ (2)

is the Hamiltonian of ferromagnetic leads treated in a nonin-
teracting particle approximation, the tunneling Hamiltonian is

given by

HT =
∑

r=L,R

∑
kσ

Vrkσ (d†
1σ crkσ + c

†
rkσ d1σ ), (3)

and the DQD Hamiltonian reads

HDQD =
∑
jσ

εjσ d
†
jσ djσ +

∑
j

Ujd
†
j↑dj↑d

†
j↓dj↓

+ t
∑

σ

(d†
1σ d2σ + d

†
2σ d1σ ). (4)

Here, djσ annihilates an electron with spin σ on dot j , crkσ

annihilates an electron with spin σ and momentum k in lead
r , εjσ and εrkσ denote the energies of respective electrons,
Uj is the Coulomb interaction on dot j , and Vrkσ denotes
the corresponding tunnel matrix element. The spin-dependent
coupling to the contact r is given by �rσ = ∑

k πρrσ |Vrkσ |2,
where ρrσ is the spin-dependent, normalized density of states
of lead r . Here, we model the coupling by �rσ = (1 + σp)�r ,
where p is the spin polarization of the ferromagnets and �r =
(�r↑ + �r↓)/2. In the following, we assume �L = �R ≡ �/2.
We also assume that the Coulomb correlations between the
two dots are very weak and can be neglected. We use the band
half-width as the energy unit, D ≡ 1.

The linear-response conductance in spin channel σ can be
found from [28]

Gσ = e2

h
�σ

∫
dω

∂f (ω)

∂ω
Im 〈〈d1σ |d†

1σ 〉〉ret

ω
, (5)

where �σ = �Lσ + �Rσ , f (ω) is the Fermi-Dirac distribution

function, and 〈〈d1σ |d†
1σ 〉〉ret

ω
denotes the Fourier transform of the

retarded Green’s function of the first quantum dot.
To obtain reliable results of high accuracy for our strongly

interacting system, we employ the numerical renormalization
group method [19]. By using the complete eigenbasis of
the NRG Hamiltonian, we construct the thermal density
matrix of the system [29,30], which allows us to calculate
various correlation functions at arbitrary temperatures. Here, to
perform calculations, we use the Budapest Flexible DM-NRG
code [31,32].

The main quantity in which we are interested, apart from
linear conductance, is the spin polarization, which is defined
as

P ≡ G↑ − G↓
G↑ + G↓

. (6)

At zero temperature, formula (5) simplifies considerably to

Gσ = (e2/h)π�σA1σ (0), where A1σ (ω)=−Im 〈〈d1σ |d†
1σ 〉〉ret

ω
/

π denotes the spin-resolved spectral function of the first dot.
Then, the spin polarization can be expressed in terms of the
normalized spectral function, A1σ (ω) = π�σA1σ (ω), taken
at ω = 0, as P = [A1↑(0) − A1↓(0)]/A1(0), with A1(ω) =∑

σ A1σ (ω).

III. ORIGIN OF ENHANCED SPIN POLARIZATION

Since the linear conductance and the spin polarization are
expressed in terms of the first dot’s spectral function, we will
focus on its behavior. To understand the origin of large spin
polarization in the considered system, we first consider the case
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of noninteracting T-shaped DQD and then study the effect of
Coulomb correlations.

A. Noninteracting case

For U1 = U2 = 0, with the aid of the equation of motion,
the spectral function of the first dot can be expressed as

A1σ (ω) = 1

π

�σ

[ω − ε1σ − t2/(ω − ε2σ )]2 + �2
σ

. (7)

Then, the spin-resolved linear conductance at zero temperature
is given by

Gσ = e2

h

�2
σ

(ε1σ − t2/ε2σ )2 + �2
σ

. (8)

Let us now consider some limiting cases. For nonmagnetic
leads, p = 0, and in the absence of magnetic field, εjσ = εj ,
the linear conductance at T = 0 is given by

G = 2e2

h

�2

(ε1 − t2/ε2)2 + �2
, (9)

which for ε1 = 0 yields

G = 2e2

h

E2

1 + E2
, (10)

with E = ε2/�2 and �2 = t2/�. This is the well-known Fano
formula describing symmetric antiresonance as a function of
energy E [16,33]. For ε1 = 0, the half-width of the minimum
in G is given by t2/�. When ε1 	= 0, the antiresonance is still
located at ε2 = 0, however it becomes asymmetric [18].

In the presence of an external magnetic field B, the position
of the Fano antiresonance depends on spin, see Eq. (8),
since it occurs at ε2σ = ε2 + σB/2 = 0, where gμB ≡ 1.
Consequently, while for one spin direction the conductance
is finite, for the other one it can be fully suppressed, leading
to |P| = 1. Assuming p = 0 and ε1σ = ε2σ = ε + σB/2, the
spin polarization is then given by

P = εB[t4 − (ε2 − B2/4)2]

(ε2 + B2/4)t4 + (ε2 − B2/4)2(ε2 + B2/4 + �2 − 2t2)
.

(11)

For ε = B/2, one has P = 1, while for ε = −B/2, P = −1.
Thus, for finite B, the spin polarization can be enhanced to its
maximum value, and its sign can be changed, depending on the
DQD’s levels. This effect is completely destroyed in B = 0,
unless p 	= 0. In the case of ferromagnetic leads and in the
absence of magnetic field (henceforth we assume εjσ ≡ εj ),
for the spin polarization of the linear conductance, one finds

P = 2p

1 + p2

(ε1 − t2/ε2)2

(ε1 − t2/ε2)2 + (1 − p2)2�2/(1 + p2)
. (12)

From this formula, it follows that P = 0 for ε1ε2 = t2 and
P = 2p2/(1 + p2) for ε2 = 0, irrespective of ε1. Thus, the
spin polarization is finite, 0 � P � 2p/(1 + p2), but it does
not change sign and is always smaller than unity for p < 1.

The spin-resolved conductance and the spin polarization
for noninteracting dots are plotted in Fig. 2. In the absence of
magnetic field, for ε1 = 0, the linear conductance in each spin
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FIG. 2. (Color online) The spin-resolved linear conductance
(first row) and the spin polarization (second row) as a function of
ε2 for two values of ε1, as indicated, and for t = 2� in the case of
noninteracting DQDs. The left column corresponds to p = 0.4 and
B = 0, while the right column to p = 0 and B = �.

channel displays a symmetric antiresonance as a function of ε2

located at ε2 = 0, which becomes asymmetric once ε1 	= 0; see
Fig. 2(a). The spin polarization is also asymmetric for ε1 	= 0.
Moreover, P is positive in the whole range of ε2 and becomes
fully suppressed for ε2/� = t2/(ε1�) = 4/3; see Fig. 2(b).
At this point, the linear conductance reaches its maximum
value, irrespective of spin channel σ . In the case of a finite
magnetic field and nonmagnetic leads, the Fano antiresonance
is asymmetric in each spin channel even for ε1 = 0 [Fig. 2(c)],
and the minimum in Gσ occurs at different ε2. This leads to
full spin polarization P , which can change sign in a certain
range of ε2; see Fig. 2(d). Figure 2 clearly demonstrates the
difference between the two cases discussed above. In the
case of noninteracting dots, spin-dependent tunneling due to
�↑ 	= �↓ (in the absence of B) does not lead to a spectacular
dependence of P on the DQD’s levels.

B. Interacting case

The spin polarization of the T-shaped DQD with ferromag-
netic contacts for B = 0 can be enhanced considerably when
one includes the interactions in the dots. For finite U1 and U2,
the Green’s function of the first dot is given by

〈〈d1σ |d†
1σ 〉〉−1

ω
= ω − ε1 − 	1σ (ω) − t2

ω − ε2 − 	2σ (ω)
+i�σ ,

(13)

where the self-energy 	jσ is defined as

	jσ (ω) = Uj

〈〈djσ njσ̄ |d†
1σ 〉〉

ω

〈〈djσ |d†
1σ 〉〉

ω

(σ̄ ≡ −σ ). (14)

One can now use the equation-of-motion technique to find
the higher-order Green’s functions and solve the problem by
using an appropriate decoupling scheme. This is, however,
not the goal of our paper, since we calculate the Green’s
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functions by NRG, which enables us to obtain very accurate
results. Nevertheless, to get some intuitive understanding of
what happens in correlated T-shaped DQDs, let us consider
the zero-temperature conductance (note that for w = 0, the
self-energy is real),

Gσ = e2

h

�2
σ

{ε1 + 	1σ (0) − t2/[ε2 + 	2σ (0)]}2 + �2
σ

. (15)

Then, we employ the simplest mean-field approximation to
the self-energies, 	jσ ≈ Uj 〈njσ̄ 〉, which allows us to extract a
few interesting conclusions from Eq. (15). The most important
one is that when ε2 + U2〈n2σ̄ 〉 = 0, the conductance in spin
channel σ becomes suppressed due to the Fano destructive
interference. If 〈n2↑〉 	= 〈n2↓〉, the conditions for conductance
suppression are different in each spin channel. The spin
imbalance in dot-level occupation can be induced by the
presence of an exchange field, as described in the following
subsection.

The difference in the positions of Fano antiresonances for
different spin channels is illustrated in Fig. 1. Indeed, G↑ has
a minimum for different ε1 compared to G↓, and the resulting
P reaches ±1. Moreover, it can be observed that P changes
sign at the level position for which the total conductance is
minimum.

The second significant conclusion, which can be drawn
from Eq. (15), is that it is sufficient to have different
occupations for given spin only in the second dot. This implies
that the first dot does not need to be interacting. Finally, the
enhanced spin polarization occurs when the second dot is in the
local moment regime, −U2 < ε2 < 0, while no such restriction
is imposed on the first dot.

C. Exchange field

The coupling to external leads gives rise to renormalization
of the DQD’s levels. Since in the case of ferromagnetic
leads the coupling �σ depends on spin direction, the level
renormalization is also spin-dependent. This results in spin-
splitting of the levels, 
ε

(j )
exch = δεj↑ − δεj↓, where 
ε

(j )
exch is

the exchange field on dot j and δεjσ denotes the respective
spin-dependent level renormalization.

Contrary to the Zeeman splitting caused by an external
magnetic field, the sign and magnitude of the splitting induced
by ferromagnetic leads can be tuned by changing the position
of the quantum dot levels [10,34]. To understand the effect of
an exchange field on transport through T-shaped DQDs, we
will consider some limiting situations. In the case of t = 0,
the exchange field on the first dot can be found within the
perturbation theory, which in the second order gives [10,34]


ε
(1)
exch = 2p�

π
log

∣∣∣∣ ε1

ε1 + U1

∣∣∣∣. (16)

Note that 
ε
(1)
exch clearly results from correlations and vanishes

for U1 = 0. Moreover, it also vanishes at the particle-hole
symmetry point, δ1 = 0, with δj = εj + Uj/2, denoting the
detuning of dot j from the symmetry point.

Now, let us see what happens in the second dot. Since,
as follows from previous discussion, to obtain large spin
polarization it is sufficient to have interactions only in the
second dot, we now assume U1 = 0. The hybridization of the

second dot depends on the local density of states of the first
dot, �2σ (ω) = πA0

1σ (ω)t2, where A0
1σ (ω) denotes the spectral

function of the first dot in the case of t = 0,

A0
1σ (ω) = 1

π

�σ

(ω − ε1)2 + �2
σ

. (17)

In this way, the model becomes equivalent to the Anderson
model with a Lorentzian density of states. Since the leads
are ferromagnetic, A0

1σ (ω) depends on spin through �σ ,
and so does �2σ (ω), which for low energies (ω = 0) and
ε1 = 0 becomes equal to t2/�σ . Note that the dependence
of couplings on spin is opposite in each dot: while �↑ > �↓,
for the second dot the spin-down level is more strongly coupled
than the spin-up one, �2↑(0) < �2↓(0). In the second order of
perturbation theory, renormalization of the second dot’s level
is given by

δε2σ = 1

π

∫
dω

[
�2σ (ω)f −(ω)

ε2 − ω
+ �2σ̄ (ω)f (ω)

ω − ε2 − U2

]
, (18)

where f −(ω) = 1 − f (ω). When assuming the limit of zero
temperature, taking ε1 = 0, and approximating the hybridiza-
tion by �2σ (ω) = t2/�σ , for the exchange field 
ε

(2)
exch one

finds


ε
(2)
exch = − t2

π�

2p

1 − p2
log

∣∣∣∣ ε2

ε2 + U2

∣∣∣∣. (19)

Although this formula is very simplified, it still allows us to
correctly extract the intuitive behavior of the system. First
of all, one can see that the presence of ferromagnets is also
revealed in the second dot. It leads to the exchange field, which
has a similar dependence on the level position, in the way that
it vanishes for δ2 = 0, but it has a different magnitude and
sign (for given detuning) compared to 
ε

(1)
exch; cf. Eq. (16).

Thus, if one would like to mimic the effect of an external
magnetic field by the exchange field, the detuning in each dot
should have an opposite sign. However, it is worth stressing
that the exchange field offers much more flexibility, since it
allows the spin-splitting to be tuned in each dot separately
by gate voltages. For completeness, we also present the zero-
temperature formula for the exchange field 
ε

(2)
exch in the case

of ε1 	= 0 and for energy-dependent hybridization �2σ (ω). It
is given by


ε
(2)
exch =

∑
σ

σ
t2

2
[L�σ

(U2 − 
) − L�σ
(
)]

−
∑

σ

σ
t2

π
arctan

(
ε1

�σ

)
[L�σ

(U2 − 
) + L�σ
(
)]

−
∑

σ

σ
t2

2π
LU2−
(�σ ) log

(ε2 + U2)2

ε2
1 + �2

σ

+
∑

σ

σ
t2

2π
L
(�σ ) log

ε2
2

ε2
1 + �2

σ

, (20)

where Ly(x) = x/(x2 + y2) and 
 = ε1 − ε2.
We note that in the case of a noninteracting first dot, the

model corresponds to the single-impurity Anderson model
with nonconstant density of states. At low temperatures,
one should then expect a single-stage Kondo effect to occur
[20,35–40]. However, due to the presence of the exchange
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FIG. 3. (Color online) The normalized spectral function of the
second dot A2(ω) plotted as a function of energy ω and position
of the second dot level ε2 for (a) ε1 = 0, (b) ε1 = −0.05�, (c) ε1 =
−0.1�, (d) ε1 = −0.15�, (e) ε1 = −0.2�, and (f) ε1 = −0.25�. The
dashed lines present the results obtained from analytical formula (20).
The parameters are U1 = 0, U2 = U = 0.5, � = U/5, t = �/2, and
p = 0.4.

field, the Kondo resonance becomes suppressed, which hap-
pens once |
ε

(2)
exch| � TK , where TK is the Kondo temperature.

Thus, for T-shaped DQDs with ferromagnetic contacts, the
Kondo effect is generally suppressed. In Fig. 3, we show the
NRG results on the normalized spectral function of the second
quantum dot, A2(ω) = ∑

σ πt2A2σ (ω)/�σ , where A2σ (ω)
denotes the spectral function of the second dot. For ε1 = 0,
at the particle-hole symmetry point, δ2 = 0, the effect of
the exchange field is negligible and the spectral function
exhibits Kondo resonance [35–37]. The Kondo temperature,
defined as the half-width at half-maximum of the Kondo peak
in the spectral function, for parameters assumed in Fig. 3
and for ε1 = 0 and δ2 = 0, is equal to TK ≈ 0.005�. When
δ2 	= 0 and |
ε

(2)
exch| � TK , the exchange field leads to the spin

splitting of the Kondo resonance; see Fig. 3(a). We note that
such a splitting of the Kondo effect due to the presence of
ferromagnets has already been observed experimentally in
single quantum dots [11–13]. When ε1 	= 0, the splitting of
the Kondo resonance becomes asymmetric around δ2 = 0, and
the point where the exchange field is suppressed moves toward
the resonance at ε2 = 0 until it actually merges with the
resonant peak. One observes then a spin splitting whose
magnitude can be tuned, but the sign does not change; see
Fig. 3. In the case of |
ε

(2)
exch| � TK , the Kondo peak is split

and the spectral function shows only side resonances, which
occur at ω = ±|
ε

(2)
exch| [13]. The dashed lines in Fig. 3 show

the positions of these resonances based on Eq. (20). As can be
seen, they match nicely with the numerical data for all values
of ε1 presented in the figure.

As follows from the above discussion, the effective ex-
change field induced by the presence of ferromagnets can
be conveniently tuned by sweeping the gate voltages and
adjusting the positions of the DQD’s levels. This is of
importance from an experimental point of view. We also note
that in general the splitting of the Kondo peak can also occur in
the case of relatively large hopping between the dots [38–40].
However, for parameters assumed in Fig. 3, such splitting is
absent [39]. The observed splitting is exclusively due to the
presence of the exchange field.

IV. NUMERICAL RESULTS

In the following, we present and discuss the numerical
results on the spin-resolved linear conductance Gσ and the spin
polarization P . Previous discussion showed that for the full
spin polarization to occur, it is necessary to have interactions
in the second dot, while the first dot can be noninteracting.
Therefore, we first study the case of U1 = 0 and finite U2,
and then we also include the interactions in the first dot and
analyze how they influence the linear conductance and the
spin polarization of the system. Finally, we discuss the effect
of finite temperature on transport properties.

We also note that to observe an enhanced spin polarization
and tune its sign, one can fix the level of one of the dots and
tune the other one. Since it is crucial to have an exchange
field in the second dot, we thus fix the level of the second
dot, such that δ2 	= 0, and tune the position of the first dot.
(This is what is presented in Fig. 1 for a general interacting
case.) Nevertheless, we also present the density plot of the spin
polarization as a function of both ε1 and ε2.

A. The case of noninteracting first dot

The total linear conductance and spin polarization in the
case of U1 = 0 and U2 = U = 0.5 are shown in Fig. 4 for two
values of the coupling � and for different hoppings t between
the dots. The position of the second dot level is ε2 = −U/3, to
assure that the exchange field effects are present in the system.
Since the strength of the exchange field is proportional to
�2 = t2/�, cf. Eq. (19), by increasing t one also increases
the magnitude of the exchange-field-induced spin splitting
of the second dot’s level. As a consequence, the conditions
for destructive interference change in each spin channel with
tuning t , and the dependence on t is different for each coupling
�; see Fig. 4.

First of all, one can see that by increasing t , the total
conductance decreases. For large t [see, e.g., the case of
t = 1.5� in Fig. 4(a) or t = � in Fig. 4(b)], the conductance is
three or four orders of magnitude smaller than the conductance
quantum. Although these values are rather small, they are still
measurable experimentally. In fact, similar values of G occur
in quantum dots in the cotunneling regime [41]. For ε1, where
G takes its minimum value, the spin polarization changes sign
and becomes negative. This sign change becomes enhanced
upon increasing the exchange field (increasing t), and for large
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FIG. 4. (Color online) The linear conductance (first row) and the
spin polarization (second row) as a function of ε1 for �/U = 0.1
(left column) and �/U = 0.2 (right column) calculated for different
values of the hopping t between the dots, as indicated. The parameters
are U1 = 0, U2 = U = 0.5, ε2 = −U/3, p = 0.4, and T = 0.

t , the spin polarization becomes perfect and changes sign from
+1 to −1. Thus, for given t and nonzero detuning δ2 	= 0, the
spin polarization can be tuned by only electrical means, namely
by shifting the position of the first dot level with a gate voltage.
The role of the exchange field is crucial here, which can be
deduced from the fact that the effect disappears for δ2 = 0
when 
ε

(2)
exch = 0; cf. Eq. (19).

The minimum in Gσ occurs for such ε1 that 	2σ (ω =
0) = −ε2; cf. Eq. (15). This is explicitly illustrated in Fig. 5,
which shows the spin-dependent conductance, Gσ , and self-
energy for ω = 0, 	2σ (ω = 0), and a function of ε1 for two
different hoppings: t = 0.7� (left column) and t = � (right
column). Since in calculations we assumed ε2/U2 = −1/3,
the minimum in Gσ occurs precisely at the point where
	2σ (ω = 0) = 1/3; see Fig. 5.

As mentioned in the preceding section, for U1 = 0 the
model is equivalent to the single-impurity Anderson model
with a Lorentzian density of states. Then, the Friedel sum
rule [42] allows one to relate the conductance through the
system to the spin-resolved occupation of the second dot. For
t 
 �, it can be written as Gσ = (e2/h) cos2(π〈n2σ 〉) [23].
Thus, the conductance in spin channel σ should be suppressed
when 〈n2σ 〉 = 1/2. However, for stronger hoppings, t ∼ �,
the condition 〈n2σ 〉 = 1/2 is not necessarily fulfilled and the
application of the Friedel sum rule becomes more complicated.
The spin-resolved occupations of the second dot as a function
of ε1 are shown in Figs. 5(c) and 5(d). The critical occupation
for which the conductance becomes minimum is still of
the order of 1/2, but its precise value is different. On the
other hand, for larger values of t , the phase shift, which
determines the position of the conductance minimum, is given
by a rather complex expression even in the particle-hole
symmetry point [20]. In the case of significant particle-hole
symmetry breaking, as considered in this paper (note that
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(d)

FIG. 5. (Color online) (a) and (b) The spin-resolved and total
conductances, and (c) and (d) the spin-dependent occupations
together with the self-energies for ω = 0 of the side-coupled quantum
dot as a function of ε1 calculated by NRG for �/U = 0.2, t = 0.7�

(left column), and t = � (right column). The vertical dotted lines
mark the positions where the minima in spin-dependent conductance
occur. The horizontal lines correspond to −ε2/U2 = 1/3 and 1/2.
The minimum of Gσ occurs at the crossing of 	2σ (0)/U2 with 1/3;
cf. Eq. (15). The Friedel sum rule predicts the minimum to occur
when 〈n2σ 〉 = 1/2. The other parameters are the same as in Fig. 4.

this is a necessary condition to have the exchange field
present in the system), it is very difficult to utilize the Friedel
sum rule; nevertheless, the condition 	2σ (ω = 0) = −ε2 is
always correct as long as T = 0. Finally, one can notice
that the simplest mean-field approximation used in Sec. III,
	2σ = U2〈n2σ̄ 〉, leading to the condition 〈n2σ̄ 〉 = −ε2/U2 for
the minimum in Gσ , is also violated; see Figs. 5(c) and 5(d).
However, the qualitative analysis of the system behavior based
on this approximation is still sound.

The explicit dependence of the linear conductance and spin
polarization on both ε1 and t is shown in Fig. 6 for �/U = 0.2.
The conductance is plotted on a logarithmic scale to indicate
the position of the conductance minimum due to the Fano
effect. Clearly, the minimum occurs at different level positions
in each spin channel; see Figs. 6(c) and 6(d). Moreover, the
spin-up conductance is generally much larger than the spin-
down conductance, except for the level position where G↑ is
suppressed by the Fano effect. Consequently, for this level
position, the total conductance has a minimum [Fig. 6(b)],
while the spin polarization changes sign and becomesP ≈ −1,
otherwise P ≈ 1; see Fig. 6(a). Note also that the position of
the minimum in Gσ occurs at different ε1 for different t , which
results directly from the dependence of the exchange field
on t .

B. Fully interacting case

Let us now include the interactions in the first dot, U1 	= 0.
The linear conductance and spin polarization as a function of
the first dot detuning δ1 for different correlations U1 are shown
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FIG. 6. (Color online) The spin polarization P (a) and the log-
arithm of the linear conductance G (b), G↑ (c), and G↓ (d) as a
function of ε1 and t calculated for parameters the same as in Fig. 4
with �/U = 0.2.

in Fig. 7. This figure is calculated for U2 = 0.5, � = t = U2/5,
and ε2 = −U2/3. For finite U1 and δ1 	= 0, the exchange field
also develops in the first dot, cf. Eq. (16). We note that treating
the exchange field in each dot separately is mainly to increase
the intuitive understanding of the physics. However, we need to
stress that for larger hoppings, t � �, transport occurs through
molecular many-body states of the DQD, and formulas (19)
and (20) based on perturbation theory in t present only very
crude estimations.
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FIG. 7. (Color online) The linear conductance (a) and the spin
polarization (b) as a function of the first dot detuning δ1 calculated for
different Coulomb correlations in the first dot, as indicated. The other
parameters are U2 = 0.5, � = t = U2/5, ε2 = −U2/3, p = 0.4, and
T = 0.

By increasing U1, the exchange field effects become
generally enhanced. It can be seen that the minimum in G

and P as a function of δ1 changes position with U1; see Fig. 7.
Moreover, the width of both the conductance minimum and the
spin-polarization sign change also increase with increasing
U1. For example, when U1 = U2, both G and P exhibit
an approximately symmetric minimum as a function of δ1.
Interestingly, for U1 = U2/5, the effect of the spin-polarization
sign change is weakened, while the conductance suppression
is then very large. For these parameters, the conditions for the
Fano effect in each spin channel become roughly equal, and the
minimum in Gσ occurs at comparable δ1 in each spin channel.
We also note that for positive detuning, δ1 > 0 (notice also
that δ2 > 0 in Fig. 7), the spin polarization is approximately
equal to 1 and no sign change occurs. This can be understood
by realizing that the exchange field mimics the effect of an
external magnetic field only when δ1/|δ1| = −δ2/|δ2|, i.e.,
when the detuning in each dot has different sign; cf. Eqs. (16)
and (19). Consequently, one should expect that the sign change
of spin polarization will occur when δ1 ≶ 0 and δ2 ≷ 0. This
is indeed what we observe in the fully interacting case, as can
be seen in Fig. 8 calculated for U1 = U2, which shows the spin
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FIG. 8. (Color online) The spin polarization as a function of the
DQD levels ε1 and ε2 calculated for U1 = U2 = U = 0.5. The other
parameters are the same as in Fig. 7.

polarization as a function of the double quantum dot levels ε1

and ε2.
Figure 8 clearly demonstrates all the features expected on

the basis of analytical formulas presented in Sec. III. The spin
polarization is very large (approximately equal to 1) and may
change sign (reaching P = −1) as a function of either ε1 or ε2.
However, this sign change occurs when the detunings δ1 and
δ2 have opposite signs. Moreover, this interesting behavior of
the spin polarization occurs when the second dot is in the local
moment regime, −U < ε2 < 0, irrespective of the first dot’s
occupancy. In other words, for any ε2 such that −U < ε2 < 0
and ε2 	= −U2/2, there exists such ε1, that the spin polarization
changes sign and becomes −1. This sign change occurs at
the level position where the linear conductance exhibits a
minimum. The magnitude of the conductance is then of the
order of that in the cotunneling regime.

C. Finite temperature

Finally, we consider the effect of finite temperature on
the operation of our spin-polarized current source. The δ1

dependence of the linear conductance and the spin polarization
calculated for different temperatures T is shown in Fig. 9 for
the fully interacting case with U1 = U2 = U . This figure was
calculated for ε2 = −U2/3, which implies that the exchange
field is much larger than the Kondo temperature, and the Kondo
effect is suppressed. Thus, there is no universal energy scale.
Because the coupling � is directly measurable and determines
another important energy scale, namely the exchange field,
in Fig. 9 we express the temperature in units of � = U/5.
One can see that by increasing T , the conductance suppression
becomes weakened, since thermal fluctuations generally sup-
press the Fano effect. Consequently, the absolute value of the
spin polarization is also decreased. Moreover, the effect of the
sign change of P , directly associated with the spin-dependent
Fano effect, also becomes smeared out by finite temperature.
As can be seen in Fig. 9, the desired device operation persists
only at low temperatures, while already at T = �/10 the
conductance does not show any minimum due to interference
effects and the spin polarization is almost independent of δ1,
with P ≈ p.
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FIG. 9. (Color online) The linear conductance (a) and the spin
polarization (b) as a function of δ1 calculated for different temper-
atures T and for U1 = U2 = U = 0.5. The inset in (b) presents the
temperature dependence of P for δ1 = 0 and δ1/� = −0.48. The
other parameters are the same as in Fig. 7.

The explicit dependence of the spin polarization for two
representative level detunings is shown in the inset of Fig. 9(b).
For δ = −0.48�, P = −1 for T → 0, however once T >

�/1000, the absolute value of spin polarization starts slowly
decreasing. On the other hand, for δ = 0, the spin polarization
is equal to unity at low temperatures and decreases once
T > �/100. In fact, the relevant energy scale is given by
the magnitude of the exchange field. For realistic parameters,
with � ∼ meV, the device should operate at clearly cryogenic
temperatures. However, for molecules, where both U and
� can be larger, the relevant temperature range could be
increased.

V. CONCLUSIONS

In this paper, we have considered transport properties
of T-shaped double quantum dots coupled to ferromagnetic
leads. The calculations have been performed with the aid of
the numerical renormalization group method, which allowed
us to accurately determine the spectral functions, the linear
conductance, and the spin polarization of the current. Transport
properties of the considered system are determined by the
Fano effect, which reveals itself as an antiresonance in linear
conductance when changing the DQD levels. On the other
hand, the presence of ferromagnets results in an exchange
field that splits the levels in the dots. This results in the
spin dependence of the Fano effect—the conditions for Fano
destructive interference are different in each spin channel.
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Because the magnitude and sign of the exchange field can
be controlled by changing the DQD’s levels, one can tune
the conductance suppression in each spin channel. As a
consequence, there is a range of parameters where one of
the conductances is much larger than the other one and the
device exhibits perfect spin polarization. Moreover, because
the sign of the spin polarization can be changed by tuning the
levels, the operation of the device can be controlled by purely
electrical means, namely by appropriately sweeping the gate
voltages. Our device thus provides a prospective example of
an electrically controlled, fully spin-polarized current source,
which operates without the need to apply an external magnetic
field.

From analytical analysis, we have found that to get perfect
spin polarization, it is necessary to have finite Coulomb
correlations in the dot, which is not directly coupled to the
leads (the second dot). Moreover, this dot should be in the
local moment regime, while no such restriction is imposed
on the first dot, which can be noninteracting. These findings
have been confirmed by detailed NRG calculations, which
also revealed that finite Coulomb correlations in the first dot
can further increase the range of parameters where the sign
change of spin polarization occurs. Studying the conductance
at finite temperatures, we have shown that thermal fluctuations

smear out the effects of interest, which persist only at low
temperatures.

Finally, we note that T-shaped DQDs can exhibit other
interesting effects, such as, e.g., the two-stage Kondo ef-
fect [43–46]. In this effect, with lowering temperature, at
the first stage the spin in the first dot becomes screened by
conduction electrons giving rise to maximum conductance,
and then at lower temperatures, the second stage of screening
occurs, leading to conductance suppression. In fact, the
conductance suppression due to interference effects, which
occurs in T-shaped DQDs, can also be explained by invoking
the two-stage Kondo effect [17,18]. However, a detailed
analysis of the two-stage Kondo effect in the presence of
itinerant-electron ferromagnetism goes beyond the scope of
the present paper and will be considered elsewhere [47].
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1. Introduction

Transport properties of double quantum dots (DQDs)
have recently attracted a lot of attention [1]. Since the
behavior of such systems mimics the behavior of real
molecules, DQDs provide ideal playground to examine
various correlations at the nanoscale. When only one of
the dots is directly coupled to the leads, while the sec-
ond dot is coupled indirectly through the �rst dot, the
interference between di�erent conduction paths can give
rise to the Fano e�ect [2]. On the other hand, in the
case of strong coupling between the DQD and the leads,
the electronic correlations can give rise to the Kondo ef-
fect [3]. In fact, transport properties of T-shaped DQDs
are determined by the interplay of the Fano and Kondo
e�ects [4, 5]. Another interesting e�ect occurs in the
presence of external magnetic �eld. It was shown that
the conductance through the system can be then fully
spin polarized, and the sign and degree of spin polar-
ization can be controlled by the position of the DQD's
levels [6].

In this paper we study the spin-polarized conductance
of T-shaped DQDs coupled to ferromagnetic leads in the
presence of external magnetic �eld. It is known that the
presence of ferromagnetic leads gives rise to an exchange
�eld that acts in a similar way to an external magnetic
�eld, splitting the dots' levels [7, 8]. By using the nu-
merical renormalization group (NRG) method [9, 10], we
show that one can obtain full spin polarization P of the
linear conductance in DQDs with ferromagnetic contacts
without the need to apply magnetic �eld. We also ana-
lyze how the presence of external magnetic �eld modi�es
the spin-resolved transport properties of the system.

*corresponding author; e-mail: kpwojcik@amu.edu.pl

2. Model and method

We consider DQD in a T-shape con�guration cou-
pled to ferromagnetic leads, whose magnetizations can
form either parallel or antiparallel con�guration, see
Fig. 1. The Hamiltonian of the system has the form,

H = HF+HT+HDQD. HF =
∑
r=L,R

∑
kσ εrkσc

†
rkσcrkσ

is the Hamiltonian of ferromagnetic leads, HT =∑
r=L,R

∑
kσ Vrkσ

(
d†1σcrkσ + c†rkσd1σ

)
is the tunneling

Hamiltonian and the DQD Hamiltonian reads

HDQD=
∑

jσ

εjσnjσ+
∑

σ

t(d†1σd2σ+H.c.)+U2n2↑n2↓, (1)

with njσ = d†jσdjσ. Here, crkσ (djσ) annihilates an elec-

tron with spin σ, carrying momentum }k in lead r (lo-
cated on dot j), correspondingly, and εrkσ (εjσ) is the re-
spective single-particle energy. We assume that only the
second dot is interacting, with U2 denoting the Coulomb
correlation parameter. In the presence of magnetic �eld,
the dots' levels become split, εjσ = εj + σB/2, where B
is the external magnetic �eld applied along the z-th di-
rection and gµB ≡ 1. The coupling between the �rst dot
and the lead r is given by Γrσ =

∑
k πρrσ|Vrkσ|2, where

ρrσ denotes the respective spin-resolved density of states.
The coupling can be rewritten as Γrσ = (1 + σp)Γr/2,
where p is the spin-polarization of ferromagnets (pL =
pR ≡ p), and ΓL = ΓR ≡ Γ/2.
The linear conductance through the system can be

found from the Meir�Wingreen formula,

Gσ =
e2

h

4ΓLσΓRσ
ΓLσ + ΓRσ

∫
dω

∂f(ω)

∂ω
=〈〈d1σ|d†1σ〉〉ret, (2)

where f(ω) is the Fermi�Dirac distribution function and

〈〈d1σ|d†1σ〉〉ret denotes the Fourier transform of the re-
tarded Green function of the �rst dot, which we calculate
with the aid of NRG [9, 10]. In calculations we assume
the following parameters (the �rst dot is noninteracting):
U2 = 0.5D, Γ = 0.02D, t = 0.04D and p = 0.4, where
D ≡ 1 is the band halfwidth used as energy unit.

(222)
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Fig. 1. Schematic of DQD in a T-shape geometry cou-
pled to ferromagnetic leads with either parallel or an-
tiparallel alignment of magnetizations. The �rst dot is
coupled to the leads with strength ΓL(R)σ and to the
second dot via hopping t.

3. Results and discussion

In the following, we analyze the behavior of the spin-
resolved conductance Gσ and the spin polarization P,
de�ned as P = (G↑ − G↓)/(G↑ + G↓), in both the an-
tiparallel (AP) and parallel (P) magnetic con�gurations
of the system.

Fig. 2. Dependence of the linear conductance GAP

(a) and spin polarization PAP (b) on ε1, for di�erent
strengths of magnetic �eld B in the antiparallel con�gu-
ration and for ε2 = −U2/3. The x-axis for ε1 ∈ [−0.5, 0]
was multiplied by 3 to zoom in the range where the most
interesting features occur (curves are smooth in homo-
geneous scale). In (a) curves for di�erent signs of B
overlap.

In the antiparallel con�guration, for left-right symmet-
ric systems as considered here, the couplings for spin-up

and spin-down DQD levels become equal and the system
behaves as if coupled to nonmagnetic leads, except for
additional factor of (1 − p2) in Gσ. Figure 2 shows the
linear conductance and spin polarization in the antipar-
allel con�guration as a function of ε1 for ε2 = −U2/3.
As can be clearly seen in Fig. 2a, for B = 0, there is a
strong antiresonance in GAP due to the Fano destructive
interference. It occurs for ε1 = ε0 ≈ −Γ/6. The fact
that ε0 6= 0 comes form the lack of electron-hole symme-
try in the system, since ε2 = −U2/3. We note that for
ε2 = −U2/2 the conductance in the presence of B was
analyzed in Ref. [6] for nonmagnetic leads.

While for B = 0 the suppression of GAP is complete,
the presence of magnetic �eld weakens this e�ect and
leads to �nite conductance. This is due to the fact that
�nite B removes spin degeneracy and the conditions for
Fano destructive interference become di�erent in each
spin channel. Then, if GAP

σ → 0 for given ε1, G
AP
σ̄ 6= 0, so

that the total conductance, GAP = GAP
↑ +GAP

↓ , is �nite in
the whole range of ε1, provided B 6= 0, see Fig. 2a. This
holds even for very weak B, while for strong magnetic
�eld a dip in GAP changes into a wide peak, reaching
GAP = 2(1− p2)e2/h. Another feature visible in Fig. 2a
is the approximate symmetry of the linear conductance
around the point ε1 = ε0.

GAP does not depend on the sign of B, only on its mag-
nitude, this is contrary to the spin polarization, which is
shown in Fig. 2b. Since for B = 0 nothing perturbs the
spin SU(2) symmetry, PAP = 0 in this case. However,
even as tiny magnetic �eld as B = Γ/100 is su�cient
to cause PAP to reach ±1. In agreement with intuition,
the change of sign of B leads to the change of sign of
PAP and all the curves are approximately antisymmetric
around ε1 = ε0. Nevertheless, the dependence of PAP

on ε1 for B = ±Γ/100 is highly non-trivial. It displays
two local maxima with PAP ≈ 1 and two minima with
PAP ≈ −1. On the other hand, the dependence of PAP

on ε1 for stronger B is less spectacular, i.e. the achieved
values of PAP are now much smaller, |PAP| < 0.1, see the
curves for B = ±Γ in Fig. 2b. This holds also outside
the range of Fig. 2, for −15Γ < ε1 < 15Γ .

Consider now the case of parallel magnetic con�gu-
ration. Now the couplings for spin-up and spin-down
are di�erent leading to di�erent level renormalization for
each spin direction. This gives rise to a spin splitting of
the levels even in the case of B = 0 [7]. The magnitude
and sign of this ferromagnetic-contact induced exchange
�eld can be tuned by changing the level position. More-
over, it is clearly an interaction e�ect since it vanishes for
vanishing Coulomb correlations and at the particle�hole
symmetry point of the model. In the case studied here
with noninteracting �rst dot, the exchange �eld develops
in the second dot. The hybridization of the second dot
is Γ2σ = t2/Γσ, and, clearly, the dependence of Γ2σ on
p is opposite to the that of Γσ [7, 8]. Consequently, for
given levels' position, the sign of exchange �eld is oppo-
site as compared to single dot case. This is re�ected in
the B-dependence of G and P, as discussed in the sequel.
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The dependence of linear conductance GP and spin po-
larization PP on ε1 is shown in Fig. 3. One can see that
even for B = 0 the suppression of the conductance due to
Fano destructive interference is only partial. Due to the
presence of exchange �eld, Fano antiresonances in di�er-
ent spin channels are shifted against each other, leading
to �nite conductance GP for all ε1. Moreover, the spin
polarization is very high, PP ≈ 1, except for the point
where GP is minimum, at which the spin polarization
changes sign and becomes PP ≈ −1. Thus, without any
external magnetic �eld, due to the presence of exchange
�eld, one can obtain perfect spin polarization of the linear
conductance, which can be tuned by changing the level
position. This undoubtedly interesting result is analyzed
in more detail in Ref. [11].
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Fig. 3. The same as Fig. 2 calculated for the parallel
magnetic con�guration of the system.

In the presence of magnetic �eld, the operation of the
device can be changed. If one turns on small negative B,
see the curves for B = −Γ/100 in Fig. 3, the Fano an-
tiresonance becomes restored and P is almost constant
showing only small dip without any sign change. This is
due to the fact that this magnetic �eld compensates the
splitting induced by the exchange �eld. Note that this
is contrary to single dot case, where to compensate for
exchange �eld one needs to apply B along the magnetiza-
tion of the leads (B > 0) [8]. This is related with di�erent
dependence of the couplings on p discussed above.
For small positive �eld, see the case of B = Γ/100 in

Fig. 3, the minimum of GP is slightly shifted and a bit
shallower, while the dip of PP reaches −1 and is wider
as compared to the case of B = 0. This can be under-
stood by realizing that positive B enhances the splitting
induced by the exchange �eld. The splitting can be en-
hanced further with larger B leading to even broader
minimum in both GP and PP, see the case of B = Γ/10

in Fig. 3. Interestingly, a second minimum of PP oc-
curs at ε1 ≈ −1.65Γ . At this point GP is enhanced and
exhibits a small local maximum.
The change of sign of B is in this case qualitatively

equivalent to change of the curve to its mirror image with
respect to the point where GP has minimum. This is
due to the fact that for |B| & Γ/10, the magnetic �eld
surpasses the exchange �eld, thus decreasing its in�uence
on transport. In fact, for magnetic �elds of the order
of the coupling strength, |B| = Γ , the spin polarization
becomes much suppressed, it is clearly smaller than unity
and does not change sign.
Finally, we note that large spin polarization is also

present in the case when the �rst dot is interacting. Then,
the exchange �eld plays an important role on both dots
and it can lead to further enhancement of the range of
parameters where perfect spin polarization occurs [11].
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Abstract. The exchange field for molecular states of double quantum dot, induced by two ferromagnets
coupled to the device in T-shaped configuration, is defined and calculated. It is found, that in the regime
of strong coupling between quantum dots, the dependence of the exchange field on this coupling becomes
nontrivial. In particular, it changes the sign a few times to eventually vanish in the limit of infinite inter-dot
coupling. The excitation energies of double quantum dot are calculated and the results used to predict the
conditions for suppression of the two-stage Kondo effect in the considered nanostructure.

1 Introduction

When a discrete level is coupled to a large system of con-
tinuous energy spectrum, it is not only broadened, but
also shifted [1]. This applies, in particular, to a quantum
dot (QD) coupled to a metallic lead: the charge fluctua-
tions give rise to the renormalization of the dot level [2].
If the coupling to the lead is spin dependent, this renor-
malization also depends on spin, leading to the splitting
of the dot’s level, often called the exchange field. It can be
estimated through the Anderson’s scaling approach [3,4]
or numerical renormalization group calculations [5,6], as
well as within the perturbation theory, second order in
the interaction with the lead, where usual logarithmic di-
vergences cancel out when one takes the difference of the
shifts for levels of opposite spins [7]. The exchange field
was also observed experimentally [8,9]. Its values are of the
order of fraction of meV; the magnetic field correspond-
ing to such a splitting for an electron with spin s = 1/2
and gyromagnetic ratio g = 2 is a few Tesla [9]. The es-
timations of the exchange field based on numerical renor-
malization group calculations were found to be in good
agreement with experiment [9]. Moreover, as dependent
significantly on the dot’s energy level, the exchange field
is very important for spintronic applications, as a tool en-
abling manipulation of the single electron’s spin (localized
on the quantum dot) by only electrical means [10].

In the past few years, transport properties of dou-
ble quantum dots (DQDs), from which only one is cou-
pled directly to the leads, and the second is side-coupled
to the first one, were addressed in a number of pa-
pers [11–14]1. This configuration is often referred to as

a e-mail: kpwojcik@amu.edu.pl
1 See also references cited in references [11–14].

Fig. 1. Scheme of the considered system.

T-shaped DQD. In such systems, the two-stage Kondo
effect occurs: the usual Kondo effect is suppressed at suf-
ficiently low temperatures, due to singlet formation in
DQD subsystem [12,15,16]. This singlet, however, can be
broken by the magnetic field, which restores the Kondo
effect [17]. In the present paper a similar system with fer-
romagnetic electrodes (Fs) is considered (see Fig. 1). It
is shown, by means of perturbative calculation, that the
exchange field can be considered as an alternative mech-
anism of breaking the singlet and restoring the Kondo ef-
fect. This is confirmed by numerical renormalization group
calculations [18].

It is worth stressing, that all the correlations in DQD
subsystem are treated analytically. The exchange field is
properly defined for all the eigenstates, whose energies are
obtained exactly for a rather general case2. In particular,
adjusting of Coulomb energies and energy levels of both
dots independently is allowed. The latter is especially im-
portant for applications, where one should be able to tune
the exchange field by changing the energy levels of QDs.

2 Less general case was studied in reference [19].
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The article is organized as follows. In Section 2 the
Hamiltonian of DQD is presented and its eigenvalues and
eigenstates are calculated. Then, in Section 3 the exchange
field for eigenstates of DQD is defined and the formula for
it is derived. Finally, the results are presented in Section 4.

2 The double-dot system

The Anderson model is used to describe quantum dots. It
is also assumed, that their mutual interaction is reduced
to the hopping between the dots. Thus, the Hamiltonian
of DQD subsystem has the form

HDQD =
∑

ασ

εαd
†
ασdασ +

∑

σ

t
(
d†
1σd2σ + h.c.

)

+
∑

α

Uα
2

(∑

σ

d†
ασdασ − 1

)2

− U1 + U2

2
. (1)

The constant term is set such that unoccupied DQD has
energy equal to 0. The index α ∈ {1, 2} corresponds to
number of QD (see Fig. 1), while σ = ±1 denotes direction

of the spin. t denotes the hopping between the dots. d
(†)
ασ

annihilates (creates) an electron of spin σ in dot α. The
Coulomb energy of dot α is Uα, while the energy level
for an electron of spin σ in the dot α is εα. The mean
detuning of dot’s level from particle-hole symmetric point
is ε = (ε2 + ε1)/2 + U , where U = (U2 + U1)/4. For
convenience the following notation is used: Δ = (U2 −
U1)/4, δ = (ε2 − ε1)/2 +Δ.

In addition, q denotes the normal-ordered charge of
DQD. Similarly, S denotes the total spin of DQD, and Sz
is used for its z component. Eigenstates are denoted |ei〉,
with i ∈ {1, . . . , 16}, while states from the basis of definite
occupation numbers have form |χ1χ2〉, where χα ∈ {0, ↑,
↓, 2} is the state of QDα.

The eigenvalues of HDQD are listed in Table 1. One
can clearly see charge U(1) and spin SU(2) symmetries.
The energies of the states in the q = 0, S = 0 subspace
are the roots of the following cubic polynomial,

ω3 + (2U − 6ε)ω2 − 4
(
t2 + 2Uε+ δ2 − 3ε2

)
ω

+ 8
[
t2ε+ U

(
ε2 − δ2

)
+ δ2ε− ε3

]
= 0. (2)

They can be expressed through radicals, but the resulting
expressions are somewhat cumbersome and for this rea-
son were not explicitly listed in Table 1. However, for spe-
cial cases they significantly simplify. Eigenvalues for some
of these cases are presented in Table 2. For ε = δ = 0
(ε1 = −U1/2, ε2 = −U2/2) the charge symmetry also be-
comes SU(2). Then, states: |e1〉, |e11〉, and |e16〉, form the
triplet of E = 0 (see column δ = 0 in Tab. 2 for E11).
Simultaneously, S = 1/2 doublets with q = ±1 become
degenerated.

In turn, the eigenstates are listed in Table 3. These cor-
responding to highest quantum numbers (q = ±2, S = 1)
are trivial. Expressions for states forming doublets are

Table 1. Exact eigenvalues of HDQD. Solutions of cubic secular
equation in q = 0, S = 0 subspace were not written explicitly.

State q Sz Ei

|e1〉 −2 0 0

|e2〉, |e3〉 −1 −1

2
,

1

2
ε− U −

√
(Δ− δ)2 + t2

|e4〉, |e5〉 −1 −1

2
,

1

2
ε− U +

√
(Δ− δ)2 + t2

|e6〉, |e7〉, |e8〉 0 −1, 0, 1 2(ε− U)

|e9〉 0 0 E9

|e10〉 0 0 E10

|e11〉 0 0 E11

|e12〉, |e13〉 +1 −1

2
,

1

2
3ε− U −

√
(Δ + δ)2 + t2

|e14〉, |e15〉 +1 −1

2
,

1

2
3ε− U +

√
(Δ + δ)2 + t2

|e16〉 +2 0 4ε

Table 2. Values of eigenenergies E9, E10 and E11 for different
limiting cases [19]. Each row corresponds to one of the three
solutions of equation (2) expressed through radicals.

State t = 0 δ = 0 U = 0

|e9〉 2(ε + δ) 2ε−U+
√
U2 + 4t2 2

(
ε +

√
t2 + δ2

)

|e10〉 2(ε− U) 2ε−U−
√
U2 + 4t2 2

(
ε−

√
t2 + δ2

)

|e11〉 2(ε− δ) 2ε 2ε

only a bit more complicated. They all can be written using
coefficients

ν± =
1√
2

√
1± δ −Δ√

t2 + (δ −Δ)2
, (3)

ν̃± =
1√
2

√
1± δ +Δ√

t2 + (δ +Δ)2
. (4)

Note, that for t = 0, ν± (ν̃±) are either 0 or 1, depending
on the sign of δ −Δ (δ +Δ), correspondingly. The three
remaining states, |e9〉, |e10〉, |e11〉, can be reasonably sim-
ply expressed through the coefficients dependent on the
respective eigenvalues,

ξ1i =
PiQi/t− 2t√

8t2 + 2P 2
i − 4PiQi + P 2

i Q
2
i /t

2
, (5)

ξ2i = −
√
2Pi√

8t2 + 2P 2
i − 4PiQi + P 2

i Q
2
i /t

2
, (6)

ξ3i =
2t√

8t2 + 2P 2
i − 4PiQi + P 2

i Q
2
i /t

2
, (7)

where Pi = 2(ε+ δ) − Ei and Qi = 2(ε− U) − Ei. Note,
that dependence of ξai on Ei (through Pi and Qi), means
in fact a complicated dependence on all the parameters of
the model. Moreover, if two of the energies E9, E10, E11
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Table 3. Eigenvectors of HDQD.

|e1〉 = |00〉,
|e2〉 = ν+| ↓ 0〉 − ν−|0 ↓〉,
|e3〉 = ν+| ↑ 0〉 − ν−|0 ↑〉,
|e4〉 = ν−| ↓ 0〉 + ν+|0 ↓〉,
|e5〉 = ν−| ↑ 0〉 + ν+|0 ↑〉,
|e6〉 = | ↓↓〉,
|e7〉 = (| ↓↑〉 + | ↑↓〉) /

√
2,

|e8〉 = | ↑↑〉,

|e9〉 = ξ19 |20〉 + ξ29
| ↓↑〉 − | ↑↓〉√

2
+ ξ39 |02〉,

|e10〉 = ξ110|20〉 + ξ210
| ↓↑〉 − | ↑↓〉√

2
+ ξ310|02〉,

|e11〉 = ξ111|20〉 + ξ211
| ↓↑〉 − | ↑↓〉√

2
+ ξ311|02〉,

|e12〉 = ν̃−| ↓ 2〉 − ν̃+|2 ↓〉,
|e13〉 = ν̃−| ↑ 2〉 − ν̃+|2 ↑〉,
|e14〉 = ν̃+| ↓ 2〉 − ν̃−|2 ↓〉,
|e15〉 = ν̃+| ↑ 2〉 − ν̃−|2 ↑〉,
|e16〉 = |22〉.

should happen to coincide, these expressions must become
ill-defined, because they constitute the components of the
eigenvectors, which must be different even if the eigen-
values are the same. Thus, one must be careful when an-
alyzing cases possessing special symmetries, where such
degeneracy may occur.

Similarly to the eigenvalues Ei, the coefficients ξai sim-
plify tremendously in some special cases, in particular

lim
t→0

(
ξ19 , ξ

2
9 , ξ

3
9

)
= (0, 0,±1),

lim
t→0

(
ξ110, ξ

2
10, ξ

3
10

)
= (0,±1, 0),

lim
t→0

(
ξ111, ξ

2
11, ξ

3
11

)
= (±1, 0, 0),

lim
δ→0

(
ξ19 , ξ

2
9 , ξ

3
9

)
= (−1, 0, 1)/

√
2,

lim
δ→0

(
ξ110, ξ

2
10, ξ

3
10

)
=

(
1,−

√
2, 1

)
/2,

lim
δ→0

(
ξ111, ξ

2
11, ξ

3
11

)
=

(
1,+

√
2, 1

)
/2.

Note, that for t = 0 the eigenstates correspond to states
of definite occupation. The signs may vary depending on
model parameters.

3 The exchange field

Ferromagnets (Fs) are modeled very simply, neglecting
the Stoner splitting and the dependence of density of
states and hoppings on energy (for energies smaller than
the cutoff ±W , with 0 at the Fermi energy). The ferro-
magnetism is then taken into account via spin-dependent
coupling between Fs and DQD. In the linear response

regime, these assumptions allow for showing that two
parallely magnetized leads are equivalent by the unitary
transformation [20] to the one effective lead F. Denot-
ing by arωσ annihilation operator of an electron of en-
ergy ω and spin σ in left (r = L) or right (r = R)
ferromagnet, normalized such that the anti-commutator

{arωσ, a†
r′ω′σ′} = δrr′δσσ′δ(ω − ω′), the transformation

reads the introduction of new operators,

cωσ = uσaLωσ + vσaRωσ, (8)

fωσ = −vσaLωσ + uσaRωσ, (9)

where uσ =
√
ΓLσ/(ΓLσ + ΓRσ) and vσ =

√
1− u2σ.

Then, both new operators fulfill the fermionic anticommu-
tation relations. Moreover, f -operators do not appear in
the tunnelling term of the Hamiltonian and can be omit-
ted. On the other hand, c-operators’ coupling is Γσ =
ΓLσ + ΓRσ.

In order to treat the coupling between DQD and F
with a perturbation theory, we write the Hamiltonian as
H = H0 +HI , with

H0 = HDQD +
∑

σ

∫ W

−W
ωc†ωσcωσdω , (10)

HI =
∑

σ

∫ W

−W

√
Γσ
π

(
d†
1σcωσ + h.c.

)
dω. (11)

The coupling can be expressed as Γσ = (1 + pσ)Γ , where
p denotes the spin polarization of F. Denoting by |e∗

i 〉 the
state of the system, in which DQD is in the state |ei〉 and
the effective F is in its ground state (all single-electron
levels below the Fermi surface are occupied, all above are
empty), one can write the zero-temperature expression for
the shift of the energy level Ei in the second order in HI ,

δEi =
∑

ψ �=e∗i

〈e∗
i |HI |ψ〉

1

Ei − Eψ
〈ψ|HI |e∗

i 〉, (12)

where |ψ〉 runs through all of the intermediate states in
the basis |e∗

i 〉. Note that if the intermediate states had
been taken from the basis |χ1χ2〉, their unperturbed en-
ergy Eψ would not have been defined and the operator
(Ei −H0)

−1(1− |e∗
i 〉〈e∗

i |) would have to be considered in-
stead of the sum over intermediate states in equation (12).

Since HI allows only single hops, all the possible in-

termediate states are of the form c
(†)
ωσ|e∗

j〉, with the energy
Eψ = Ei + [±ω + (Ej − Ei)]. This results in the shift,

δEi =
∑

jσ

Γσ
π

{
|〈ej |d†

1σ|ei〉|2
∫ W

−W

1− θ(ω)

ω − (Ej − Ei)
dω

− |〈ej |d1σ|ei〉|2
∫ W

−W

θ(ω)

ω + (Ej − Ei)
dω

}
. (13)

Notice that δEi is linear in Γ and contains two parts: one
independent of p, and one linear in p. Let the exchange
field in the state |ei〉 be denoted Δεexi and defined as the
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latter of those, normalized by the z-component of the spin
of |ei〉, i.e. δEi = δEi|p=0 + SzΔε

ex
i , if only Sz �= 0. For

Sz = 0, the modules of respective matrix elements of d
(†)
1σ

do not depend on spin direction, nor do the energies of all
states, thus, the terms corresponding to different σ can-
cel out and the exchange field is 0. Extracting the part
proportional to p and performing elementary integrals,
one obtains the general, exact expression for the exchange
field,

Δεexi =
∑

jσ

σpΓ

πSz
log

∣∣∣∣
Ej − Ei

W + (Ej − Ei)

∣∣∣∣

×
(
|〈ej |d†

1σ |ei〉|2 + |〈ej |d1σ|ei〉|2
)
. (14)

SZ was introduced to the definition of the exchange field
to make the clear correspondence between Δεex and the
effective magnetic field B = Δεex/(gμB), which would
cause the same splitting of the multiplets.

4 Results

In Section 4.1 it is shown, how the exchange field ob-
tained for a single QD is affected by the presence of QD2.
Then, in Section 4.2 the exchange fields in different states
are compared and their influence on the ground state of
the DQD subsystem is analyzed. The signature of the ex-
change field in the conductance of the system is discussed
in Section 4.3. Finally, in Section 4.4, the limitations of
the considered method are examined.

4.1 The role of inter-dot interaction

Setting t = 0 and U2 = ε2 = 0, one practically obtains a
single QD coupled to the ferromagnet, plus a free orbital
of zero energy. For t = 0 the basis states |ei〉 coincide
with states |χ1χ2〉, except for |e7〉 and |e8〉, where, re-
spectively, the sum and the difference of two such states
occurs. For any of basis state |ei〉 having the form |σχ2〉,
the result (14) simplifies to

SzΔε
ex
|σχ2〉 =

σpΓ

π
log

∣∣∣∣
ε1

ε1 + U1
· W + (ε1 + U1)

W − ε1

∣∣∣∣ , (15)

which has a nice limit for W → ∞, namely

SzΔε
ex
|σχ2〉 −→

W→∞
σpΓ

π
log

∣∣∣∣
ε1

ε1 + U1

∣∣∣∣ . (16)

This is the result obtained by Martinek et al. in refer-
ence [4] for a single quantum dot coupled to a ferromag-
netic lead.

Note, that U1 = 0 implies Δεex = 0, also for finite W .
This is caused by the fact, that particle-like and hole-like
processes cancel each other. The exchange field diverges
for resonant positions of the dot’s level and vanishes in
the particle-hole symmetric point (cf. Fig. 2), solid line.

-0.4

-0.2

0

0.2

0.4

-1.5 -1 -0.5 0 0.5

Δ
εe

x
8
/
Γ

ε1/U1

t = 0
t = Γ/5
t = Γ
t = 5Γ
t = 10Γ

Fig. 2. The dependence of the exchange field in the spin-up
triplet component |e8〉 on QD1 level position, for finite U1 =
W/2 = 5Γ , p = 0.4, U2 = ε2 = 0 and different t.

Notice, that in general also Δεex may become divergent in
the limit W → ∞. For this reason that limit was avoided
and W of the order of the highest relevant energy scale
was used, as suggested by the scaling theory [2].

In Figure 2, it is shown how the result from equa-
tion (16) changes, when t becomes nonzero (for both dots
occupied with a single spin-up electron each). It is clearly
seen, that the divergences at the resonances are then re-
moved and the peaks diminish, eventually the exchange
field changes sign for really strong t. In the particle-hole
symmetric point, ε1 = −U1/2, Δε

ex
8 = 0 for all t.

Finally, in Figure 3, the density plots of a dependence
of the exchange field in the triplet state on both dots’
energy levels are presented, for different values of t, in
the case of equal Coulomb interactions on both dots. In
Figure 3a, one can clearly see, that for t = 0 the results
are qualitatively equivalent to those obtained in Figure 2,
where only QD1 was interacting. In agreement with intu-
ition, ε2 plays no role in such a situation. However, with
increasing t, the importance of the QD2 level position be-
comes clear (cf. Fig. 3b). Further increase of t causes the
peaks of Δεex to change their positions (see Figs. 3c–3e),
such that for t = 10Γ the sign of the exchange field is at
most of the dots’ level positions opposite to the one for
t = 0 (see Fig. 3f). After another significant changes of
peaks positions while increasing t even further (cf. Figs. 3g
and 3h), the exchange field starts to diminish for t = 20Γ
(see Fig. 3i), to vanish completely in the limit t→ ∞. Ac-
tually, the fact that Δεexi → 0 for t→ ∞ is rigorously true
for all the molecular states and can be proven as follows.

At first, note, that all the matrix elements of d
(†)
ασ in the

eigenbasis have finite limits. On the contrary, all the en-
ergies of states with S = 1/2 asymptotically equal ±t. E8

and E9 asymptotically equal ±2t, the other energies have
finite, nonzero limits for t → ∞. In equation (14) ener-
gies are present under the logarithm, always as differences.
The logarithm containing energy difference (Ej −Ei) has
nonzero coefficient only for such pairs (i, j), that some of

10 [E] Ferromagnets-induced splitting of molecular states of T-shaped DQDs

114 K. P. Wójcik, PhD thesis



Eur. Phys. J. B (2015) 88: 110 Page 5 of 8
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a) t = 0 b) t = Γ c) t = 2.5Γ

-1

-0.5

0

0.5
d) t = 5Γ e) t = 7.5Γ f) t = 10Γ
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h) t = 15Γ
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i) t = 20Γ

Fig. 3. The dependence of the exchange field in the spin-up
triplet component Δεex8 on the level positions of both dots for
U1 = U2 = W/2 = 5Γ , p = 0.4 and different t, as indicated in
the figure. Insets in the bottom left corners indicate the range
of positive (negative) data in black (white), for readability of
the plots in the gray-scale.

〈ei|d(†)ασ|ej〉 is nonzero. As can be easily checked case by
case, all the important energy differences diverge in the
limit t→ ∞, so the corresponding logarithms vanish (cf.,
Eq. (14)). This means, that for very large t, the eigen-
states of DQD are too far from each other (in the sense of
energy difference) to allow significant charge fluctuations.

4.2 The exchange field for different states

In the case of a single quantum dot coupled to F, the
exchange field is either zero (for states of Sz = 0), or
given by equation (16). This means that it influences the
energy spectrum of the dot identically to the magnetic
field B = Δεex/(gμB). It is not exactly the case for DQD.
Here, the corresponding magnetic field must be different
for different states. However, the multiplet structure of the
eigenbasis is preserved. This is illustrated in Figure 4. If
the corresponding magnetic field were the same in all the
states, all the curves in Figure 4 would coincide. Instead,
the peaks appear at different positions for different curves.
In the range of small negative values of ε1, Δε

ex
i even

changes the sign, depending on i.
Even more interesting result is obtained, when one an-

alyzes the ground state of the DQD subsystem with cor-
rection coming form the exchange field. Having defined
the ground state energy as EGS ≡ miniEi (for a fixed set
of model parameters), the unperturbed excitation ener-
gies Ei − EGS are plotted as functions of QD1 level po-
sition in Figure 5a, and the excitation energies corrected
by the exchange field, Ei + SzΔε

ex
i − EGS, are shown in

-1

-0.5

0

0.5

1

-1.5 -1 -0.5 0 0.5

Δ
εe

x
i
/
Γ

ε1/U1

i = 2, 3 (q=−1, S= 1
2 )

i = 4, 5 (q=−1, S= 1
2 )

i = 6, 8 (q=0, S=1)

i = 12, 13 (q=+1, S= 1
2 )

i = 14, 15 (q=+1, S= 1
2 )

Fig. 4. The dependence of the exchange field on the QD1 level
position, for U1 = U2 = W/2 = 5Γ , p = 0.4, ε2 = 0 and t = Γ .
In the states not listed in the legend, Δεexi = 0.

0

0.5

1

1.5

2

-1.5 -1 -0.5 0 0.5

(E
i
−
E

G
S
)/
Γ

ε1/U1

Δεex neglected

a)

-1 -0.5 0 0.5
ε1/U1

Δεex included

b)
i = 4, 5
i = 11
i = 1
i = 12, 13
i = 6, 7, 8
i = 2, 3
i = 10

Fig. 5. (a) The difference between Ei and the ground state
energy EGS vs. ε1, for U1 = U2 = W/2 = 5Γ , p = 0.4, ε2 = 0
and t = Γ/3. (b) The same for Ei +SzΔεexi instead of Ei, with
EGS still obtained without Δεexi .

Figure 5b. It is visible, that in the Coulomb blockade
regime, the ground state of isolated DQD is either the
singlet state |e10〉, or degenerate doublet, |e2〉, |e3〉. The
triplet |e6〉, |e7〉, |e8〉 is a low-lying excited state. However,
when DQD is coupled to F, due to strong renormalization
by the exchange field, the state |e6〉 becomes the ground
state for ε1 ≈ −U1, while in very narrow region around
ε1 ≈ −0.25U1, |e8〉 is the ground state. Moreover, |e6〉
becomes degenerate with a singlet state |e10〉 in the vicin-
ity of ε1 = −U1. Because these two states differ in Sz
by unity and have the same charge, they are degenerate
states connected by a single spin-flip process, and as so,
they can contribute to the formation of the single-stage
Kondo effect. The second stage, when the singlet is non-
degenerate ground state of DQD, is suppressed. Thus, the
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Fig. 6. The average value of z-component of DQD spin for
T = 10−4Γ , different t and other parameters the same as in
Figure 5.

large exchange field in triplet state is the condition for
the two-stage Kondo effect to be suppressed. This is in-
deed confirmed by the numerical renormalization group
calculations [18].

Knowing energies of DQD states, corrected by Δεex,
one can calculate expectation values of different opera-
tors, assuming equilibrium probabilities for eigenstates.
Here, the z component of DQD spin is considered (see
Fig. 6). Small finite temperature, T = 10−4Γ , was used
to make the curves smoother in the regions of degener-
ated ground state. For weak t, see curve for t = Γ/10,
〈Sz〉 �= 0 in the region of Coulomb blockade. It is neg-
ative (−1/2) for negative detuning, and reaches +1 for
positive detuning. However, it vanishes in the small re-
gion around particle-hole symmetric point. For ε1 ≈ −U1

the triplet component becomes the ground state, resulting
in 〈Sz〉 = −1. For large, positive detunings, 〈Sz〉 = +1/2.
On the contrary to the case of small t, for t = 2Γ , 〈Sz〉 = 0
for most of QD1 level positions. Only when ε1 > 0, the
average spin becomes −1/2, which is opposite to what
happens for t = Γ/10. This is caused by the fact, that
Δεex can change the sign with increasing t; compare Fig-
ure 2. For intermediate values of the inter-dot coupling,
Γ/5 < t < Γ , the region of 〈Sz〉 = 0 in the center of
Coulomb valley becomes larger upon increasing t, and the
region of 〈Sz〉 = +1/2 appears for ε1 slightly larger than
−U1/2. Moreover, for ε1 ≈ −0.25U1 the t-dependence of
〈Sz〉 becomes highly nontrivial. For t = Γ/5, there occurs
a dip, suggesting degeneracy between states of Sz = 1
and Sz = 1/2. For t = Γ/3, the Sz = 1 state is the ground
state only in very narrow region of ε1 (see also Fig. 5).
For t = Γ/2, one sees a sharp dip, reaching 〈Sz〉 = −1/2,
instead of peak reaching 〈Sz〉 = 1, present for t = Γ/3.
This dip is significantly wider for t = Γ . Nevertheless,
even in this case, for ε1 > 0, 〈Sz〉 = +1/2, contrary to the
case of t = 2Γ . The fact that large range of 〈Sz〉 values
is possible in the region −0.25U1 < ε1 < 0 corresponds to
large variety of values of Δεex for different states, visible
in Figure 4 for the case of t = Γ . In particular, note that
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ε1/U1

I [Γe/h]
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Fig. 7. The current through DQD for T = 10−4Γ , t = Γ and
other parameters the same as in Figure 5, obtained with DQD
eigenstates energies corrected by the exchange field. Right inset
shows enlarged region ε1 ∈ [−0.3, 0]U1, eV ∈ [−0.2, 0.2]U1,
marked also with a rectangle in the main plot. The left inset
shows the same region as the right one, but with the exchange
field neglected.

Δεex can have different sign for different multiplets, thus,
states possessing different sign of 〈Sz〉 may become the
ground state.

4.3 The I-V characteristics

The exchange field influences not only the static prop-
erties, such as the magnetization of DQD presented in
Figure 6. As claimed earlier, also the conductance exhibits
its signatures. To present this, the current through the sys-
tem was calculated using master equation method [21,22],
with tunneling rates given by the Fermi golden rule. More-
over, in this subsection we use two leads, with Γrσ =
(1 + σp)Γ/2, because the transformation given by equa-
tions (8) and (9) does not decouple f operators outside
the equilibrium. The results, presented in Figure 7, are
valid only in the sequential tunneling regime, since any
higher terms are neglected. However, the influence of the
exchange field on the I-V characteristics near the reso-
nance is clearly visible.

In general, one can see large regions of approximately
constant current. Each such region corresponds to a fixed
set of many-body DQD states, whose energy differences
fit in the energy window of a voltage bias. The whole plot
resembles a bit a structure characteristic of single inter-
acting QD. However, the inter-dot interaction t causes the
edges of fixed-current regions to band, and the increased
number of states reflects itself in the splitting of just a
few regions present in the single-QD case. The fact that
the plot is not symmetric with respect to ε1 = −U1/2
comes from the lack of particle-hole symmetry in QD2,
since ε2 = 0 �= −U2/2 was assumed. All these features,
visible in Figure 7, are valid also when one neglects the
existence of Δεex.

The effects of Δεex �= 0 are explicitly shown in the
insets. The right one shows the enlargement of the region
−0.3U1 < ε1 < 0, |V | < 0.2U1/e. The left one – the
results obtained in the same region by neglecting Δεex.
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Note, that according to Figure 5, in this region the ground
state becomes magnetic due to the exchange field. The
result is clearly visible: the lack of degeneracy leads to the
splitting of the X-like structure, which resembles the effect
of external magnetic field (here magnetic field is absent).

4.4 Limitations of the method

The considerations in this paper rely on the perturba-
tive expansion in Γ . For transport properties, this is very
strong assumption, which limits the range of validity of the
results obtained in Section 4.3. One can expect the best
accuracy in the sequential tunneling regime, worse in the
co-tunneling regime, and completely false in the Kondo
regime. However, the inter-dot interaction t was treated
exactly, so the interference effects between different con-
duction paths, containing arbitrary number of hops of an
electron between the dots are properly taken into account.

On the other hand, the renormalization of levels caused
by the interaction with magnetically polarized bath ob-
tained with second order perturbation theory proved to
be in a good agreement with more sophisticated methods,
in particular with numerical renormalization group calcu-
lations, for different systems and also in the strong cou-
pling regime [7,14]. For this reason, one can hope that they
can be quite generally valid in the linear response regime.
Nevertheless, higher order terms may play an important
role for particle-hole symmetric point, where Δεex = 0.
For QDs possessing large-spin ground state, they give rise
to formation of the effective magnetic quadrupolar field,
not vanishing at the symmetric point [23].

Moreover, an important note can be done, if one con-
siders the case U2 = 0. Then, one can propose a defi-
nition of the exchange field induced on QD2 by both F
and QD1 (as opposed to the exchange field for molecular
states defined earlier). This is done as follows. Since the
only nonquadratic terms in the Hamiltonian are related to
the Coulomb interactions, the subsystem containing F and
QD1 can now be diagonalized exactly. The whole model
is then equivalent to the Anderson impurity (correspond-
ing to QD2) coupled to the lead possessing Lorentzian
density of states (corresponding to the diagonalized sub-
system containing F and QD1) [24]. Then, treating t per-
turbatively to the second order and defining ΔεexQD2 to be
the difference between the shifts of different spins for the
singly occupied QD2, we obtain [14]

ΔεexQD2 =
∑

σ

σ
t2

2

[
LU2+δ̃

(Γσ)− L−δ̃(Γσ)
]

−
∑

σ

σ
t2

π
arctan

(
ε−1

Γσ

)

×
[
LU2+δ̃

(Γσ) + L−δ̃(Γσ)
]

−
∑

σ

σ
t2

2π
LΓσ

(
U2 + δ̃

)
log

(ε2 + U2)
2

ε21 + Γ 2
σ

+
∑

σ

σ
t2

2π
LΓσ

(
−δ̃

)
log

ε22
ε21 + Γ 2

σ

, (17)
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Fig. 8. The dependence of the exchange field on QD2 level po-
sition calculated from equation (14) for the state |e13〉 (q = +1,
Sz = +1/2, solid line), and from equation (17) (dashed line),
for U1 = 0, U2 = W/2, t = Γ = W/100, p = 0.4, and
(a) ε1 = −U2, (b) ε1 = 0.

where Ly(x) = y/(x2 + y2) and δ̃ ≡ ε2 − ε1 = 2δ − U2/2.
Interestingly, ΔεexQD2 does not vanish for U2 = 0. This

peculiarity changes if equation (17) is expanded in the
power series in Γ . Then, zeroth order vanishes, and in the
first order one obtains the result, in which U2 = 0 implies
ΔεexQD2 = 0.

The question if the result (17) can be reasonably com-
pared with equation (14) is not trivial. First of all, while in
equation (14) we treated t exactly and Γ perturbatively,
it was the other way around in equation (17). Thus, if
these two are to be correct simultaneously, both t and Γ
must be small, when compared to U2. This is, however,
not the whole story yet. The even bigger problem is that
equation (17) corresponds to the situation, in which QD2
is singly occupied, while the subsystem containing F and
QD1 is in its ground state. The occupancy of QD1 in this
ground state is not well defined for the general case. Thus,
the reasonable comparison can be made only in the special
cases. One of them is the case of large |ε1|. Indeed, QD1 is
practically doubly occupied for ε1 � −Γ and practically
unoccupied for ε1 � Γ . The comparison of Δεex obtained
in this case from equations (14) and (17) is presented in
Figure 8a. The same comparison for ε1 = 0 does not make
sense, which is illustrated in Figure 8b. This demonstrates,
that the validity of the results obtained in this paper is
limited to the case of Γ weak enough for DQD occupation
to be determined fromHDQD eigenenergies only. In partic-
ular, the spin-dependent Fano-like interference occurring
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at extremely low temperatures is better described with
the aid of formula (17) then by equation (14) [14].

5 Conclusions

In the present article we have defined and calculated the
exchange field induced in the molecular states of a double
quantum dot by the coupling to the ferromagnetic leads
in the T-shaped configuration. It was shown that the ex-
change field is different in different molecular states, so it
is not acting exactly like a real magnetic field. However,
it acts very similarly, reversing the sign of the shift upon
spin-reversal in the considered state.

The results for small t agree with well-known for-
mula (16). However, the dependence on t for stronger
inter-dot hopping is complex, and perturbative treatment
of t would have to be performed to very high order to
give results consistent with equation (14), in particular
for the parameters used in Figure 3. Because changing t
can change sign and magnitude of Δεex, it can be used to
tune the exchange field as well as ε1 or ε2.

The validity of equation (14) is limited by the validity
of perturbative treatment of Γ and by the assumption,
that the molecular states are relevant for the physical sit-
uation of the interest. For the case of strong Γ and weak t,
this is not the case.

The author thanks I. Weymann for fruitful discussions and
P. Baláž for critical reading of the manuscript. Research was
supported by the National Science Center in Poland through
Project No. DEC-2013/10/E/ST3/00213.
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Two-stage Kondo effect in T-shaped double quantum dots with ferromagnetic leads
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The linear-response transport properties of a T-shaped double quantum dot strongly coupled to external
ferromagnetic leads are studied theoretically by using the numerical renormalization group method. It is shown
that when each dot is occupied by a single electron, for antiparallel alignment of leads’ magnetizations, the system
exhibits the two-stage Kondo effect. For parallel alignment, however, the second stage of the Kondo effect becomes
suppressed due to the presence of ferromagnetic-contact-induced exchange field. The difference between the two
magnetic configurations results in highly nontrivial behavior of the tunnel magnetoresistance, which for some pa-
rameters can take giant values. In addition, the dependence of the linear conductance and tunnel magnetoresistance
on external magnetic field, the double-dot levels’ position, and the spin polarization of the leads is thoroughly
analyzed. It is shown that the second stage of the Kondo effect can be restored by fine-tuning of the magnetic field
or the dots’ levels. The effect of spin-dependent tunneling on the low-temperature transition from the high to low
conducting state of the system, which occurs when changing the hopping between the dots, is also discussed.

DOI: 10.1103/PhysRevB.91.134422 PACS number(s): 73.23.−b, 73.21.La, 72.15.Qm, 72.25.−b

I. INTRODUCTION

Screening of a magnetic impurity’s spin by conduction
electrons of the host metal occurs at sufficiently low tem-
peratures and results in an increase of the resistance [1].
The mechanism leading to this effect is associated with
spin-flip scattering processes between the impurity’s spin and
conduction electrons, as first elucidated by Kondo [2]. Similar
screening can also occur in a quantum dot hosting an unpaired
spin, but now instead of resistance enhancement one observes
an increased conductance through the system [3]. Multiple
spin-flip processes give rise to an additional resonance in
the dot’s local density of states at the Fermi level. This
results in enhanced transmission through the system, yielding,
for temperatures T smaller than the Kondo temperature TK,
maximum conductance, G = 2e2/h. The Kondo effect in
quantum dots and molecules has already been a subject of
extensive studies for more than two decades [4–8], and its more
complex and exotic versions that occur in multi-dot systems
still draw a nondecreasing attention [9–12].

While in simple one-impurity systems the screening usu-
ally has a single-stage character, in multi-impurity systems
screening can be realized in a multistage way [3]. In this
regard, one of the simplest examples is the two-impurity Kondo
problem, in which the interplay of the RKKY interaction
between the impurity spins with the correlations leading to the
Kondo effect results in two-stage screening [13]. The two-stage
Kondo effect also occurs in side-coupled double quantum
dot (DQD) systems, where the antiferromagnetic coupling
between the dots’ spins competes with the Kondo effect
[14–23]. The two-stage nature of screening is revealed
especially in the temperature dependence of the conductance,
which is not monotonic: With lowering the temperature, for
T ≈ TK, the conductance first increases due to the Kondo
effect; however, with further decease of T , for T < T ∗,
where T ∗ is the temperature characteristic of the second-stage
screening, the conductance drops to zero [21].

*kpwojcik@amu.edu.pl

Recently, various aspects of the two-stage Kondo effect
in T-shaped DQDs have been extensively studied, both
experimentally [14–17] and theoretically [18–30]. However,
these considerations dealt mainly with the case of nonmagnetic
leads. The goal of the present paper is therefore to extend those
studies and analyze the two-stage Kondo effect in the presence
of itinerant ferromagnetism. Transport properties of quantum
dots with ferromagnetic leads in the Kondo regime have been
attracting considerable attention for the last decade [31–40].
For example, it was shown that the conductance depends
greatly on the relative orientation of ferromagnets. For single
quantum dots, when the leads’ magnetizations are oriented in
parallel, the Kondo effect can be suppressed due to the presence
of an effective exchange field, while no such suppression
occurs in the antiparallel configuration where the exchange
field is absent for symmetric systems [31–34]. The suppression
of the Kondo resonance is due to a spin splitting of the dot level,
which is caused by the exchange field and can be controlled
by a gate voltage [41]. One can expect that the impact of
exchange field effects on transport characteristics of T-shaped
double quantum dots is even more complex [42]. Despite vast
existing literature on spin-resolved transport through quantum
dots, the two-stage Kondo effect remains in this context to a
large extent unexplored. Therefore, this problem is addressed
in the present paper.

Using the numerical renormalization group method [43] we
calculate the linear response conductance in the parallel and
antiparallel magnetic configurations, as well as the resulting
tunnel magnetoresistance (TMR). We show that the temper-
ature dependence of the linear conductance in the parallel
configuration greatly depends on the splitting caused by the
exchange field, which can be tuned by gate voltages. While
in the antiparallel configuration the conductance becomes
suppressed at sufficiently low temperatures, in the parallel
configuration the second stage of screening is destroyed and
the conductance is finite. Moreover, for some gate voltages,
the second stage of screening can be totally suppressed. This
results in highly nontrivial behavior of the TMR, which at
low temperatures is greatly enhanced and takes giant values.
We also study the dependence of the low-temperature value
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FIG. 1. (Color online) Schematic of a T-shaped double quantum
dot coupled to ferromagnetic leads. The first dot is directly coupled to
the leads with the coupling strengths �Lσ and �Rσ , while the second
dot is coupled to the first one via the hopping matrix element t . The
magnetizations of the leads can form either parallel or antiparallel
magnetic configuration.

of the conductance in the parallel configuration on the spin
polarization of the leads, which is found to be nonmonotonic.
In addition, we analyze the transition from low to high
conducting state of the system as a function of the hopping
between the two dots at a small but finite temperature, T < T ∗,
and show that the exchange field smears out this transition.
Finally, we consider the effect of finite magnetic field and
level detuning on transport properties, which clearly indicates
that transport behavior is conditioned by an intricate interplay
between the exchange field and the first and second stage
Kondo temperatures, TK and T ∗.

The paper is organized as follows. A theoretical description
of the system and method used in calculations is presented
in Sec. II. The third section is devoted to numerical results
and their discussion. We first analyze the case of nonmagnetic
leads (Sec. III A), as a starting point for the analysis of the case
with ferromagnetic contacts (Sec. III B), where we study the
temperature and magnetic field dependence of conductance
and TMR for different hoppings between the dots and for
different leads’ spin polarization. We also analyze how the
DQD level detuning affects the transport properties. Finally,
the paper is concluded in Sec. IV.

II. THEORETICAL FORMULATION

The system consists of two single-level quantum dots
(QDs) in a T-shaped geometry; see Fig. 1. The dots are
coupled to each other and one of the dots (the first dot,
denoted QD1) is attached to external ferromagnetic leads. The
magnetizations of the leads are assumed to form either parallel
or antiparallel magnetic configuration. The Hamiltonian of the
system is based on the Anderson model and has the form
H = HDQD + Hcb + HT, where

HDQD =
∑
iσ

εiniσ +
∑

i

Uini↑ni↓ + BSz

+
∑

σ

t(d†
1σ d2σ + H.c.), (1)

Hcb =
∑
�kσr

εr �kσ nr �kσ , (r = L,R), (2)

HT =
∑
�kσr

(Vr �kσ d
†
1σ cr �kσ + H.c.). (3)

Here, diσ annihilates an electron of spin σ in dot i, niσ =
d
†
iσ diσ , cr �kσ annihilates an electron carrying momentum �k and

spin σ in the lead r (r = L for left and r = R for right lead),
and nr �kσ = c

†
r �kσ

cr �kσ . εi (εr �kσ ) denotes the single-electron

energy of dot i (in lead r , corresponding to momentum �k and
in spin σ ). The Coulomb energy of two electrons occupying
the dot i is denoted by Ui , while B stands for external
magnetic field with gμB ≡ 1. It is assumed that the capacitive
coupling between the dots is negligible. We also assume that
the Coulomb correlation parameters are the same in both dots,
U1 = U2 ≡ U . The term proportional to t describes hopping
between the two dots, while Vr �kσ denotes the respective matrix
elements for tunneling between the first dot and external lead
r . We assume Vr �kσ to be independent of �k and r , Vr �kσ ≡ Vσ .
The coupling to external leads gives rise to broadening of the
first dot’s level, which is described by �rσ = πρrσ |Vσ |2, where
ρrσ is the normalized density of states at the Fermi level of
lead r for spin σ . For ferromagnetic leads, the coupling can
be conveniently expressed in terms of spin polarization pr of
lead r as �rσ = (1 + σpr )�r , where �r = (�r↑ + �r↓)/2 and
pr = (ρr↑ − ρr↓)/(ρr↑ + ρr↓) is the spin polarization of lead
r . In the following we assume that electrodes are made of the
same material, pL = pR ≡ p, and the double quantum dot is
coupled symmetrically to the leads, �L = �R ≡ �/2.

To analyze the transport properties of T-shaped dou-
ble quantum dots strongly coupled to ferromagnetic leads,
we use the numerical renormalization group (NRG) technique
[43]. This method is known as very powerful and versatile
in studying various quantum impurity models. It proved to
be extremely accurate and useful for explaining experimental
data on the Kondo effect in quantum dots and molecules
[12,38]. The core of NRG consists in logarithmic discretization
of the conduction band and mapping of the discretized
Hamiltonian onto a tight-binding chain with exponentially
decaying hoppings, which is then solved iteratively. Here,
we perform the calculations with the aid of the open-access
Budapest NRG code [44]. It allows for calculating static and
dynamic properties of the system at arbitrary temperatures by
using the full density matrix [45,46] and exploiting an arbitrary
number of symmetries that the Hamiltonian possesses. In
our calculations we use the Abelian symmetries for the
total charge and total spin zth component. We keep at least
1024 states during iteration and use discretization parameter
� = 2. Moreover, we calculate the conductance directly from
discrete NRG data [47], without the need to invoke broadening
procedures which can introduce certain errors [48].

In the linear response regime, for energy-independent
couplings to the leads, the conductance can be found from
[49,50]

GP/AP = 2e2

h

∑
σ

2�
P/AP
Lσ �

P/AP
Rσ

�
P/AP
σ

∫
dω

[
−∂f (ω)

∂ω

]
πAP/AP

σ (ω),

(4)

where �
P/AP
σ = �

P/AP
Lσ + �

P/AP
Rσ , f (ω) is the Fermi function,

and A
P/AP
σ (ω) is the spin-resolved spectral function of the first

quantum dot, which we calculate by NRG. The superscript
denotes either parallel (P) or antiparallel (AP) magnetic
configuration. The change of system transport properties when
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switching the magnetic configuration of the device can be
described by the TMR, which is defined as [51]

TMR = GP − GAP

GAP
. (5)

To perform the calculations it is convenient to make an
orthogonal transformation from the left-right to a new basis,
in which the DQD couples only to a single conduction
channel with an effective coupling strength �σ = �Lσ + �Rσ

[32,33,35,37]. This allows us to perform the calculations in
the standard single-channel fashion [3]. While generally the
spin dependence of the effective coupling �σ is present in
both magnetic configurations [40], for left-right symmetric
systems as considered here, it only persists in the parallel
configuration. The effective coupling in the given magnetic
configuration has then the following form, �AP

σ = � and
�P

σ = (1 + σp)�. This implies that, except for an overall spin-
polarization-dependent factor, 1 − p2, transport properties in
the antiparallel configuration are the same as in the case of
nonmagnetic leads.

We note that if the left-right symmetry is broken, the
effective coupling becomes spin-dependent in the antiparallel
configuration. This can result in nontrivial effects, such as the
occurrence of the exchange field in both magnetic configura-
tions [40]. Similarly, in the case of left-right symmetry, but
when a deviation from collinear alignment of magnetizations
in the case of antiparallel configuration occurs, effective
exchange field can also arise [52–55]. If the exchange field is
smaller than the relevant energy scales in the problem, such as
the Kondo temperature, the behavior of the system’s transport
characteristics will be hardly affected. Consequently, one can
expect that relatively small deviations from the left-right
symmetry or collinear alignment of magnetizations, which are
unavoidable in real experiments, will not change the physics
much. Detailed analysis of such effects is however beyond the
scope of the present paper.

III. DISCUSSION OF NUMERICAL RESULTS

In this section we present and discuss the numerical
results on the linear conductance and TMR as a function of
temperature T , hopping between the dots t , external magnetic
field B, and DQD levels’ positions. We mainly focus on the
case when there is a single electron on each dot, that is,
on the transport regime where the (two-stage) Kondo effect
occurs. In our analysis we assume the following parameters
for the DQD: U = 0.5 and � = 0.1, expressed in units of
band half-width D ≡ 1. For t = 0, ε1 = −U/2, and p = 0,
the Kondo temperature, defined as the temperature at which
G(T )/G(0) = 1/2, is TK = 3.14 × 10−2.

A. The case of nonmagnetic leads

Before analyzing the transport properties for DQD with
ferromagnetic leads, let us first discuss the case of nonmagnetic
leads as a reference for understanding and elucidating the role
of spin-resolved transport on the two-stage Kondo effect. The
temperature dependence of the linear conductance for different
values of the hopping in the case when the two dots are singly
occupied is shown in Fig. 2. For t = 0, the model corresponds

0

0.5

1

1.5

2

10−7 10−5 10−3 10−1 101

G
[e

2
/
h
]

T/Γ

t = 0
t = Γ/4
t = Γ/3
t = Γ/2
t = 3Γ/4
t = Γ

FIG. 2. (Color online) The linear response conductance G as a
function of temperature T for different values of the hopping t

between the two dots in the case of nonmagnetic leads. The parameters
are U = 0.5, � = U/5, ε1 = ε2 = −U/2, and p = 0.

to the single-impurity Anderson model and the conductance
increases to its maximum value, G = 2e2/h, for T � TK. At
low temperatures, the T dependence of G is universal with
only one relevant energy scale—the Kondo temperature [3].

In the case of finite hopping, however, the temperature
dependence of the conductance is not monotonic anymore; see
Fig. 2. Finite t introduces another energy scale in the problem,
T ∗, at which the spins of the two dots form a singlet and the
conductance through the system becomes totally suppressed
for T � T ∗. The temperature at which the second stage of the
Kondo effect occurs can be expressed as [21–23]

T ∗ = aTKe−bTK/Jeff , (6)

where a and b are constants of the order of unity and Jeff is
the effective antiferromagnetic exchange iteration between the
two spins in quantum dots, which is given by [21–23,28]

Jeff = 2t2

(
1

ε1 + U1 − ε2
+ 1

ε2 + U2 − ε1

)
. (7)

In the absence of detuning between the levels, ε1 = ε2, and for
the same Coulomb correlations in the dots, U1 = U2 = U , the
exchange interaction becomes Jeff = 4t2/U .

Clearly, decreasing the hopping between the dots sup-
presses T ∗ in an exponential way, and for t → 0 the second
stage of the Kondo effect does not occur; see Fig. 2. Moreover,
if the two energy scales, TK and T ∗, are well separated,
conductance in the intermediate temperature range, T ∗ �
T � TK, can reach its maximum value; see the case of t = �/4
in Fig. 2. For larger hopping t , however, the difference between
TK and T ∗ is decreased and the conductance exhibits smaller
increase for temperatures T ∗ < T < TK; see Fig. 2 in the
case of t = �. On the other hand, for T < T ∗, G decays
quadratically with temperature [21].

Numerically, we determine T ∗ as the temperature at which
the conductance drops to half of its maximum value. In
particular, for parameters used in Fig. 2 and for t = �/3,
T ∗ = 5.92 × 10−5 = 1.89 × 10−3TK. From the NRG data we
can also estimate the constants a and b appearing in Eq. (6),
which are equal, a ≈ 0.48 and b ≈ 1.56.
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B. The case of ferromagnetic leads

When the leads are ferromagnetic, the behavior discussed
in previous section can be drastically changed. Now, another
energy scale associated with the exchange field, 
εexch, enters
into the problem. The exchange field results from charge
fluctuations between the dot and leads, which give rise to
the spin-dependent renormalization of the dot levels [31]. As
a matter of fact, 
εexch, by splitting the dot levels, acts in a
similar way to strong external magnetic field [38]; however,
its magnitude and sign can be controlled electrically by tuning
the levels with gate voltages. For a single-level quantum dot,

εexch can be approximated by [31] 
εexch = 2p�

π
log| ε

ε+U
|.

Thus, 
εexch changes sign when crossing the particle-hole
symmetry point ε = −U/2, while for ε = −U/2, 
εexch = 0.
On the other hand, for double dots the formula for the
exchange field is more complex [42,56]; nevertheless, the
main properties are still very similar to the single-dot case:

εexch vanishes at the particle-hole symmetry point of the
model, ε1 = ε2 = −U/2, and its magnitude and sign can
be controlled by tuning the DQD levels. Thus, one may
expect highly nontrivial behavior of linear conductance and
TMR as a function of temperature for various configurations
of the DQD levels, which determine the strength of the
exchange-field-induced splitting. This is indeed the case, as
we show in the following.

As mentioned before, for left-right symmetric systems, G

in the antiparallel configuration is the same as in the case
of nonmagnetic leads except for an overall factor of 1 − p2,
which decreases the conductance. However, to make the
discussion more comprehensive and enable direct comparison
with the case of parallel magnetic configuration, in the
following figures we present both GP and GAP.

1. Temperature dependence for different hoppings t

In this section we study the temperature dependence of the
linear conductance and TMR for different hoppings between
the dots and arrangements of the DQD levels. This corresponds
to the situation when for given magnitude of the exchange field
we change the effective exchange interaction between the two
dots, affecting thus the characteristic energy scale of the second
stage of the Kondo effect, T ∗ [57].

The temperature dependence of the linear conductance
in both magnetic configurations and the resulting TMR
for different values of the hopping is presented in Fig. 3.
This figure was calculated for ε1 = ε2 = −U/2, i.e., for
the particle-hole symmetry point of the model where the
exchange field is absent. It allows us to determine the effects
of spin-dependent couplings, which are not connected with
the spin splitting of the DQD levels. As can be seen in
Fig. 3, the temperature dependence of the conductance in both
magnetic configurations is qualitatively similar. For t = 0, i.e.,
when the second dot is decoupled, the Kondo effect occurs in
both configurations. For finite t , both GP and GAP initially
increase when the system is cooled down. For T � TK , they
practically do not depend on t ; however, at lower temperatures,
curves corresponding to different hoppings t deviate from each
other; see Figs. 3(a) and 3(b). At very low temperatures, both
conductances eventually approach zero.
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FIG. 3. (Color online) The linear conductance G in the parallel
(a) and antiparallel (b) magnetic configuration and the resulting TMR
(c) as a function of temperature. The parameters are U = 0.5, � =
0.1, ε1 = ε2 = −U/2, and p = 0.4. The vertical lines correspond to
temperatures 30T ∗, T ∗, and T ∗/30 in the case of t = �/3, indicated
for further reference.

Although the behaviors of GP and GAP with temperature are
similar, there are still important quantitative differences: First,
the Kondo temperature in the case of parallel configuration
is smaller than in the case of antiparallel configuration;
i.e., T P

K < T AP
K . Second, the second stage of the Kondo

effect occurs at larger temperature in the parallel magnetic
configuration compared to the antiparallel case; i.e., T ∗

P > T ∗
AP.

To understand these differences let us invoke the formula for
the Kondo temperature in the case of single-level quantum dots
for parallel magnetic configuration and for ε = −U/2 [31],

T P
K =

√
U�

2
exp

[
−πU

8�

arctanh(p)

p

]
. (8)

Clearly, the spin-polarization-dependent factor in the Kondo
temperature leads to decrease of T P

K with increasing p. Note
that the Kondo temperature in the antiparallel configuration,
T AP

K , is the same as in the case of nonmagnetic leads as long as
p < 1 (for p = 1 there is no Kondo effect at all). Physically,
the decrease of TK is associated with asymmetry between
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the densities of states for majority and minority electron
bands of the ferromagnet, which results in smaller exchange
interaction between the spin in the dot and the conduction
electrons compared to nonmagnetic case. Because T P

K < T AP
K ,

by using Eq. (6), one can immediately see that for the same Jeff ,
T ∗

P > T ∗
AP; i.e., the second stage of the Kondo effect occurs at

higher temperature in the case of ferromagnetic leads aligned
in parallel compared to antiparallel alignment.

The differences between GP and GAP are reflected in the
behavior of the TMR, which is depicted in Fig. 3(c). First of
all, for t = 0, the TMR exhibits a behavior which is typical
for single quantum dots, where TMR is positive in the absence
of exchange field [39]. In the case considered here, however,
we observe a strong dependence of the TMR on the hopping
parameter t , which can lead to large negative TMR even in the
particle-hole symmetric case. This negative TMR is related
to the second stage of screening, at which the conductance
decreases as ∝T 2 [21]. Because T ∗

P > T ∗
AP, the decrease of G

is faster in the parallel configuration compared to antiparallel
one, and GP < GAP for T < T ∗

P ,T ∗
AP, which results in negative

TMR. Moreover, the smaller the hopping t is, the larger the
ratio T ∗

P /T ∗
AP becomes [cf. Eq. (6)], and, thus, the more neg-

ative TMR can be observed. In fact, the TMR approaches the
limiting value TMR = −1 already for t = �/4, as can be seen
in Fig. 3(c). With increasing the hopping t , Jeff is enhanced
and the difference between T ∗

P and T ∗
AP becomes reduced, and

so does the difference between GP and GAP. This can be seen
as a gradual increase of the minimum value of the TMR, which
is not close to −1 any more; however, it is still negative. On the
other hand, in the high-temperature limit, T > T P

K ,T AP
K , for all

values of the hopping t considered in the figure, the behavior
of the TMR is the same as in the single-dot case [39].

For further reference in Fig. 3 we have marked by vertical
lines three different temperatures corresponding to 30T ∗, T ∗,
and T ∗/30, with T ∗ ≈ 6 × 10−5 estimated for the case of
t = �/3. For these temperatures in Sec. III B 5 we will analyze
the dependence of the conductance and the TMR on the
positions of quantum dots’ energy levels. These temperatures
correspond to different transport regimes: the highest one, T =
30T ∗, corresponds to the first stage of the Kondo effect where
the Kondo effect develops, the lowest one, T = T ∗/30, to the
second stage of the Kondo effect, in which the conductance
is suppressed, whereas the intermediate temperature, T = T ∗,
corresponds to the crossover region between the two stages;
see Fig. 3.

Now, let us turn to the discussion of the case when the
exchange field is finite, 
εexch �= 0. This can be obtained by
detuning the position of the DQD levels from the particle-hole
symmetry point. We will in particular study what happens
when the position of one of the dots’ levels is changed to
εi = −U/3. This choice of parameters guarantees that the
exchange field effects and, in particular, the interplay between
T ∗ and 
εexch when changing t , will be clearly visible in
transport characteristics.

The temperature dependence of both GP and GAP together
with TMR is shown in Fig. 4. The left column corresponds
to the case when ε1 = −U/2 and ε2 = −U/3, while the right
column is calculated for ε1 = −U/3 and ε2 = −U/2. Let us
first analyze the former case. In the antiparallel configuration
the main difference between GAP in the case of ε1 = ε2 =
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FIG. 4. (Color online) The same as in Fig. 3 calculated in the
absence of particle-hole symmetry. The left column corresponds to
ε1 = −U/2 and ε2 = −U/3, while the right column is calculated for
the case of ε1 = −U/3 and ε2 = −U/2.

−U/2 and that in the asymmetric case is associated with
a change of both T AP

K and T ∗
AP; cf. Eq. (6). More precisely,

T AP
K increases whenever ε1 �= −U/2 [58], while Jeff increases

when either ε1 �= −U/2 or ε2 �= −U/2. Thus, in Fig. 4(b)
T ∗

AP is larger compared to that in the case of Fig. 3(b). In
the parallel configuration, on the other hand, the situation is
more complex due to the presence of exchange field. First of
all, we note that for weak hopping between the dots, t < �,

εexch develops mainly in the second dot where ε2 = −U/3,
while the first dot is in its symmetry point ε1 = −U/2.
When the hopping increases, however, transport rather occurs
through molecular many-body states that can be split by 
εexch

[56]. The magnitude of 
εexch can be estimated from the
temperature dependence of GP, since it corresponds to the
energy scale at which the second stage of screening is broken.
For example, in the case of t = �/4, it corresponds to the small
minimum visible around T/TK ≈ 3 × 10−3; see Fig. 4(a).
Thus, for assumed parameters one gets an estimate of 
εexch ≈
3 × 10−3TK. The most important consequence of the presence
of ferromagnetic leads is the suppression of the second stage of
the Kondo effect if only 
εexch > T ∗

P . Then, the conductance
does not decrease but retains a finite, nonuniversal value, which
depends on the ratio of T ∗

P /
εexch that can be changed, e.g.,
by tuning t . In fact, with increasing the hopping between the
dots, T ∗

P raises, cf. Eq. (6), and the second stage of the Kondo
effect starts competing with splitting caused by 
εexch, until
eventually the T dependence of GP becomes very similar to
that of GAP; see the case of t = � in Figs. 4(a) and 4(b).
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The huge difference between conductances in the two
magnetic configurations associated with finite 
εexch can be
clearly visible in the TMR, which is shown in Fig. 4(c). This
difference is most visible for finite but small values of the
hopping t , for which GP is large and GAP is suppressed due to
the second-stage screening. Altogether, it gives rise to greatly
enhanced TMR, which is a straightforward signature of the
presence of exchange field. We note that GAP for T → 0 is not
precisely zero but takes a small nonuniversal value in the case
when the particle-hole symmetry is broken [26]. Nevertheless,
this finite value is still a few orders of magnitude smaller than
the value of GP for T → 0, which leads to giant TMR, of the
order of 103. With increasing the hopping between the dots,
e.g., for t = �, the condition 
εexch > T ∗

P is not fulfilled any
more and the difference between the two magnetic configura-
tions becomes much reduced. The TMR is then still relatively
large; however it does not take spectacular values as in the
opposite case when the condition 
εexch > T ∗

P is satisfied.
In the case when the detuning is induced in the first dot and

absent in the second dot, the exchange field effects are more
pronounced compared to the opposite case. This is related
to the fact that the particle-hole symmetry is broken in the
dot that is directly coupled to the leads and thus the spin-
dependent charge fluctuations that renormalize the levels are
more effective. The respective temperature dependence of GP,
GAP, and TMR in the case of ε1 = −U/3 and ε2 = −U/2 is
shown in the right column of Fig. 4. Performing an analysis
similar to that above, one can estimate the exchange field to be
of the order of 
εexch ≈ 3 × 10−2TK, which is now one order
of magnitude larger. In fact, the presence of the exchange field
can be observed even in the case of t = 0, where it leads to
a small decrease of the conductance from its maximum value
of GP = 2e2/h, which occurs in the case of ε1 = −U/2; cf.
Figs. 4(a) and 4(d). As can be seen in Fig. 4, all the features
discussed in the case of ε1 = −U/2 and ε2 = −U/3 are very
similar to those in the case of ε1 = −U/3 and ε2 = −U/2.
The main difference is associated with the value of hopping
for which the condition 
εexch > T ∗

P is not satisfied. One can
see that now it happens only for large hopping of the order
of t = �; see Fig. 4(d). The giant TMR occurs then for most
of the hopping values considered in the figure; see Fig. 4(f).
Moreover, due to the fact that now T ∗

AP is decreased compared
to the previous case, enhanced TMR occurs at slightly lower
temperatures; cf. Figs. 4(c) and 4(f).

We also note that in the case when the detunings are
present in both dots, ε1 = ε2 = −U/3 (results not shown), the
situation is very similar to the case of ε1 = −U/3 and ε2 =
−U/2, since finite detuning from the particle-hole symmetry
point in the second dot only slightly modifies the strength of
the exchange field, which is mainly determined by the detuning
of the first dot.

2. Temperature dependence for different spin polarizations p

To clearly see the effect of p �= 0, we now analyze the T

dependence of G and TMR in the case when the spin polariza-
tion of the leads is changed, while hopping between the dots is
constant. This corresponds to fixing the exchange interaction
between the dots and tuning the magnitude of the exchange
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FIG. 5. (Color online) The linear conductance G in parallel (a)
and antiparallel (b) magnetic configuration and the TMR (c) plotted as
a function of temperature in the case of ε1 = ε2 = −U/2 for different
spin polarizations of the leads. The parameters are the same as in
Fig. 3, except for t = �/3 and p indicated in the figure.

field, i.e., the opposite situation to that studied in the previous
section.

The temperature dependence of the linear conductance in
both magnetic configurations and of the TMR is shown in Fig. 5
in the case of ε1 = ε2 = −U/2. In the antiparallel configura-
tion the dependence of GAP on the spin polarization p is trivial
and is revealed only through the factor 1 − p2. In this regard,
both T AP

K and T ∗
AP do not depend on p; see Fig. 5(b). In the

parallel configuration, on the other hand, increasing spin polar-
ization leads to a decrease of T P

K [cf. Eq. (8)], with immediate
increase of T ∗

P [cf. Eq. (6)]. Consequently, the temperature
range where T ∗

P < T < T P
K shrinks with increasing t , while the

maximum value of GP decreases; see Fig. 5(a). This behavior
is reflected in the temperature dependence of TMR, which
is shown in Fig. 5(c). One can see that TMR changes sign
approximately at the temperature corresponding to maximum
in GP. Below this maximum the TMR becomes negative and
can reach −1 for p � 0.6, while for temperatures larger than
those corresponding to maximum in GP, the TMR is positive
and can be greatly enhanced for large spin polarization. This
behavior results directly from the aforementioned dependence
of both T P

K and T ∗
P on spin polarization p.
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FIG. 6. (Color online) The same as in Fig. 5 calculated for
ε1 = −U/2 and ε2 = −U/3 (left column), and ε1 = −U/3 and
ε2 = −U/2 (right column).

The conductance and TMR as a function of temperature in
the case of broken particle-hole symmetry are shown in Fig. 6.
Irrespective of whether the detuning from the symmetry point
occurs in the first or second dot, GAP displays qualitatively
the same behavior, with T AP

K (T ∗
AP) larger (smaller) in the case

of ε1 = −U/3 compared to the case with ε1 = −U/2; see
Figs. 6(b) and 6(e). In the parallel configuration, the effects
due to the presence of the exchange field are clearly visible and
more pronounced in the case when the detuning occurs in the
first dot. The splitting caused by 
εexch suppresses the second
stage of the Kondo effect. Similarly to the case discussed
in previous section, for 
εexch �= 0, that is for finite p and
ε1 �= −U/2 or ε2 �= −U/2, the linear conductance saturates
at some finite value; see Figs. 6(a) and 6(d). However, as
can be seen in the figure, the low-temperature value of GP

depends on p and this dependence is not monotonic. The
spin-polarization dependence of GP calculated at T = 10−8

(which corresponds to the smallest value used in Fig. 6) is
explicitly shown in Fig. 7 for different DQD level positions,
indicated in the figure and corresponding to those shown in
Fig. 6. Very interestingly, low-temperature GP has a maximum
for certain spin polarization p = pmax. Moreover, pmax clearly
depends on the position of DQD levels, i.e., on the strength of
the exchange field. The mechanism leading to this behavior is
related with the splitting of the triplet states caused by 
εexch.
For finite hopping and in the absence of ferromagnetic leads
(
εexch = 0), the ground state of the system is the spin singlet
|S〉 = (|↑↓〉 − |↓↑〉)/√2, where |σσ ′〉 denotes a state in which
there is a spin-σ (spin-σ ′) electron in the first (second) dot.
Now, if the leads are ferromagnetic, the exchange field does
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FIG. 7. (Color online) The dependence of the low-temperature
value of the linear conductance in the parallel configuration, GP, on
the spin polarization of the leads p for different DQD level positions,
as indicated, and for t = �/3 and T = 10−8. The other parameters
are the same as in Fig. 3.

not affect the singlet state; however, it can split the triplet
state, which is higher in energy than singlet. Depending on the
sign and strength of 
εexch, which can be changed by tuning
the DQD levels, for some value of exchange field one of the
components of the triplet state, either |↑↑〉 or |↓↓〉, can become
degenerate with the singlet state. Because such states differ in
magnetic quantum number by 1, the usual spin-flip processes
responsible for the Kondo effect are possible and the Kondo
resonance can be reinstated, though with slightly lower height.
This is exactly the physical mechanism responsible for the
nonmonotonic dependence of the low-temperature value of GP

on p. When increasing the spin polarization, 
εexch becomes
enhanced and, for p ≈ pmax, the degeneracy between the
singlet state and one component of the triplet state is restored,
giving rise to enhancement of GP. Another feature visible
in Fig. 7 is the difference in pmax for different arrangements
of DQD levels. In agreement with previous observation, the
exchange field is stronger in the case when the detunig is
present in the first dot, which leads to smaller pmax compared
to the case of ε1 = −U/2 and ε2 = −U/3; see Fig. 7.

Finally, the difference between GP and GAP again leads
to giant TMR in the transport regime where the second
stage of screening occurs in the antiparallel configuration; see
Figs. 6(c) and 6(f). In addition, one can also note very large
TMR in the high-temperature regime for spin polarization
p = 0.9. This effect however results directly from the fact
that GAP is smaller by a factor of 1 − p2 than GP, which for
p → 1 translates into infinite TMR.

3. Dependence on hopping between the dots t

In this section we analyze how the low-temperature
conductance in both magnetic configurations depends on the
hopping between the dots and the spin polarization of the leads.
In calculations we assume very low but finite temperature
T = 10−8, which allows us to study the transition from the
low to high conducting state of the system. Note that for
ε1 = ε2 = −U/2, at zero temperature the conductance should
be suppressed in both configurations for any t , due to the
second stage of Kondo screening [21]. Nevertheless, this limit

134422-7

11 [F] Two-stage Kondo effect in T-shaped DQDs with ferromagnetic leads

Part II: Articles 125



KRZYSZTOF P. WÓJCIK AND IRENEUSZ WEYMANN PHYSICAL REVIEW B 91, 134422 (2015)

is experimentally inaccessible and, provided that T � TK,
one should observe the transition in conductance at certain
t = tc such that T ∗(tc) ≈ T ; cf. Eq. (6). Then, for t < tc, one
has T ∗ < T , and the conductance retains its maximum value
due to the first stage of the Kondo effect. We also note that
changing the temperature used in calculations (from the value
of T = 10−8) would only result in a slight shift of the
value of hopping tc at which the conductance drops, while
the results would be qualitatively the same, provided that
T � T P

K ,T AP
K .

The dependence of low-temperature conductance in the
antiparallel configuration on the hopping t in the case of
particle-hole symmetry is shown in Fig. 8(a). It can be
seen that GAP displays exactly the dependence described
in the preceding paragraph: GAP = 0 for t > tc and GAP =
(1 − p2)2e2/h for t < tc. The behavior of GAP with changing
t is qualitatively the same in the absence of symmetry; the
only difference is related to a slight change of tc. As expected,
for given DQD level arrangement, tc does not depend on spin
polarization p, the effect of which is only to suppress the
conductance for t < tc by a factor of 1 − p2; see Fig. 8(a).

In the parallel configuration the t dependence of G is
completely different. In the case of ε1 = ε2 = −U/2, increas-
ing p leads to lowering of tc; see Fig. 8(b). This is due to
the fact that the larger the spin polarization is, the smaller
the Kondo temperature becomes, cf. Eq. (8), and, thus, the
larger T ∗

P is for given t . Consequently, the condition T ∗
P ≈ T

becomes satisfied for smaller hopping with increasing the spin
polarization. Note also that GP for t < tc reaches its maximum
value of 2e2/h, irrespective of p; see Fig. 8(b). This maximum
value also persists in the case when the detuning occurs in the
second dot, i.e., in the case of ε1 = −U/2 and ε2 = −U/3
shown in Fig. 8(c). Now, however, tc exhibits a nonmonotonic
dependence on the spin polarization. The mechanism leading
to such nonmonotonic dependence was already explained in
the previous subsection.

Another interesting feature is associated with the change
of slope of the transition from G = 0 to G = 2e2/h with
lowering t , which is visible for larger spin polarization; see,
e.g., the case of p = 0.9 in Fig. 8(c). This is due to the fact
that the condition |
εexch| < T P

K becomes then only weakly
met. On the other hand, in the case of ε1 = −U/3 and ε2 =
−U/2 shown in Fig. 8(d), the violation of this condition can
be much stronger. This causes a gradual lowering of GP for
t < tc with increasing spin polarization. In addition, raising p

smears the transition from low to high conducting state and
shifts it towards larger values of the hopping t ; see Fig. 8(d).

4. Magnetic field dependence

Let us now move to the analysis of the influence of
external magnetic field on the transport properties. The linear
conductance in both magnetic configurations and the TMR
as a function of magnetic field for different hoppings between
the dots are shown in Fig. 9. This figure was calculated for
ε1 = ε2 = −U/2, i.e., in the case when the exchange field is
absent. For t = 0, one observes the behavior which is typical
for one-stage Kondo effect, when the conductance becomes
suppressed once B � TK [59]; see Figs. 9(a) and 9(b). This
situation changes in the case of finite hopping. Now, with
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FIG. 8. (Color online) The low-temperature linear conductance
in the antiparallel (a) and parallel (b)–(d) configurations as a function
of hopping between the dots t for different spin polarization p, as
indicated. In the case of (a) and (b) ε1 = ε2 = −U/2, (c) ε1 = −U/2
and ε2 = −U/3, and (d) ε1 = −U/3 and ε2 = −U/2. The parameters
are the same as in Fig. 3 with T = 10−8. The vertical line indicates
the value of t = �/3 that was used in Figs. 5 and 6.

lowering magnetic field, the conductance in both magnetic
configurations becomes first enhanced for B < TK to its
maximum value, GP = 2e2/h and GAP = 2(1 − p2)e2/h,
respectively. However, with further decrease of B, both GP and
GAP drop to zero once B < T ∗, due to the second stage of the
Kondo effect. Though the magnetic field dependence of linear
conductance is similar to its temperature dependence, cf.
Figs. 3 and 9, there is one important difference. In the presence
of external magnetic field, there is always such a field at which
the conductance acquires its maximum value for any hopping
considered [29], while in the temperature dependence of G
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FIG. 9. (Color online) The linear conductance in the parallel (a)
and antiparallel (b) magnetic configuration and the TMR (c) as a
function of magnetic field for different values of the hopping between
the dots, as indicated, and for ε1 = ε2 = −U/2. The other parameters
are the same as in Fig. 3 with T = 10−8.

increasing hopping t lowers the conductance in the intermedi-
ate region T ∗ < T < TK. Indeed, as can be seen in Fig. 9, with
increasing the hopping between the dots, the region where
the conductance is enhanced shrinks; however, its maximum
value does not depend on t . Moreover, one can also note that
T ∗

P > T ∗
AP, in agreement with discussion in previous sections,

which implies that GP < GAP for magnetic fields B < T ∗
P ,T ∗

AP.
This results in a large negative TMR at low magnetic fields;
see Fig. 9(c). On the other hand, for magnetic fields where the
conductance is enhanced to its maximum value, one generally
has GP > GAP, yielding positive TMR, which retains its
positive value also at higher magnetic fields; see Fig. 9(c).

In the presence of exchange field, the magnetic field
dependence of the linear conductance is much more complex.
Furthermore, the direction of magnetic field is now important
since, if it is opposite to the direction of 
εexch and B

is properly tuned, magnetic field can compensate for the
exchange-field-induced splitting of the levels [38]. However,
the case of T-shaped double quantum dots is even more
subtle, because the splitting caused by the exchange field
does not need to be the same in each dot and, moreover, it
can have opposite sign [42,56]. One can thus expect that the
interplay of B and 
εexch will be revealed as a nontrivial
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FIG. 10. (Color online) The same as in Fig. 9 calculated for ε1 =
−U/2 and ε2 = −U/3. Note the logarithmic scale for positive and
negative magnetic fields.

behavior of the conductance in the case of finite detuning from
the particle-hole symmetry point. This is indeed the case as
presented in the following figures.

The linear conductance and TMR in the case of ε1 = −U/2
and ε2 = −U/3 are shown in Fig. 10. The conductance in
the antiparallel configuration is qualitatively similar to the
particle-hole symmetric case presented in Fig. 9; therefore we
will not discuss it again. Instead, let us focus on the behavior
of GP and TMR. When t = 0, the variation of GP with B is
similar to that in the antiparallel configuration, since the first
dot is in its particle-hole symmetry point. However, when the
hopping is finite, the dependence of GP becomes asymmetric
with respect to the change of magnetic field direction; see
Fig. 10(a). First of all, one can see that at very low magnetic
fields, the conductance starts decreasing with increasing the
hopping t . This behavior is similar to that discussed in the
case of Fig. 4(a) and Fig. 8. When the magnetic field increases
(B > 0), at certain field the Kondo resonance becomes restored
and the conductance reaches its maximum value. The field at
which this restoration occurs increases with increasing the
value of hopping t . The occurrence of the Kondo effect is
associated with the fact that a properly tuned magnetic field
can restore the degeneracy that was lifted by the presence
of the exchange field. Very interestingly, the restoration can
also occur when the field is reversed, which is contrary to
the case of single quantum dots [38]. This can be understood
by realizing that, as explained in Sec. III B 2, the restoration
of the (single-stage) Kondo effect in DQDs in the magnetic
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field results from enforcing the degeneracy between the singlet
state and one of the triplet components. The sign change of
the magnetic field corresponds to the change of the triplet
component. However, it should be noted that due to the
existence of the effective exchange field, the restoration occurs
at slightly different fields when the direction of the magnetic
field is changed. Nevertheless, because the magnitude of
the exchange field for ε1 = −U/2 and ε2 = −U/3 is rather
small (
εexch ≈ 3 × 10−3TK) compared to the values of the
magnetic field at which the restoration occurs, this effect is
hardly visible in Fig. 10(a). Still, detailed analysis of numerical
data indeed reveals the shift and confirms that it is of the order
of the magnitude of 
εexch.

Besides the Kondo effect restoration, there is another inter-
esting feature visible in Fig. 10(a). For negative magnetic fields
and for |B| slightly below the value where the Kondo effect
occurs, the linear conductance reveals a sudden suppression,
which is present for small values of the hopping between
the dots; see, e.g., the case of t = �/4 in Fig. 10(a). This
suppression is related to the second stage of the Kondo effect,
which can be restored by magnetic field. At this field, the
spin of the first dot forms a singlet with the spin of the
second dot and the conductance becomes suppressed. For
larger hopping between the dots, however, the exchange field
starts playing a minor role and the magnetic field dependence
of G shows a two-stage character, which is very similar to the
case of antiparallel configuration; cf. Figs. 10(a) and 10(b) for
t � �/2.

The related dependence of the TMR on magnetic field is
shown in Fig. 10(c). First, we note that for magnetic fields
larger than the field where the restoration of the Kondo effect
occurs, the TMR is positive and rather independent of t .
Second, for very low magnetic fields, the TMR becomes
essentially infinite for small hopping between the dots [see
the case of t = �/4 in Fig. 10(c)], whereas for larger hopping
the TMR takes large positive values, which decrease with
increasing t . Third, while for positive magnetic fields of the
order of the restoration field one can see a small sign change
of the TMR, for negative fields the behavior is much more
complex. This is related to the fact that when increasing
magnetic field in the opposite direction (B < 0), both the
first and second stage of screening can be restored. This is
revealed in the behavior of the TMR, which changes sign and
approaches −1 for fields where the conductance in the parallel
configuration is suppressed due to the second stage of the
Kondo effect; see Fig. 10(c).

The aforementioned features can be even more pronounced
in the case when the exchange field is larger. Such situation is
presented in Fig. 11, which corresponds to the case when the
detuning occurs in the first dot, ε1 = −U/3 and ε2 = −U/2.
Now, in the case of t = 0, one can clearly see that the splitting
induced by the exchange field can be compensated for positive
direction of the magnetic field, while for negative field no
such restoration occurs; see Fig. 11(a). In the case of finite
hopping, however, the restoration occurs for both positive and
negative fields, however, at different values. Moreover, the
restoration and suppression of GP for negative fields develop
now gradually with increasing the hopping t . The behavior of
the TMR is presented in Fig. 11(c) and is qualitatively similar
to the case of ε1 = −U/2 and ε2 = −U/3. The main change
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FIG. 11. (Color online) The same as in Fig. 9 calculated for ε1 =
−U/3 and ε2 = −U/2. Note the logarithmic scale for positive and
negative magnetic fields.

is in the values of magnetic field at which the TMR becomes
greatly enhanced or suppressed to the value of −1.

To analyze the behavior of the conductance in the parallel
configuration as a function of magnetic field around the
point where GP becomes suppressed due to the second stage
screening, in Fig. 12 we show GP from Figs. 10 and 11 in the
case of t = �/4. We have used B̃ ≡ B − B0 as a measure of
magnetic field detuning from the point where the minimum
in GP occurs, with B0/TK = −0.029 for ε1 = −U/3, ε2 =
−U/2, and B0/TK = −0.0045 for ε1 = −U/2, ε2 = −U/3.
In the case where 
εexch is relatively weak, i.e., when detuning
from particle-hole symmetry point occurs only in the second
dot, the conductance at B = B0 becomes fully suppressed due
to the second stage of the Kondo effect. As can be clearly seen
in the inset to Fig. 12, the dependence of GP on B̃ is then
quadratic. This is however not the case when the exchange
field effects are stronger; see Fig. 12 for ε1 = −U/3 and
ε2 = −U/2. Then, the minimum in GP is much narrower
and strongly asymmetric. Moreover, the conductance becomes
suppressed only partially, which indicates that in this case
the second stage of screening cannot be fully restored by
fine-tuning the magnetic field.

5. Dependence on the DQD energy levels’ positions

To complete our discussion, in this section we relax the
condition of fixed dots’ levels and study the dependence
of the linear conductance and the TMR on ε1 and ε2. For
that we assume the hopping between the dots t = �/3, spin
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FIG. 12. (Color online) The dependence of the linear conduc-
tance in the parallel configuration on magnetic field B̃ ≡ B − B0

around the point where GP becomes suppressed in the case of
ε1 = −U/2, ε2 = −U/3 (solid line), and ε1 = −U/3, ε2 = −U/2
(dashed line). Here, B0 is the magnetic field at which GP has local
minimum. The inset presents the quadratic scaling of GP as a function
of B̃ for ε1 = −U/2 and ε2 = −U/3. The other parameters are the
same as in Fig. 3 with T = 10−8.

polarization p = 0.4, and zero magnetic field. The linear
conductance in the parallel and antiparallel magnetic
configuration as a function of ε1 and ε2 is shown in Fig. 13.
In this figure each row corresponds to different temperature.
The lowest temperature corresponds to the second stage of the
Kondo effect, the highest one to the first stage of the Kondo ef-
fect, while the intermediate temperature, T = T ∗, corresponds
to the crossover regime; see also the vertical lines in Fig. 3.

As can be seen in Fig. 13, the main difference between
G in the parallel and antiparallel magnetic configuration
occurs in the case when each dot is occupied by a single
electron, −U < ε1 < 0 and −U < ε2 < 0. On the other hand,
outside this Coulomb blockade valley, the behavior of GP

and GAP is qualitatively similar and rather weakly dependent
on temperatures considered in Fig. 13. This is due to the
fact that the highest temperature T = 30T ∗ is still slightly
lower than the Kondo temperature and the Kondo resonance
in the first dot is present. When the second dot is empty or
doubly occupied, ε2 > 0 or ε2 < −U , while the first dot hosts
a single electron, the linear conductance in the antiparallel
configuration reaches its maximum, GAP = 2(1 − p2)e2/h;
see the right column of Fig. 13. At first sight, a similar behavior
occurs also in the parallel configuration where the conductance
reaches GP = 2e2/h (see the left column of Fig. 13); however,
there is a crucial difference, which is related to the width
of enhanced conductance region. While in the antiparallel
configuration G is maximum in the whole regime of the
first dot being singly occupied, −U < ε1 < 0, in the parallel
configuration the width of the maximum is conditioned by the
ratio of exchange field and the Kondo temperature. Since for
assumed parameters TK is relatively large, one needs to induce
considerable detuning from particle-hole symmetry point of
the first dot to suppress the Kondo resonance. Consequently,
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FIG. 13. (Color online) The linear conductance in the parallel
(left column) and antiparallel (right column) magnetic configuration
as a function of DQD levels calculated at (a)–(b) T = T ∗/30, (c)–(d)
T = T ∗, (e)–(f) T = 30T ∗, with T ∗ being the second-stage Kondo
temperature for t = �/3, T ∗ ≈ 6 × 10−5. The parameters are the
same as in Fig. 3 with t = �/3.

there is relatively small difference between GP and GAP in
this transport regime and the dependence of conductance on
temperature is rather weak. Nevertheless, with lowering TK

(decreasing the ratio of �/U ), this difference becomes much
more pronounced [39].

Similarly, weak dependence on T can be observed in the
case when the first dot is either empty or doubly occupied;
see Fig. 13. This is due to the fact that in this case
transport is mainly due to cotunneling processes, which do
not have such spectacular dependence on temperature as the
conductance in the Kondo regime. The difference between the
two magnetic configurations results mainly from the coupling
asymmetry in cotunneling rates. In the parallel configuration
the zero-temperature conductance is proportional to GP ∼
2(1 + p2)�2, while in the antiparallel configuration one has
GAP ∼ 2(1 − p2)�2. This results in positive TMR, which is
given by TMR = 2p2/(1 − p2) [60].

When each of the dots is singly occupied, the conductance
strongly depends on both the magnetic configuration and the
temperature. For antiparallel alignment of leads’ magnetiza-
tions, the conductance is suppressed at low temperatures, see
Fig. 13(b), due to the formation of spin singlet between the
dots. When temperature increases, T = T ∗, the second stage
of the Kondo effect is suppressed by thermal fluctuations
and the conductance suppression is absent in the middle of
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the Kondo regime. However, the second-stage screening is
still present for ε2 close to the resonances, yet still in the
Coulomb blockade valley; see Fig. 13(d). On the other hand,
in the high-temperature regime, T = 30T ∗, the second stage
is almost completely smeared out by thermal fluctuations and
the conductance shows only a typical enhancement due to the
Kondo effect; see Fig. 13(f).

In the parallel configuration the role of exchange field is
clearly visible. First of all, the second stage of the Kondo
effect becomes destroyed except for a thin line in the (ε1,ε2)
plane where the exchange-field-induced splitting of the singlet
state is absent and the conductance is suppressed. Note that this
suppression is present in the case of both T = T ∗/30 and T =
T ∗, while for antiparallel configuration it was already partially
suppressed at T = T ∗; cf. Figs. 13(c) and 13(d). This is due to
the fact that T ∗

P > T ∗
AP, which implies that the second stage of

screening, for such DQD level arrangement when the exchange
field effects are absent, is destroyed at higher temperature
in the parallel configuration than in the antiparallel one. At
T = 30T ∗, instead of the conductance suppression there is an
enhancement of G in the middle of the Coulomb valley with
single electron in each dot, which is due to the Kondo effect;
see Fig. 13(e). The presence of the exchange field leads to a
narrowing of the enhancement regime when sweeping the first
dot level position compared to the antiparallel situation; cf.
Figs. 13(e) and 13(f).

Large differences between GP and GAP discussed above
translate into very nontrivial dependence of the TMR on both
the DQD levels’ positions and the temperature; see Fig. 14.
One can see that for evenly occupied second dot and singly
occupied first dot, the TMR can take negative values for
such ε1 when the conductance is suppressed in the parallel
configuration due to the exchange field. On the other hand,
when the occupation of the first dot is even, the TMR is
generally positive. These two features are rather independent
of temperature, see Fig. 14, provided T < TK, as considered
in the figure. The most striking behavior occurs when the two
dots are singly occupied. At low temperatures, T = T ∗/30,
when the second stage of the Kondo effect occurs in the
antiparallel configuration, giant TMR can be observed; see
Fig. 14(a). However, this giant TMR becomes suppressed
with increasing temperature and, at T = T ∗, a negative TMR
occurs around ε1 = −U/2, which is due to the second-stage
screening that is still present in the parallel configuration
around this point. Negative TMR also develops around ε2 =
−U/2 and ε1 = −U (1/2 ± 1/4); see Fig. 14(b). This can be
understood by realizing that for T = T ∗ the conductance in
the antiparallel configuration starts increasing owing to the
first-stage Kondo effect, while in the parallel configuration
this enhancement is smaller. Moreover, it can be seen that
when the second dot level is close to resonance, the TMR
can still take giant values. Finally, for higher temperatures,
the TMR as a function of the first dot level behaves similarly
as in the case when the second dot is evenly occupied; see
Fig. 14(c). The behavior of the TMR at T = 30T ∗ results
only from the interplay of 
εexch and TK, since T � T ∗. The
TMR takes then values that are rather typical for transport
through single quantum dots coupled to ferromagnetic leads
[39,60].
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FIG. 14. (Color online) The TMR as a function of DQD levels
calculated at (a) T = T ∗/30, (b) T = T ∗, (c) T = 30T ∗, with T ∗ ≈
6 × 10−5. Parameters are the same as in Fig. 3 with t = �/3. The
black areas in insets mark the regions where TMR is negative.

IV. CONCLUSIONS

In this paper we have numerically analyzed the two-stage
Kondo effect in T-shaped double quantum dots coupled to
ferromagnetic leads. By using the numerical renormalization
group method, we determined the behavior of the linear
conductance and the TMR on temperature, external magnetic
field, DQD levels’ positions, hopping between the dots, and
spin polarization of the leads. We showed that the two-stage
Kondo effect is present in the antiparallel configuration of the
system, while in the parallel configuration the second stage of
screening is generally suppressed. This suppression is due to
the presence of exchange field, which splits the levels of the
DQD. Such splitting can be controlled by tuning the DQD
levels with gate voltages and results from spin-dependent
charge fluctuations between the double dot and the leads.
When the electron and hole processes counterbalance each
other, which can happen for certain DQD level arrangements,
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the exchange field vanishes and the second stage of the Kondo
effect can be restored. Such restoration can also occur by fine-
tuning the external magnetic field, such that it compensates for
the exchange-field-induced splitting. The difference between
the conductance in the parallel and antiparallel configuration
results in very nontrivial behavior of the TMR, which at low
temperatures can take giant values. This giant TMR is reduced
when temperature increases above the temperature T ∗, which
is the characteristic energy scale of the second stage of the
Kondo effect. We also studied the low-temperature transition
from the high to low conducting state of the system, which

occurs when changing the hopping between the two dots, and
showed that this transition is generally smeared out by the
presence of the exchange field.
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Matter 25, 075301 (2013).
[41] J. Martinek, M. Sindel, L. Borda, J. Barnaś, R. Bulla, J. König,

G. Schön, S. Maekawa, and J. von Delft, Phys. Rev. B 72, 121302
(2005).
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Thermopower of strongly correlated T-shaped double quantum dots
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We theoretically study the thermoelectric transport properties of correlated T-shaped double quantum dots.
The calculations are performed with the aid of the numerical renormalization group method. When each of the
dots is occupied by a single electron, the system exhibits the two-stage Kondo effect. We identify the signatures
of the two-stage screening in transport coefficients such as electrical and heat conductances, Seebeck coefficient,
thermoelectric figure of merit, and the power factor. It is shown that the thermopower exhibits maxima for
temperatures corresponding to the second stage of screening. Moreover, the normalized heat conductance and the
electrical conductance are found to fulfill a modified Wiedemann-Franz law, which however becomes violated
when the system is in the weak coupling regime. In addition, we also analyze the effects of external magnetic
field, which gives rise to the occurrence of finite spin polarization of the conductance and a significant spin
thermopower.

DOI: 10.1103/PhysRevB.93.085428

I. INTRODUCTION

As prospective thermoelectric materials one can consider
those, which, when embedded between two reservoirs of
different temperatures, can produce a sizable voltage bias, and
are thus characterized by considerable Seebeck coefficient S

[1]. Such materials draw the attention of researchers due to, in
particular, the possibility of using them to capture waste heat
of various heat machines [2]. In metals, the Seebeck coefficient
S usually fulfills the Mott formula [3,4], which states that S

is proportional to the temperature T and the derivative of the
conductance G over the chemical potential μ:

S = π2k2
BT

3e

∂G

∂μ
. (1)

In low-dimensional systems, when the finite-size effects
become important, the dependence of G on μ can contain sharp
peaks, leading to strong enhancement of the thermopower
[5–7]. For this reason, thermoelectric properties of various
nanoscale devices have recently been extensively investigated
[8]. In particular, the thermoelectric properties of systems
containing a quantum dot (QD) were analyzed theoretically
[9–14] and experimentally [15]. It was shown that in such
artificial atoms the thermoelectric coefficients can be enhanced
compared to conventional bulk materials. Moreover, it turned
out that by analyzing the thermoelectric response of the
system, one can obtain an extra information about the intrinsic
parameters and correlations of the system, as well as important
energy scales. This is especially important for quantum dots
in the Kondo regime [16–19], where the sign changes of
the thermopower when varying temperature were shown to
provide further insight into the Kondo correlations and the
Kondo temperature TK [10].

In more complex quantum dot structures such as, e.g.,
double quantum dots (DQDs) [20], quantum correlations and
interference can lead to even more spectacular behavior of
thermotransport characteristics [21–25]. In particular, large

*kpwojcik@amu.edu.pl

enhancement of the thermoelectric figure of merit ZT in such
systems was found due to the quantum interference [23].
Moreover, transport properties of DQDs reveal a plethora
of various interesting phenomena, including the Pauli spin
blockade [26], formation of molecular states [27], the Kondo
effect [28,29], or Cooper pair splitting [30]. In addition, when
the two dots form a T-shaped geometry, the two-stage Kondo
effect and Fano interference become important [31–46]. Such
a geometry is realized when only one of the two dots, say the
first one, is directly coupled to external leads, while the second
dot is attached to the first dot [41], as illustrated in Fig. 1.

The goal of this paper is to extend the existing studies
on transport through T-shaped double dots by analyzing
the thermoelectric transport coefficients, focusing on trans-
port regime where the two-stage Kondo effect and Fano
interference are important. In particular, we analyze the
fingerprints of these two phenomena on the thermoelectric
properties of the system. We also study the effect of external
magnetic field on thermotransport characteristics since both
effects strongly depend on its magnitude. The calculations
are performed by using the numerical renormalization group
(NRG) method [47], which allows us to determine the linear
response properties of the device in a very accurate manner
[48]. We show that the thermopower and figure of merit
can be enhanced at temperature corresponding to the second
stage of screening, while the normalized heat conductance
and the electrical conductance are found to satisfy a modified
Wiedemann-Franz law. In addition, we also showed that
considerable spin thermopower can occur in the presence of
external magnetic field.

The paper is organized as follows. Model and method are
described in Sec. II. Then, we present and discuss the numer-
ical results in Sec. III, which is divided into corresponding
subsections, each containing description of dependence on
different quantities. Finally, Sec. IV concludes the paper.

II. MODEL AND METHOD

The considered system is schematically illustrated in Fig. 1.
It consists of left (r = L) and right (r = R) metallic leads,
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FIG. 1. Schematic illustration of the considered system. The first
quantum dot (QD1) is coupled to external left (r = L) and right
(r = R) leads with coupling strength �r , while the second dot (QD2)
is connected to the first dot through the hopping matrix element t .

and the first (QD1) and the second (QD2) quantum dot. The
dots form a T-shaped configuration, i.e., QD1 is coupled to
both leads and to QD2, while QD2 is not directly coupled
to the leads, but only via QD1. We denote the energies of
single-electron levels in lead r by εr �k , where �k stands for
quasimomentum. The Hamiltonians of both leads are assumed
to have a free-electron form Hr = ∑

�kσ εr �knr �kσ , where nr �kσ =
c
†
r �kσ

cr �kσ and cr �kσ annihilates a corresponding electron with
spin σ . To model the double quantum dot, we take into account
the on-dot Coulomb interactions U , which are assumed to
be the same for both dots, and allow for hopping between
the dots, with t denoting the respective amplitude. The DQD
Hamiltonian has then the following form:

HDQD =
∑
iσ

εiσ niσ + U
∑

i

ni↑ni↓ + t
∑

σ

(d†
1σ d2σ + H.c.),

(2)
where niσ = d

†
iσ diσ ,diσ is the annihilation operator of a spin-

σ electron in the dot i, εiσ = εi + σB/2 denotes its energy
(σ = ±1), and B is the external magnetic field (expressed
in such units that gμB = 1). Note that we assumed that the
capacitative coupling between the dots is negligible. Finally,
the Hamiltonian of the whole system can be written in the form
H = HL + HR + HDQD + HT, where

HT =
∑
r �kσ

vr �k(d†
1σ cr �kσ + H.c.) (3)

is the tunneling Hamiltonian with the hopping matrix elements
vr �k . We assume both leads to have flat density of states ρr in the
window of width 2D around the Fermi level. The parameter
D is here used as a cutoff for electron energies in the leads
and the unit of energy D ≡ 1. We assume that only s electrons
couple to DQD and consider the wide-band limit, in which
the coupling �r = πρr |vrk|2 is energy independent. We also
assume that the system is left-right symmetric �L = �R ≡
�/2.

To reliably analyze the linear-response electric and ther-
moelectric transport properties of the considered model in
the full parameter space, we employ the numerical renor-
malization group procedure [47,48]. In NRG, the system
Hamiltonian is transformed onto the Wilson chain [47], with
DQD coupled to the zeroth site of the chain (note that in
T-shaped geometry only the first dot is in fact coupled).
This Hamiltonian is diagonalized in an iterative fashion by

exploiting the Abelian symmetries for the total charge and
total spin. The states discarded during this procedure are
then used to build the full density matrix of the system
[49,50], which allows us to calculate various correlation
functions. Knowing the spectrum of the Hamiltonian and
the density matrix, we next calculate the relevant retarded
Green’s function 〈〈d†

1σ |d1σ 〉〉ret(ω) of the first dot level in
the Lehmann representation, and hence the spin-dependent
spectral function Aσ (ω) = −π−1Im 〈〈d†

1σ |d1σ 〉〉ret(ω), and the
transmission coefficient T (ω) = π�

∑
σ Aσ (ω). Then, the

relevant transport quantities can be expressed in terms of
Onsager integrals [1]

Ln = − 1

h

∫
ωn ∂f (ω)

∂ω
T (ω)dω, (4)

where f (ω) denotes the Fermi-Dirac distribution function.
The conductance is obviously [51] G = e2L0. In general,
the thermal conductance κ contains an electronic part κel

and a lattice part due to heat conduction by phonons κph.
However, phononic heat transmission through quantum dots
in two-dimensional electron gas is usually very poor due to
small volume of the system. For this reason, in our model
phonons are not taken into account and κ = κel. Then, the heat
conductance can be expressed as

κ =
(

δJQ

δT

)
J=0

= 1

T

[
L2 − L2

1

L0

]
, (5)

where δJQ denotes the heat current caused by temperature
gradient δT , and J = 0 stays for the condition of vanishing of
the electric current. Finally, the Seebeck coefficient is given
by

S = −
(

δV

δT

)
J=0

= − 1

eT

L1

L0
, (6)

where δV denotes the voltage drop between the leads.
The efficiency of the thermoelectric device η working at its

maximal power can be expressed as [52]

η = ηC

2

ZT

ZT + 2
, (7)

where ηC is the Carnot efficiency and the dimensionless
parameter ZT denotes the thermoelectric figure of merit,
which is given by

ZT = GT S2

κ
. (8)

Therefore, large values of ZT are desirable from the applica-
tion point of view. However, for the efficiency of the device
working at fixed heat flow conditions, it is rather the power
factor P = S2G which should be maximized [53]. For those
reasons, in the following we also study the behavior of both P

and ZT on various parameters of the system.
In addition, when the system is placed in an external

magnetic field B, and the spin relaxation in the leads is very
slow, the spin accumulation may occur, i.e., the voltage may
become spin dependent as well, δVσ = δV + σδW . Then, the
spin-dependent transmission coefficient Tσ (ω) and the spin-
dependent Onsager integrals Lnσ are defined in an obvious
manner [11,54]. The inequality of conductances in respective
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spin channels Gσ gives rise to finite spin polarization of the
current [44]

P = G↑ − G↓
G

. (9)

On the other hand, the Seebeck coefficient in spin channel σ

can be defined as

Sσ = −
(

δVσ

δT

)
Jσ =0

= − 1

eT

L1σ

L0σ

, (10)

where Jσ denotes the current of spin-σ carriers. Then, the spin
thermopower can be expressed as

SS = S↑ − S↓
2

. (11)

III. RESULTS AND DISCUSSION

The two-stage Kondo effect can occur when each dot
is occupied by a single electron. It manifests itself in a
nonmonotonic dependence of the linear conductance G on
the temperature T or the magnetic field B [36]. This can be
explicitly seen in Fig. 2(a), which displays the temperature
dependence of G for different hoppings t . At high temperatures
T > U , the system is in the free orbital regime and the
conductance is rather poor [47,55]. At lower T the first
stage of screening occurs, which corresponds to the usual
Kondo effect in the subsystem containing the first quantum
dot and conduction band. The conductance G increases then to
become G = Gmax/2 at T = TK , and G = Gmax for T � TK .
When temperature decreases further, there appears another
characteristic temperature T ∗ at which the conductance starts
decreasing. For relatively weak hopping t , the conductance
suppression is due to the second stage of screening, in which
the spin of the second dot becomes screened by the many-body
continuum consisting of the first dot strongly interacting with
the conduction band [see the curves for t � �/3 in Fig. 2(a)].
In the low-temperature limit, G decreases then as G ∝ T 2 [36].
The characteristic temperature T ∗ at which the conductance
drops to Gmax/2 can be estimated from [36,37,39]

T ∗ = a TK e−bTK/Jeff , (12)

where

Jeff = 4Ut2

U 2 − (ε1 − ε2)2
(13)

is an effective exchange interaction between singly occupied
dots. When the hopping t increases, the first-stage Kondo
effect still develops when T ≈ TK , however, further decrease
of temperature results in fast suppression of conductance due to
the interdot exchange interaction, which leads to the formation
of spin singlet state in the double dot [see the curve for t = �/2
in Fig. 2(a)]. On the other hand, for very large hopping t , the
bonding and antibonding states form in the double dot and the
conductance is generally low for all temperatures (no Kondo
effect develops) [cf. the case of t = � in Fig. 2(a)]. Note that in
all cases the low-temperature conductance through the system
is blocked, however, the blocking mechanisms are essentially
different.

Additional insight into the system behavior can be obtained
from the temperature dependence of magnetic susceptibilities
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FIG. 2. (a) The linear conductance and magnetic susceptibility of
(b) the first (χ1) and (c) second (χ2) quantum dots as a function of
temperature calculated at the particle-hole symmetry point ε1 = ε2 =
−U/2 and for U = 0.5 = 5� and different values of hopping between
the dots t , as indicated. Susceptibilities were for clarity multiplied by
T . Note the logarithmic temperature scale.

of the dots, denoted by χ1 (χ2) for the first (second) dot, which
are shown in Figs. 2(b) and 2(c), respectively. χi is defined
as χi ≡ d

dB
〈Szi〉|B=0, where Szi denotes the zth component

of the spin of dot i [56]. Let us first discuss the behavior of
χ1. When decreasing the temperature, T χ1 first grows due to
suppression of charge fluctuations and reaches a maximum
for T ∼ � [see Fig. 2(b)]. Relatively large Kondo temperature
(TK ≈ U/20) corresponding to the parameters of Fig. 2 does
not allow for T χ1 to reach the free-spin value 1

4 . One can
see that for t � �/2 the spin of the first dot is screened at
T significantly higher than TK . This is associated with the
exchange interaction between the dots, which for large t can
suppress even the first-stage Kondo effect. On the other hand,
for t < �/2 the temperature at which χ1 is fully screened
only slightly depends on t . Thus, one can deduce that the
usual Kondo effect is the leading screening mechanism for
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t � �/2. Note, however, that χ1 becomes negative at T ∗ <

T < TK . This is an effect of interdot interaction, which favors
antiparallel alignment of the double dot spins. Although this
residual magnetic moment is very small |T χ1| � 0.02, only
below T ∗ the spin of the first dot becomes fully screened.
Clearly, this does not apply to the t = 0 case, where interdot
exchange is absent and χ1 � 0 for all T .

Figure 2(c) presents the temperature dependence of mag-
netic susceptibility of the second dot χ2. As can be clearly
seen, for t = 0 and T � �, T χ2 = 1

4 , as expected for a single
spin- 1

2 . For t 
= 0, the local moment of the second dot has
a maximum at T ≈ U/10, then it decreases slowly with
decreasing T toward T ∗ and vanishes even faster at T ≈ T ∗.
At zero temperature, the second dot spin is fully screened
for any t 
= 0. Notice, that for t < �/2 the maximal T χ2

almost reaches 1
4 , while for stronger interdot couplings the

magnetic moment of the second dot is already affected at
higher temperatures and T χ2 < 1

4 .
Let us now analyze how different screening stages of the

Kondo effect reveal in thermoelectric properties of the system.
Because the Seebeck coefficient vanishes when the electron
and hole processes contribute equally to transport, which
happens for the particle-hole symmetry point of the model
ε1 = ε2 = −U/2, we will present results for asymmetric
case, when ε1 
= −U1/2. To perform calculations, we assume
U = 0.5, � = 0.1, and ε2 = −U/2, unless explicitly stated
otherwise. We note that in the case of t = 0 and for ε1 =
−U/2, the Kondo temperature equals [57] T 0

K � 0.022.

A. Temperature dependence

The linear response electric and thermoelectric transport
characteristics calculated as a function of temperature for
different values of the hopping t are shown in Fig. 3. The
temperature dependence of the conductance is qualitatively
similar to that shown in Fig. 2(a) and here is presented to
facilitate the estimation of different energy scales. The main
difference is a slightly lower value of Gmax due to quite large
detuning from the middle of the Kondo valley and a slight
change of both TK and T ∗.

The temperature dependence of thermal conductance is
presented in Fig. 3(b). One can clearly see that κ exhibits a
maximum for T ∼ �, irrespective of the value of the hopping
between the dots. A similar maximum in κ as a function of T

was predicted for the single-stage Kondo effect [10]. It results
from an enhanced density of states at the Fermi level in the
Kondo regime and freezing of thermal transport at low T .
Thus, to analyze the influence of the second stage of Kondo
screening on thermal transport, we also plot κ/T versus T in
the inset of Fig. 3(b). According to the Wiedemann-Franz law
[58], this quantity should be proportional to the conductance
κ/T = L0 G, where L0 = (π2/3) k2

B/e2. One can clearly see
that this is indeed the case by comparison with Fig. 3(a).
However, closer inspection of the figure reveals a small shift
in κ/T with respect to G towards lower temperatures. Since
the temperature scale is logarithmic, this shift corresponds to
rescaling the temperature by a constant factor, which we denote
by α. From the analysis of NRG data we found α ≈ 2. In other
words, it is L̃ = κ(αT )/[αT G(T )] and not the Lorentz number
L = κ(T )/[T G(T )], which is constant and nearly identical to
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FIG. 3. (a) The electrical conductance and the thermoelectric
properties: (b) thermal conductance κ , (c) Seebeck coefficient S,
(d) thermoelectric figure of merit ZT , and (e) the power factor P as
a function of temperature T for different values of hopping between
the dots t , as indicated. Inset in (b) shows the thermal conductance
normalized by temperature. The parameters are U = 0.5, � = 0.1,
ε1 = −U/3, and ε2 = −U/2. Note the logarithmic temperature
scale.
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the universal value L0. To present this feature more explicitly,
the curve for t = �/4 from Fig. 3(a) rescaled by the factor
L0 (but not shifted) is plotted in the inset of Fig. 3(b) with
a bright solid line. When temperature is shifted, G(T ) agrees
with κ(αT )/(αT ) for t = �/4 within a few-percent accuracy
at T < TK . These results can be understood as a generalization
of those obtained by Costi and Zlatić for the single-impurity
Anderson model, where the shift between κ(T )/T and G(T )
(with α ≈ 1.9) was found in the Kondo regime [10]. Here, we
see that it is also present in more complex systems, and persists
in the second stage of screening. Hereafter, let us refer to this
property as the modified Wiedemann-Franz law. Moreover,
when discussing the behavior of κ we will henceforth always
plot κ/T .

The Seebeck coefficient S as a function of T is presented in
Fig. 3(c). In the absence of hopping, t = 0, the thermopower
exhibits typical sign changes as a function of temperature,
which signify either electronlike or holelike contributions
to conductivity, and vanishes for T � TK [10]. However,
when the hopping is finite, S exhibits a maximum at certain
temperature, which depends on t : the stronger the hopping,
the higher the temperature at which the maximum occurs [see
Fig. 3(c)]. The positions of those maxima roughly correspond
to T ∗ for respective t . This can be understood by realizing the
fact that in the low-temperature limit, when the Sommerfeld
expansion is a good approximation, the thermopower S can be
expressed as [10]

S � −π2

3

k2
B

e

T

A(0)

∂A(ω)

∂ω
|ω=0, (14)

where A(ω) = ∑
σ Aσ (ω) is the (temperature-dependent)

spectral function of the first dot, which (at low T ) behaves
qualitatively similar to G(T ). Thus, for temperatures at which
the second stage of screening occurs and conductance drops,
there is a large enhancement of the Seebeck coefficient. For
the same reason, S has a minimum for t < �/2 (with S < 0)
at T = TK . It is much smaller than the peak at T ∗ because,
due to relatively large TK for assumed parameters, the Kondo
peak in the spectral function is quite wide, thus, the derivative
in Eq. (14) is small. The change of sign corresponds to the fact
that A(ω) exhibits a (asymmetric) peak of the width ∼TK with
a (asymmetric) dip of a width ∼T ∗, thus, derivative in Eq. (14)
changes sign; see Fig. 4 and Sec. III B for more detailed
discussion of the behavior of spectral function. Moreover, S is
also negative at large temperatures T ∼ U , which corresponds
to holelike conductivity (ε1 > −U/2).

Interestingly, the stronger the interdot interaction t is,
the higher is the peak in S(T ) [see Fig. 3(c)]. This reflects
itself in relatively high values of the thermoelectric figure of
merit ZT , which exhibits maxima at similar temperatures as
thermopower. One can see that these temperatures increase
when t is enhanced [see Fig. 3(d)]. Nevertheless, the values
of ZT are still smaller than unity. Moreover, it can be seen
in Fig. 3(a) that with increasing t the conductance at low
temperatures becomes even more suppressed, consequently,
the possible applicability of a considered device as a heat
pump or a voltage source is rather limited for strong t . This
is also reflected in the temperature dependence of the power
factor P , which is plotted in Fig. 3(e), and the values it takes.

FIG. 4. The zero-temperature spin-resolved transmission coeffi-
cient Tσ (ω) = π�Aσ (ω) of the first quantum dot in the particle-hole
symmetric case in the presence of external magnetic field B. The
solid lines present for reference the case of B = 0, while the dashed
(dotted) lines show the spin-up (spin-down) contribution. Panel (a)
displays the results for U = t = ε1 = 0 and B = 2�, panel (b)
for U = 5�, t = 0, ε1 = −U/2, and B = 2TK , while panel (c) is
calculated for U = 5�, t = 0.5�, ε1 = ε2 = −U/2, and B = 2T ∗.
The calculations were performed for � = 0.1.

As can be seen, the height of maxima in P , corresponding
to peaks of ZT , significantly decreases with increasing the
hopping t .

B. Magnetic field dependence

Let us now analyze the effect of external magnetic field on
thermoelectric transport properties of the considered device.
First, we discuss the behavior of the spin-resolved transmission
coefficient of the first dot, Tσ (ω) = π�Aσ (ω), and then
investigate the thermotransport characteristics.

Although the influence of magnetic field on the linear
conductance may seem similar to that of finite temperature
since both lead to the suppression of conductance once larger
than TK with a similar dependence on external parameter
(either T or B) [59,60] the impact of B on Tσ (ω) is more
complex. The most important difference is associated with
the induced spin polarization of the local density of states
and, thus, the linear conductance. The energy dependence of
the transmission coefficient calculated for the particle-hole
symmetry point and for different transport regimes is shown
in Fig. 4. The solid line presents Tσ (ω) in the case of B = 0
for reference, while the dashed (dotted) line shows the spin-up
(spin-down) contribution for finite B.

First of all, one can see that magnetic field leads to the
splitting of the transmission coefficient and to its finite spin
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polarization T↑(ω) 
= T↓(ω). In the case of noninteracting
model and t = 0, the effect of finite magnetic field B can be
viewed as a shift of Tσ (ω) to Tσ (ω − σB/2) since Tσ (ω) =
�2/[(ω − ε − σB/2)2 + �2], while the maximum value of
Tσ (ω) is not affected. This results in the splitting of the
transmission coefficient of width given by B [see Fig. 4(a)].
However, when interactions are relevant both the splitting and
magnitude of Tσ (ω) may be different.

The effect of magnetic field on transmission coefficient in
the case when only the first stage of the Kondo effect is present
is shown in Fig. 4(b), while the case of the second stage is
depicted in Fig. 4(c). In the former case, the splitting in T (ω)
is for B � TK given by 2B [19]. This is due to the fact that the
side peaks of the Kondo resonance occur at energy scale which
allows for spin-flip processes between the split spin states of
the dot level. Such inelastic scattering becomes effective once
ω = ±B and, consequently, a side resonance in T (ω) occurs.
Note that in Fig. 4(b) the splitting is slightly smaller than 2B.
This is because for parameters used in the figure (B = 2TK ),
the splitting is not yet fully developed. On the other hand,
in the case of second stage of screening, the magnetic field
shifts the minimum position of the transmission coefficient to
ω = ±B/2 [see Fig. 4(c)].

Altogether, while in the noninteracting case the magnetic
field has a trivial effect of shifting the maximum in Tσ (ω) to
ω = ±B/2, in the interacting case its impact is more complex.
If B is larger than the relevant energy scale (either TK or T ∗
depending on transport regime), the Kondo effect may become
suppressed. This results in the suppression of the Kondo peak
seen in Fig. 4(b) and conductance minimum due to the second
stage of the Kondo effect presented in Fig. 4(c).

For T-shaped DQDs, the dependence of the linear response
conductance on magnetic field was analyzed by da Silva et al.
[44]. It was found that the (first-stage) Kondo effect can be
restored (second stage of screening suppressed) by appropriate
tuning of B. This reinstatement is a consequence of restoring
the degeneracy between two states differing in magnetic
quantum number by unity, which then allows for spin-flip
cotunneling processes responsible for enhanced conductance.
Alternatively, it can be also understood as a consequence of
a shift of the transmission coefficient in each spin channel.
In the second stage of screening T (ω) has a dip at the Fermi
level with the half-width of the order of T ∗ [cf. Fig. 4(c)].
When the magnetic field is applied, this dip is shifted out of
the Fermi level and consequently G(T =0) is increased. For
T ∗ < B < TK , the dip in T (ω) characteristic of the second
stage of screening is suppressed, but the Kondo peak is still
present for |ω − B| < TK . Thus, when changing B, G(T =0)
can reach 2e2/h. Finally, the Kondo resonance can also be
affected and eventually destroyed by strong enough B, leading
to the resuppression of G. This explains the nonmonotonic
dependence of G on B shown in Fig. 5(a).

The magnetic field dependence of the thermal conductance
is shown in Fig. 5(b). One can see that the B dependence
of thermal conductance normalized by temperature is qualita-
tively the same as that of G. Moreover, as checked numerically
(not shown), κ fulfills the modified Wiedemann-Franz law, i.e.,
one obtains κ(αT ,B)/(αT ) = G(T ,B)L0. Note, however, that
α > 1 causes κ to be less suppressed in the second stage of
screening compared to G (for fixed T ). On the other hand,
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(c) the Seebeck coefficient, and (d) the thermoelectric figure of merit
for different values of the hopping t , as indicated. The parameters are
the same as in Fig. 3 with T = 10−4�.

the thermopower as a function of B is shown in Fig. 5(c).
Because S is calculated for relatively low temperatures, its
magnitude is rather low. Here, we want to investigate whether
finite magnetic field can lead to an increase of S for such B

that the restoration of the Kondo effect occurs [cf. Fig. 5(a)].
As follows from Fig. 5(c), the general observation is that S is
not enhanced by finite magnetic field, except for intermediate
values of t at low magnetic fields. In fact, an enhancement of
S occurs for such t that T ≈ T ∗ (see the case of t = �/3
in Fig. 5). Then, the maximum in thermopower develops
for tiny magnetic fields B = T . Nevertheless, except for
these particular parameters, S is not especially large. As a
consequence, the figure of merit, which is shown in Fig. 5(d),
is very low for all values of B (the same applies to power factor
P , which is therefore not shown here). Low values of S and
ZT can be understood as follows. Let us recall that G ∼ L0,
while at low temperatures the main contribution to κ comes
from L2 [cf. Eq. (5)], whereas S ∼ L1 [cf. Eq. (6)]. Finite
magnetic field splits the transmission coefficient, however,
this splitting hardly increases the asymmetry of T (ω) with
respect to ω = 0, which is necessary for L1 to increase. Thus,
S can become significant only at temperatures high enough
for the asymmetry of T (ω) to be relevant. Consequently, no
spectacular enhancement of S due to finite magnetic field is
observed in Fig. 5(c).

C. Dependence on DQD energy levels

When the hopping between the dots t becomes relatively
large, transport occurs through molecular states of the double
dot. When one of such states is narrow and its energy lies
within another state that is wide, the Fano effect can occur,
reflecting itself as an antiresonance in the linear conductance as
a function of DQD’s energy levels [36–41]. The antiresonance
occurs when the energy of the narrow level coincides with the
Fermi level, which effectively corresponds to some condition
for ε1 or ε2, depending on the interactions and parameters of the
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The parameters are the same as in Fig. 3 with T = 10−6�.

system. In fact, Coulomb correlations in the dots can cause a
deviation from the exact Fano formula and lead to a broadening
of the antiresonance [45]. Interestingly, the suppression of G

due to the Fano effect can be also understood by invoking the
two-stage Kondo effect [42]. The presence of the antiresonance
is then explained as a consequence of the existence of the
second stage of screening, which leads to the suppression of
the conductance. A broad minimum in G occurs then as a
function of either ε1 or ε2 provided that T < T ∗. Moreover,
because T ∗ is a function of both ε1 and ε2 [cf. Eqs. (12)–(13)]
and generally decreases with increasing the detuning from
the particle-hole symmetry point of the model [42,46], the
Fano antiresonance in G strongly depends on temperature. In
particular, when T > T ∗, the antiresonance disappears.

In Fig. 6, we analyze the transport properties of the system
as a function of ε1 while assuming ε2 = −U/2. We chose
to tune ε1 because for small hopping t the variation of ε2

does not lead to considerable changes in transport, whereas
the variation of ε1 causes similar consequences as that of ε2

for large enough t . The calculations were performed at T =
10−6�, such that the condition T < T ∗ was satisfied around the
particle-hole symmetry point ε1 = ε2 = −U/2 for all values
of t > 0 considered in the figure. (For t = �/4, T is in fact
of the order of T ∗.) First of all, the Fano antiresonance in
the linear conductance for t 
= 0 is clearly visible in Fig. 6(a).
One can see that the width of the antiresonance depends on t .
The larger is the hopping between the dots, the wider is the
minimum in G. The existence and width of the antiresonance

are in fact conditioned by the ratio T/T ∗, which can be varied
by changing t and/or levels’ positions [42,46].

The Fano effect is also visible in the level dependence of
the thermal conductance normalized by temperature, which is
shown in Fig. 6(b). As follows from the figure, κ/T behaves
qualitatively the same as the linear conductance. Moreover,
it satisfies the modified Wiedemann-Franz law (results not
shown), which implies that, up to prefactors, G(T ) is equal
to κ(αT )/(αT ). This is why the dip in κ/T calculated for
t = �/4 is shallower than that in the linear conductance [cf.
Figs. 6(a) and 6(b)].

In the Kondo regime, the low-temperature expression for S

[cf. Eq. (14)] is significantly different from the Mott relation
given by Eq. (1), which suggests that S is proportional to
∂G/∂μ, where the role of the chemical potential μ is played
by ε1. As can be seen in Fig. 6(c), strong deviations from the
Mott relation are also present in the second stage of screening:
S is not proportional to the derivative of the conductance [cf.
Fig. 6(a)]. In particular, the thermopower does not change sign
for ε1 corresponding to the peaks in the linear conductance
for t 
= 0. Nevertheless, S becomes enhanced for such values
of ε1, at which the conductance starts decreasing to form
a dip, i.e., at the onset of the Fano antiresonance. Despite
low temperature, the thermopower reaches then relatively
large values of the order of ±kB/e [see Fig. 3(c)]. Note
that S for t = 0 is then negligible due to the fact that
T � TK [10].

Furthermore, all the peaks visible in S are revealed in both
the figure of merit ZT and the power factor P , which are
shown in Figs. 6(d) and 6(e), respectively. First of all, we
note that although ZT does not exceed unity, it can still take
considerable values. One can see that the height of peaks in ZT

as a function of ε1 decreases upon increasing t , until t reaches
�/3. Further decrease of t causes ZT to decrease rapidly. The
height of peaks in P also depends on t in a nonmonotonic
way. However, the highest peak corresponds to t = �/2 [see
Fig. 3(e)].

In addition, we note that for t = �/3 there is a sharp peak in
both S and ZT when approaching the particle-hole symmetry
point ε1 = ε2 = −U/2 from either side [see Figs. 6(c) and
6(d)]. However, these peaks do not correspond to any peak
in P [cf. Fig. 6(e)], which implies that the system does not
really conduct heat in this regime and those peaks are therefore
unmeasurable. In fact, the peaks in S (and thus also in ZT )
result rather from a suppression of the coefficient L0 than from
an enhancement of L1 [cf. Eq. (6)].

The Fano effect can be strongly affected by an external
magnetic field B [44]. As already explained in Sec. III B, finite
magnetic field can restore the Kondo resonance leading to an
enhancement of G [cf. Fig. 5(a)]. Moreover, B 
= 0 splits the
Fano antiresonance condition in respective spin channel, which
can result in large spin polarization of the linear conductance
outside the particle-hole symmetry point [44]. The dependence
of the spin polarization on the first dot level position is shown
in Fig. 7(a) for t = �/3 and different values of magnetic field.
Since the spin polarization is antisymmetric with respect to the
particle-hole symmetry point, let us discuss the dependence
for ε1 > −U/2. For small magnetic fields, P exhibits one
peak around the middle of the Coulomb blockade and another
one around the resonance. When B > T ∗, those peaks merge,
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Fig. 3.

but the spin polarization is then rather low [see Fig. 7(a)] for
B = 10−3�. On the other hand, with further increase of B such
that B > TK , the spin polarization changes sign and becomes
enhanced. As can be seen in the figure, there are a range of
parameters where the spin polarization can be enhanced to its
maximum value.

When the spin relaxation in the leads is slow, in the presence
of magnetic field finite spin thermopower SS can emerge in the
system. Its dependence on ε1 is depicted in Fig. 7(b). As can be
seen, the spin Seebeck coefficient is symmetric with respect to
the particle-hole symmetry point and significantly differs from
zero approximately at positions corresponding to peaks in S

[cf. the curve for t = �/3 in Fig. 6(c)]. However, the peaks
in SS are antisymmetric with respect to their center, i.e., spin
thermopower changes sign at the point where thermopower
has a maximum. As already explained in previous section,
only for B � T , S significantly differs from 0. Similarly, the
highest value of SS corresponds to B = 10−5�, which is only
one order of magnitude larger than T . On the other hand, for
weaker fields the peaks in SS are much smaller because the
magnetic field is not strong enough to break the spin symmetry.
Finally, an additional peak around ε1 = −U/2 has the same
origin as a similar maximum present in S for t = �/3 [see
Fig. 6(a)].
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D. Role of dot-lead coupling strength �

In this section, we analyze how the thermoelectric prop-
erties of the considered system change when the coupling to
external leads is varied, such that the system crosses over
from the strong to the weak coupling regime. To perform
this analysis, we fix the hopping between the two dots to be
t = U/5 and tune the strength of the coupling �. We consider
a few different values of �, ranging from relatively large
� = 2t to as small as � = 10−4t . Although the latter value
may not be relevant from the experimental point of view, we
still include it to help understanding the change in the system’s
transport behavior when the coupling strength is decreased.
In the following, we first study the DQD-level dependence
of transport properties and then discuss their temperature
behavior. Finally, we end this section with the analysis of
the role of coupling strength on the spin Seebeck coefficient
and conductance spin polarization.

1. Dependence on DQD energy levels

The dependence of thermoelectric transport properties on
the position of the first dot level is shown in Fig. 8. The
calculations were performed at T = 0.01t , which roughly
corresponds to the temperature at which S has a peak for
t = � [see Fig. 3(c)]. To be able to compare the results for
significantly different �, in Fig. 8 we used the logarithmic
scale for vertical axes, except for Fig. 8(e), which presents the
thermopower.
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Let us start the discussion with the analysis of the linear con-
ductance. For large values of � considered in the figure, � � t ,
the parameters correspond to the second stage of screening for
given t and T [cf. Fig. 3(a)]. For this reason, the conductance
has only two maxima at resonant energies, while it exhibits an
antiresonance for ε1 = −U/2 [see Fig. 8(a)]. With decreasing
the coupling strength, the conductance becomes generally
suppressed. For weak couplings, this suppression is rather due
to the Coulomb blockade than the two-stage Kondo effect. On
the other hand, when � is tuned down, the electron’s lifetime
in the DQD levels increases, which is reflected in narrowing
of resonant peaks.

The level dependence of the thermal conductance nor-
malized by temperature, which is presented in Fig. 8(b), is
generally similar to that of G. For � � t , the modification
of the Wiedemann-Franz law is evident in the vicinity
of the particle-hole symmetry point. This results from the
shift between κ(T )/T and L0G(T ), as described by the
modified Wiedemann-Franz law introduced in previous sec-
tions. However, when the coupling decreases � � 0.1t , the
difference between G and κ/T becomes enhanced and the two
quantities cannot be related anymore [cf. Figs. 8(a) and 8(b)].
This is especially visible at resonances, where the thermal
conductance becomes strongly suppressed [see Fig. 8(b)], as
compared to the electric conductance.

Because the figure of merit is inversely proportional to the
thermal conductance [cf. Eq. (8)], suppression of κ translates
into an enhancement of ZT . This effect is clearly visible in
Fig. 8(c), which presents ε1 dependence of ZT . With lowering
�, the figure of merit becomes greatly enhanced at resonances,
with values reaching over 100. This originates not only from
the suppression of the thermal conductance, but also from
an enhancement of the thermopower. Figure 8(e) shows the
dependence of the thermopower on the level position around
the resonance, where one finds |S| ≈ 7.5kB/e for � = 10−4t .
The thermopower in the Coulomb blockade regime does not
show any particular enhancement with changing �, although
its value is finite and can reach |S| ≈ kB/e (not shown here).
Moreover, it can be seen that for weaker couplings S vanishes
for ε1 corresponding to the resonance and changes sign at this
point, while for stronger couplings � � t , this effect is not
present [see Fig. 8(e)].

To understand the enhancement of the figure of merit
and thermopower with decreasing the value of the coupling
to external leads, let us for the moment consider the limit
of negligible coupling. When � → 0, the first dot spectral
function is given by a sum of the Dirac delta functions, peaked
around the energies corresponding to energy differences
between the corresponding molecular eigenstates of the DQD.
Moreover, at sufficiently low temperatures, only a peak in
A(ω) which is closest to the Fermi level has a significant
thermal weight. We note that the thermoelectric properties
of a system whose spectral function possess only one Dirac
delta peak have already been analyzed with the aid of simple
analytic methods [6,61]. In particular, it was then found that
ZT ∼ 1/κph. Because in our work we neglected the phonon
contribution κph, in the limit of � → 0, we should obtain
ZT → ∞ [7]. Using the methodology of Ref. [6], for the
considered system we obtained that for � → 0 the Seebeck
coefficient reaches a finite limit, which depends linearly on
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FIG. 9. The thermoelectric figure of merit plotted as a function
of ε1 and ε2 for (a) � = 0.01t , (b) � = 0.1t , (c) � = t , and for
(d) � = 2t . The other parameters are the same as in Fig. 3 with
t = 0.1 and T = 0.01t .

the distance of the peak in spectral function from the Fermi
level, and as a consequence on DQD energy levels ε1 and ε2.
This is the reason for the linearity of S(ε1) between the peaks
visible in Fig. 8(e). Note, however, that the further is the peak
in A(ω) from the Fermi level, the stronger it is suppressed by
the thermal weight. Thus, |S| reaches maximum and starts to
decrease when the distance from the Fermi level exceeds T

[see Fig. 8(e)].
To check whether the observed enhancement of the figure

of merit with decreasing � has any experimental meaning,
we analyze the values of the power factor, which is plotted in
Fig. 8(d). First of all, one can see that P is strongly suppressed
in the Coulomb blockade regime, which results from sup-
pressed conductance. On the contrary, the power factor takes
considerable values for energies around the resonances. The
height of peaks in P starts decreasing proportionally to � when
� � 10−2t . At maximum, for 10−1 � �/t � 10−2, the height
of the peak is P ≈ 0.6k2

B/h, which is experimentally relevant.
For � = 10−2t, ZT reaches values exceeding unity, however,
its magnitude can be increased more when � is lowered
further.

Finally, in Fig. 9 we plot the dependence of ZT on both
ε1 and ε2 for different values of the coupling strength �,
as indicated. This figure in particular demonstrates that the
change of ε2 has similar consequences as the change of ε1.
Moreover, it also shows the crossover between the weak
coupling and strong coupling regimes. In the weak coupling
regime [see Figs. 9(a) and 9(b) for � = 0.01t and 0.1t ,
respectively], one can clearly see enhanced ZT at energies
corresponding to the resonant energies between the DQD
eigenstates. However, in the strong coupling regime, see the
panels for � = t and 2t in Fig. 9, this landscape drastically
changes. In particular, the lines in the ε1-ε2 plane of enhanced
ZT are not present anymore. This is because the resonant
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FIG. 10. The temperature dependence of (a) the linear conduc-
tance, (b) the thermal conductance normalized by temperature, (c)
the Seebeck coefficient, (d) the figure of merit, and (e) the power
factor calculated for ε1 = −1.12U and different values of coupling
� as indicated. The other parameters are the same as in Fig. 8. Note
the logarithmic scale in the panels.

energies of DQD eigenstates are not of such a great importance
due to large broadening caused by strong interaction with the
leads, and nontrivial many-body phenomena taking place in
the regime with singly occupied dots. Moreover, for stronger
coupling the line of increased ZT around the middle of
the Coulomb blockade regime changes into a valley (see
Fig. 9).

2. Temperature dependence

To analyze more thoroughly the properties of the system
in the vicinity of the enhanced thermoelectric response, which
occurs for smaller values of � (cf. Fig. 8), in the following we
set ε1 = −1.12U and study the temperature dependence. The
chosen value of ε1 corresponds to some small detuning δ from
the resonance, δ = 0.045t , for which S has a large finite value,
and which is indicated in Fig. 8(e) by a vertical line. We note
that although the physical quantities presented in Fig. 10 are
the same as in Fig. 3, here we are no longer in the two-stage
Kondo screening regime due to the vicinity of the resonance.

The temperature dependence of the linear conductance is
shown in Fig. 10(a). One can see that for all considered
couplings, G increases when the system is cooled down.
For relatively large couplings � � 0.1t , at low temperatures
the conductance saturates at some rather constant value,
which however slightly decreases when reducing the coupling
strength. This is due to the fact that the broadening of the
resonant peak is still large enough, such that even for T < δ

there is a considerable weight in the transmission coefficient
at the Fermi level, which results in large conductance. The

temperature dependence changes dramatically for smaller
couplings � � 0.01t [see Fig. 10(a)]. The reason for such be-
havior is generally associated with decreased level broadening.
Consequently, when � < δ, the resonant peak in T (ω) is not
relevant for transport at low temperatures T < δ. This results
in a nonmonotonic dependence of G on T . The conductance
first increases and then, for T ≈ δ, exhibits a maximum.
Further decrease of T leads to a sudden drop of G to some
small nonuniversal value, which depends on the coupling
strength as G ∼ �2 [62,63]. In this transport regime finite
conductance is due to cotunneling processes, which explains
the �2 dependence of G for T < δ.

The thermal conductance (normalized by temperature) as
a function of temperature is presented in Fig. 10(b). The
most important observation is that the Wiedemann-Franz
law becomes now strongly violated, especially for weaker
couplings. While cooling the system down, κ(T )/T exhibits
two local maxima instead of a single one, as in the case of
G(T ). In addition, for temperatures above the two maxima
in normalized thermal conductance, κ/T vanishes much
more rapidly with increasing temperature compared to the
linear conductance [cf. Figs. 10(a) and 10(b)]. Nevertheless,
although the difference between the case of � � t and � < t

is pronounced, the approximate proportionality to � in high-T
regime and to �2 in low-T regime, observed for G(T ), is also
valid for κ(T )/T .

The dependence of the thermopower on T is plotted
in Fig. 10(c). One can clearly see that for small values
of �, S exhibits a maximum, the height of which grows
with decreasing �, while the position only slightly depends
on �. However, for � � t , the position of maximum also
changes significantly [see in particular the curve for � = 2t

in Fig. 10(c)]. Interestingly, the curves of S(T ) for different
� merge at high temperatures. The same happens at very low
temperatures, but only for � � t . In fact, in both the low-
and high-temperature regimes the thermopower tends to zero
[see Fig. 10(c)]. On the other hand, the enhancement of the
Seebeck coefficient for intermediate temperatures gives rise
to an enhancement of the figure of merit, which is shown
in Fig. 10(d). In fact, there is a maximum in ZT (T ) for
T ≈ 0.01t , that is, at temperature below which the peak in
S starts forming [see Fig. 10(c)]. It can be seen that the height
of the peak in ZT becomes enhanced when decreasing �.
This results from both the enhancement of thermopower and
the suppression of thermal conductance, which is stronger than
predicted by the Wiedemann-Franz law. As already suggested
earlier, large value of ZT is not a sufficient condition for the
usability of the device. Therefore, in Fig. 10(e) we analyze
the temperature dependence of the second important quantity,
namely, the power factor P . It is evident that while P (T )
exhibits a peak at the same temperature as ZT (T ) does,
the height of this peak depends on � in a nonmonotonic
way [see Fig. 10(e)]. The power factor is the largest for
0.1 � �/t � 0.01, and decreases linearly with � when the
coupling is lowered.

An important observation from Fig. 10 is that there is a
quite sharp distinction between the regimes of strong and weak
coupling. This is mainly caused by a small detuning δ 
= 0
from the resonance peak, which was introduced in this section.
For weak couplings, the transmission coefficient has then a
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FIG. 11. (a) The linear conductance, (b) the thermal conductance
normalized by temperature, (c) the Seebeck coefficient, (d) the figure
of merit, and (e) the power factor plotted as a function of magnetic
field and calculated for different values of the coupling � as indicated.
The other parameters are the same as in Fig. 10 with T = 10−4t . Note
the logarithmic scale in the panels. The inset in (c) shows a zoom into
the antiresonance visible in S on the linear scale.

sharp peak near the Fermi level, which becomes broadened
with increasing the coupling strength. Thus, the thermoelectric
transport properties strongly depend of both the ratio of �/δ

as well as T/δ, as discussed above.

3. Dependence on magnetic field and spin-related effects

To answer the question about the role of magnetic field on
transport characteristics in the case when the coupling strength
is varied, in Fig. 11 we plot the dependence of thermoelectric
coefficients on B. The B dependence is calculated assuming
the same small value of detuning δ from the resonance as in
the previous section. The first general observation is that the
magnetic field dependence is completely different compared
to the temperature dependence presented in Fig. 10. Because
the temperature used to calculate this figure is very low,
T � δ, for weak coupling the transport properties out of
resonance are mainly determined by second-order tunneling
processes. At low enough temperature, as considered in this
figure, the rate of such processes is independent of T . This
is why the magnetic field dependence of G and κ/T is
qualitatively the same [see Figs. 11(a) and 11(b)]. In fact,
in this transport regime the Wiedemann-Franz law is satisfied.
When increasing the magnetic field, both G and κ/T exhibit
peaks at magnetic fields for which the degeneracy between split
molecular states of DQD is restored. The width of these peaks
increases with increasing the coupling strength. The magnetic
field dependence of the thermopower is shown in Fig. 11(c).
Interestingly, it exhibits a large antisymmetric resonance for
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FIG. 12. The same thermoelectric transport coefficients as in
Fig. 11 plotted as a function of temperature for � = 0.01t and
different values of external magnetic field, as indicated. The other
parameters are the same as in Fig. 10.

temperatures at which conductance shows first maximum with
increasing T . This resonance strongly depends on � and
is most pronounced for the smallest value of the coupling
considered. The corresponding figure of merit is shown in
Fig. 11(d). One can see that, generally, because of assumed
low temperature, ZT is rather low when the magnetic field is
varied. The only enhancement can be seen for B corresponding
to the resonance of S. In addition, Fig. 11(e) presents the
magnetic field dependence of the power factor. Similarly to
ZT, P is rather low in the whole range of B and shows only
a small maximum for the same magnetic field as ZT does [cf.
Figs. 11(d) and 11(e)].

To check what is the effect of magnetic field on the tem-
perature dependence of thermoelectric coefficients, in Fig. 12
we plot the corresponding T dependencies for a low value of
the coupling strength � = 10−2t and a few different values
of external magnetic field. Let us first discuss the behavior
of the linear conductance, which is shown in Fig. 12(a).
Irrespective of the value of B, G first increases with lowering
temperature and then suddenly drops at some temperature,
different for each value of magnetic field. This suppression
occurs approximately at temperature T = Ts ∼ |δ − B/2|,
for which the resonant peak in the transmission coefficient,
broadened by � and finite T , goes away from the Fermi level.
This is why the low-temperature conductance depends in a
nonmonotonic way on B and takes some nonuniversal values
at low temperatures [see Fig. 12(a)].

The normalized heat conductance, clearly not fulfilling
the Wiedemann-Franz law at higher temperatures T � Ts ,
also depends on the magnetic field in a nontrivial way [see
Fig. 12(b)]. At low temperatures, similarly to the linear
conductance, finite magnetic field can either suppress κ/T
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FIG. 13. The temperature dependence of (a) the conductance spin
polarization and (b) the spin Seebeck coefficient for different values
of external magnetic field, as indicated. The parameters are the same
as in Fig. 12.

or increase it. Moreover, magnetic field can suppress the local
minimum in the B = 0 case and change it to a third maximum
[see, e.g., the curve for B = 0.2t in Fig. 12(b)].

While at high temperatures the thermopower is rather poor,
it is significantly higher when the temperature is lowered [see
Fig. 12(c)]. The T dependence of S exhibits a large peak,
whose position, sign, and height can be tuned by applying
different external magnetic field. The peak in S occurs for
T ≈ Ts , i.e., when the suppression of the conductance occurs.
Moreover, with increasing the magnetic field, the peak in
thermopower changes sign. For B � 0.05t , S is negative,
while for B � 0.1t , it becomes positive. This sign change
is consistent with magnetic field dependence of S shown in
Fig. 11, where the thermopower changes sign for B ≈ 0.07t

[see the inset in Fig. 11(c)].
The magnetic field dependence of the corresponding figure

of merit is shown in Fig. 12(d). It can be seen that for all
the considered values of magnetic field, ZT has a peak as a
function of T . Moreover, its maximum value reaches over
10 and for B = t it is higher than in the case of B = 0.
Again, the peak in ZT occurs for temperatures at which |S|
exhibits a maximum (cf. Fig. 12). Furthermore, as can be
seen in Fig. 12(e), which shows the power factor versus B,
the maximum of ZT always corresponds to the peak of P .
However, the height of the latter is not necessarily impressive,
in particular for strong B. This is caused by the suppression of
transport at large magnetic fields.

There appears a natural question as to whether large
thermopower in the presence of external magnetic field cor-
responds to a large spin thermopower. Figure 13 presents the

temperature dependence of the conductance spin polarization
P and the spin thermopower SS for different magnetic fields
calculated for the same parameters as assumed in Fig. 12.
One can see that at low magnetic fields, when the linear
conductance is higher, P is negative and quite large. Already
for B = 0.05t , which corresponds to a maximum value of G

[cf. Fig. 12(a)], P ≈ −1 at T � 0.01t . For larger magnetic
fields, however, spin polarization changes sign and becomes
positive [see the curve for B = t in Fig. 13(a)]. On the other
hand, the spin thermopower SS exhibits peaks at positions
similar to the positions of peaks in S(T ) [cf. Figs. 12(c) and
13(b)]. The height and position of those peaks depend in a
nonmonotonic way on the magnitude of external magnetic
field. However, the sign of SS is in most cases opposite to the
sign of S and the peaks are much less regular. Unfortunately,
the highest values of SS correspond to B � 0.2t , when the
conductance is strongly suppressed. However, even though
SS → 0 for B → 0, for B = 0.01t the spin thermopower
reaches kB/e (not shown). On the other hand, at strong
magnetic fields the suppression of SS occurs [see the curve
for B = t in Fig. 13(b)].

IV. CONCLUSIONS

In this paper, we have analyzed the thermoelectric trans-
port properties of correlated T-shaped double quantum dots,
exhibiting a two-stage Kondo effect. The calculations were
performed with the aid of the numerical renormalization group
method, which allowed us to reliably determine transport
coefficients in the full parameter space of the model for
arbitrary temperatures, magnetic fields, and coupling strength
to external leads. The goal of this paper was to analyze
the consequences of the two-stage nature of screening on
the thermoelectric coefficients of the considered device in the
linear response regime.

We showed that the Seebeck coefficient exhibits a maxi-
mum for temperatures corresponding to the second stage of
the Kondo screening, for which also a relatively large figure of
merit and power factor were found. Moreover, we showed
that the thermal conductance and electrical conductance
can be related by a modified Wiedemann-Franz law, in
which, up to prefactors, G(T ) is equal to κ(αT )/(αT ), with
α ≈ 2.

We have also analyzed the magnetic field dependence of
thermoelectric transport properties. Our analysis has shown
that the linear conductance, suppressed by the second stage of
screening, can be restored by fine tuning of magnetic field, and
the same restoration can also occur in the thermal conductance
normalized by temperature. However, despite an enhancement
of the heat conductance, the magnetic field was found to
have rather inconsiderable impact on the thermopower and
figure of merit, which in general could not be increased by
magnetic field. On the contrary, the spin Seebeck coefficient,
induced by the presence of magnetic field, was found to take
considerable values, depending on the position of the DQD
levels.

In addition, we found that the thermoelectric coefficients
are generally enhanced if the coupling strength between
DQD and the leads is diminished. This enhancement is most
pronounced when the system is in the vicinity of the resonance.
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In fact, a small detuning from the resonance leads then to
nontrivial temperature and magnetic field dependence of the
thermopower. Moreover, it can also result in considerable spin
thermopower and conductance spin polarization.
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1.  Introduction

The thermoelectric properties of matter have been drawing the 
attention of physicists since the first experiments carried out 
by Seebeck at the beginning of the 19th century. While the 
properties of bulk materials are already quite well understood 
[1, 2], the problem of thermoelectricity in confined nanoscale 
systems still contains issues that need further examination, 
although these have been intensively researched since the 
famous publications by Hicks and Dresselhaus [3, 4]. In 
particular, thermoelectric and spin-thermoelectric properties 
of strongly correlated quantum dot (QD) systems constitute 
a field of intensive research [5–17]. It turns out that the 
understanding of thermoelectric transport properties is not 
only relevant for possible future applications, but also provides 
additional information about fundamental interactions and 
phenomena at the nanoscale. One prominent example is 
undoubtedly the Kondo effect [18], which in mesoscopic 

systems has been of great interest for more than two decades 
[19, 20]. In fact, the Seebeck coefficient for the Kondo 
quantum dots was not only reliably calculated [21], but also 
measured [22]. Moreover, the thermopower was also analyzed 
for double quantum dot (DQD) systems in the isospin Kondo 
regime, in which the device was shown to work as a minimal 
thermoelectric generator [23].

In the presence of magnetic field or when the leads are 
ferromagnetic, the thermoelectric response of the system 
becomes spin polarized [6, 8]. Spin caloritronic effects of 
single quantum dots in the Kondo regime have already been 
studied theoretically [24–26]. Furthermore, the spin-resolved 
thermoelectricity has also been analyzed in the case of DQD 
systems, including the weak coupling regime [27] and the 
case of nonmagnetic leads [28]. In this paper we extend these 
studies by investigating the spin caloritronic properties of 
T-shaped double quantum dots strongly coupled to ferromagn
etic leads, as sketched schematically in figure 1. Despite the 
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relative simplicity of the system under consideration, it hosts 
a variety of interesting many-body phenomena. The screening 
of subsequent quantum dots gives rise to the two-stage Kondo 
effect, introducing a cryogenic temperature scale T* associ-
ated with the second stage of screening [29–32]. On the other 
hand, the dependence of the Kondo temperature TK and T* 
on the DQD level position can lead to Fano-like interference 
effects [32–38]. These different energy scales, associated with 
subsequent Kondo screening, can be reflected in the thermoe-
lectric properties of the device [28]. Some aspects of the influ-
ence of magnetism on strongly correlated regimes of T-shaped 
DQDs have also been discussed, mainly in the context of elec-
trical properties, such as linear conductance and current spin 
polarization. The spin-dependent Fano antiresonance condi-
tion in magnetic field [39] and in system with ferromagn
etic leads [40] was predicted. Furthermore, the interplay of 
the two-stage Kondo screening and the ferromagnet-induced 
exchange field was also studied [41].

The primary goal of the present paper is to analyze the 
spin caloritronic properties of T-shaped DQD in the case of 
ferromagnetic contacts. At this point it is worth emphasizing 
that the presence of ferromagnetic leads is not equivalent to 
the application of an external magnetic field in the case of 
DQD with nonmagnetic leads. In fact, we show that the spin 
caloritronic coefficients are affected, in a very nontrivial 
manner, by the presence of ferromagnetic correlations. The 
spin-dependent tunneling results in generation of an effective 
exchange field, which gives rise to another important energy 
scale in the problem that conditions the behavior of the spin 
Seebeck coefficient. We demonstrate that spin polarization of 
the order of 1% is sufficient to induce a strong spin Seebeck 
effect in the transport regime where the second stage of 
screening develops.

Finally, we would like to note that direct observation of the 
spin Seebeck effect was reported recently in a bulk metallic 
magnet [42]. In quantum dot systems, experimental evidence 
remains a challenge. Nevertheless, the closely related spin 
Peltier effect was observed in a thin metallic layer sandwiched 
in between two ferromagnets [43]. This setup seems closer to 

quantum dot geometry; therefore, we believe that our results 
will, on one hand, stimulate further experimental efforts and, 
on the other hand, be of assistance in understanding future 
experimental data.

The paper is organized as follows. In section 2 the model of 
the device and method used for its solution are explained. The 
relevant energy scales are outlined in section 3. Main results, 
concerning the calculated Seebeck and spin Seebeck coeffi-
cients are presented and discussed in section 4. Finally, sec-
tion 5 concludes the paper.

2.  Model and methods

The device under consideration consists of two single-
level quantum dots in a T-shaped geometry with the first 
quantum dot (QD1) coupled to external ferromagnetic leads 
and the second dot (QD2) attached to the first one through 
the hopping matrix elements t, see figure 1. The system can 
thus be described by the following two-impurity Anderson 
Hamiltonian [44], H H H Hr rDQD tun= +∑ + . The first term 
corresponds to an isolated DQD and is given by

H n U n n t d d h.c. ,
i

i i
i

i iDQD 1 2( )†∑ ∑ ∑ε= + + +
σ

σ
σ

σ σ↑ ↓� (1)

where n d di i i
†=σ σ σ and di

†
σ creates a spin-σ electron in dot i 

with the corresponding energy iε  and U is the Coulomb cor-
relation parameter in each dot. The ferromagnetic leads are 
modeled by free-electron Hamiltonian H nr k rk rk

→ →→ ε= ∑ σ σ σ 
(r  =  L for left and r  =  R for right lead, nrk

→
σ denotes the occu-

pation operator for state characterized by momentum k
→
, spin σ 

and lead r, while rk
→ε σ is the energy of the corresponding level). 

The coupling between the first dot and the leads is described 

by the tunneling Hamiltonian H v d c h.c.rk k rktun 1( )†→ →→= ∑ +σ σ σ σ , 
where crk

→
σ is the corresponding annihilation operator and vk

→
σ 

denotes the respective tunnel matrix element.
We consider the wide-band limit and assume that only 

s-waves couple to the electrodes. This allows us to write 
the spin-dependent coupling vr r k

2→πρΓ = | |σ σ σ  as a con-
stant ( rρ σ denotes the normalized spin-resolved den-
sity of states of lead r at the Fermi level), determined 
by the leads’ spin polarization pr. For parallel configu-
ration of the magnetizations of the leads, one then gets 

p1 2r r r( ) /σΓ = + Γσ , and p1L R ( )σΓ ≡Γ + Γ = + Γσ σ σ , where 
p p p 2L R( )/= +  is the effective leads’ spin polarization and 
we assumed 2L R /Γ = Γ ≡Γ . We note that in the antiparallel 
magnetic configuration, for left-right symmetric systems, the 
couplings become spin independent and the transport proper-
ties are similar to those in the nonmagnetic case with a polari-
zation dependent factor. On the other hand, when the system 
is not symmetric, the behavior is the same as in the case of 
a parallel magnetic configuration with some new coupling 
strength and effective spin polarization [45]. Therefore, in the 
following we will consider only the case of parallel magnetic 
configuration.

Let Ix denote the x-current (x  =  C for charge, x  =  S for 
spin, x  =  Q for heat). Using the Boltzmann equation approach 
and assuming a well-defined Fermi level to be the reference 

Figure 1.  Schematic of the system. The left (L) and right (R) leads 
are coupled to the main quantum dot (QD1) via spin-dependent 
couplings Γ σL  and Γ σR . The second quantum dot (QD2) is directly 
coupled only to QD1, with a matrix element t. A small voltage V 
(correspondingly spin voltage VS) shifts (spin-splits) otherwise 
equal chemical potentials µ µ µ= =L R  symmetrically. There is also 
a temperature gradient ∆T  applied symmetrically to the system.
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point for energy scale, one can derive the linear-response 
coefficients connecting currents with voltage V, spin voltage 
VS and temperature difference T∆  [1]

∑
σ

σ σ

σ
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− −
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where e is the absolute value of electron charge,
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f ( )ω  is the Fermi–Dirac distribution function, and ( )ωσT  is 
the spin-resolved transmission coefficient. Henceforth we will 
also use notation L L Ln n n= +↑ ↓ and M L Ln n n= −↑ ↓.

The transport properties can be calculated from Onsager 
integrals Lnσ using equation  (2). In particular, the electrical 
and spin conductances are
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respectively, where Ax y 0∂ | =  denotes partial derivative of 
A(x,y) with respect to x, while the condition y  =  0 is fulfilled. 
Similarly, the heat conductance is given by
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where the conditions IC  =  0 and VS  =  0 in fact determine V as 
a function of T∆ . In this paper we focus on Seebeck and spin 
Seebeck coefficients, denoted respectively by S and SS,
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These are related to the (spin) Peltier coefficient II Q VS
T

0

0
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T

0
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SΠ = ∂ | =
∆ =

) by S TS S( ) ( )Π = . However, we prefer to 

study S(S) instead of S( )Π , because Seebeck coefficient better 
captures caloric properties at low temperatures. Finally, we 
can define the (spin) figure of merit

Z T S G T ,S S S
2 /( ) ( ) ( ) κ=� (9)

which is a measure of thermodynamic efficiency, and the 
corresponding power factor

Q S G ,S S S
2

( ) ( ) ( )=� (10)

which is related to maximal power of the device and the per-
formance under the fixed flow conditions [46].

The transmission coefficient is proportional to the 
imaginary part of QD1’s retarded Green function, 

d dIm 1 1
ret( ) ⟨⟨ ⟩⟩ ( )†ω ω= −Γ |σ σ σ σT , which we determine with 

the aid of the numerical renormalization group (NRG) 
method [47, 48], building the full density matrix from states 
discarded during the iteration of the NRG procedure [49, 
50]. In calculations we use discretization parameter 2Λ =  
and keep 2048 states at each iteration. To perform the com-
putations, we assume flat densities of leads’ states within 
the cutoff D  =  2U and make a transformation to an even–
odd basis [51]. This leads us to an effective single-channel 
formulation of the problem, where for the parallel magnetic 
configuration the only parameters corresponding to the con-
duction bands are those related to an effective one, namely Γ, 
p and D 1≡ .

The NRG method allows us to obtain reliable results in the 
whole parameter space of the model, in particular, at finite 
temperatures. However, NRG forces us to limit our consid-
erations to the linear response regime, where a single Fermi 
level can be defined for both leads and, thus, the logarithmic 
discretization, being a key ingredient of the procedure, is well 
defined [47].

3.  Relevant energy scales

The considered device hosts very rich physics at the manifold 
of energy scales. This can be seen in particular in the temper
ature dependence of the electrical conductance presented in 
figure 2. For decoupled second dot (i.e. for t  =  0), nonmagn
etic leads (p  =  0) and QD1 energy level in the Coulomb valley 
( U 01ε− � � ), at temperatures below the Kondo temperature 
TK, the conduction band electrons screen the spin of the elec-
tron occupying QD1. This screening results in an additional 
resonance in the local density of states of the first dot at the 
Fermi level, which gives rise to an enhancement of the con-
ductance G, see the curves for t  =  0 and p  =  0 in figures 2(a) 
and (b). In the Kondo regime G can achieve the unitary limit 
G  =  2e2/h, if the dot is tuned to the point of the particle–hole 
symmetry (PHS), ε ε= = −U 21 2 / , as is done in figure  2(a). 
The maximal conductance outside the PHS point is slightly 
smaller, see figure 2(b). For single quantum dots coupled to 
ferromagnetic leads, the Kondo temperature can be estimated 
from a scaling approach [52, 53],
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Experimentally, the Kondo temperature is typically defined 
as the temperature at which G G 2max/= . For parameters 
assumed in figure 2(a) in the case of p  =  0 and t  =  0, from the 
temperature dependence of G we find T 0.32K≈ Γ.

The coupling between quantum dots results in the emer-
gence of another energy scale, T*, which for relatively weak 
t� Γ is associated with the screening of the second dot’s spin 
by the continuum formed by QD1 and leads. This screening 
manifests itself through a decrease of G for temperatures 
below T*, see the curves for t 3/= Γ , p  =  0 in figures 2(a) and 
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(b). At the PHS point the conductance drops to 0 as G T2∝  
[30], while outside this point some finite conductance remains 
even in the T  =  0 limit, see figure 2(b). The temperature at 
which the second stage of screening takes place can be esti-
mated from [30, 37]:

T a T e ,bT J
K

K eff/=∗ −� (12)

where J Ut U4eff
2 2

1 2
2/[ ( ) ]ε ε= − −  is the effective exchange 

interaction between the dots and a,b are numbers of the order 
of 1. However, similarly to TK, we estimate T* numerically 
from the temperature dependence of G, as the temperature at 
which the conductance drops to half of its maximum value. 
For parameters assumed in figure  2(a), p  =  0 and t 3/= Γ , 
T 5.9 10 4≈ ⋅ Γ∗ − .

Unlike in the case of the magnetic field, the influence of 
the leads’ ferromagnetism on transport properties of the 
system differs significantly, depending on the presence or lack 
of particle–hole symmetry in the system. At the PHS point, 

U 21 2 /ε ε= = − , the leads’ spin polarization only slightly 
modifies TK and T*, see equations (11) and (12), which also 
causes some minor change in Gmax, see figure 2(a). However, 
outside the PHS point this influence is much more pronounced, 
as can be seen in figure 2(b). Even relatively low values of 
spin polarization (see the curve for p  =  0.01) block the second 
stage of Kondo screening, while the value of p  =  0.5 is suf-
ficient to suppress the Kondo effect significantly for 1ε  con-
sidered in the figure. This can be inferred from the strongly 

reduced maximum value of the conductance and the devia-
tion of the curve corresponding to p  =  0.5 from all the other 
curves at temperatures of the order of TK, see figure 2. The 
suppression of the Kondo effect for large p is caused by the 
fact that, in the case of ferromagnetic leads, the renormaliza-
tion of double quantum dot energy levels due to the hybridiza-
tion with electrodes becomes spin-dependent, which implies 
that an effective exchange field exε∆  is induced in DQD. It is 
worth noticing that exε∆  is in general different in each multi-
plet of DQD eigenstates [54].

The exchange field exε∆  strongly depends on the DQD level 
positions, in particular, 0exε∆ =  at PHS point (in all multi-
plets). For t Γ� , one can reasonably define exε∆  induced in 
QD1 and approximate it by the formula for a single quantum 
dot [53, 54],

p

U

2
log .ex

QD1 1

1
ε

π
ε

ε
∆ ≈

Γ
+

� (13)

The determination of the exchange field in the second dot, 
denoted by ex

QD2ε∆ , is a more subtle problem [40, 54]. 
Nevertheless, for t Γ� , ex

QD2ε∆  can be seen as a consequence 
of coupling between QD2 and the continuum formed by QD1 
and the leads. The effective spin-dependent coupling to the 
second dot 2Γ σ is then proportional to t p12

2/ ( )σΓ = − Γσ , with 
22 2 2( )/Γ = Γ + Γ↑ ↓ , instead of simply Γσ as in the case of QD1. 

Note that 2Γ  is a function of both t and p, and the effective 
spin polarization equals  −p. Consequently, while the cou-
pling to one of the spin species is larger in the first dot, it can 
be just opposite in the second dot, which implies that ex

QD1ε∆  
and ex

QD2ε∆  can have different signs [40]. Note that a similar 
situation cannot be reached by applying external magnetic 
field, which will have the same sign in both quantum dots. 
By raising the exchange field, detuning from the PHS point 
by changing either 1ε  or 2ε  will generally suppress the second 
stage of the Kondo effect once Tex �ε|∆ | ∗ [41]. Moreover, it 
can also affect the first-stage Kondo effect if Tex K�ε|∆ | .

In the strong coupling regime and for p  =  0, the modified 
Wiedemann–Franz law was predicted [21, 28, 55], which 
states that at T TK< , T TG T( )/[ ( )]κ α α=L  is a constant, 
instead of the Lorentz number T TG T( )/[ ( )]κ . The value of this 
constant equals k e3 B0

2 2 2( / ) /π=L , while the scale shift α was 
estimated to be approximately equal 2. Despite the fact that 
finite leads’ spin polarization significantly changes the fixed 
point structure of the renormalization group flow, we found 
the same behavior in this system, although with slightly worse 
accuracy. This is illustrated in figure  2, where rescaled and 
shifted heat conductance T T T2 20

1˜( ) ( )/( )κ κ≡ −L  is plotted as 
a function of T with solid lines. At T TK� , all curves overlap 
to good accuracy with G(T), which implies that the modified 
Wiedemann–Franz law also holds in the case of T-shaped 
DQDs with ferromagnetic contacts.

4. Thermopower and spin thermopower

In this section  we present and discuss the results on the 
Seebeck and spin Seebeck coefficients. First, we study their 

Figure 2.  Linear conductance G (dashed lines) as a function 
of temperature T calculated for /ε = −U 22 , /Γ = U 5 and (a) 

/ε = −U 21 , (b) /ε = −U 31 . Solid lines indicate the rescaled and 
shifted thermal conductance, ˜ ( )/( )κ κ α α≡ −L T T0

1  with α = 2 (see 
text for details). In (a) the curves for p  =  0 and p  =  0.01 (both for 

/= Γt 3) are on top of each other.
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temperature dependence and then analyze what happens when 
the degree of the leads’ spin polarization is varied. Finally, we 
consider the dependence of thermoelectric coefficients on the 
position of DQD energy levels.

4.1. Temperature dependence

The full temperature dependence of (spin) thermoelectric 
coefficients is presented in figure  3 for different values of 
leads’ spin polarization p. We cover there a wide class of fer-
romagnetic materials, starting with the nonmagnetic case and 
ending with half-metals, for which p 1→ . This figure was cal-
culated for U 31 /ε = −  and U 22 /ε = − , i.e. outside the PHS 
point, since for U 21 2 /ε ε= = − , the thermopower vanishes 
due to equal contributions from electron and hole processes. 
For nonmagnetic systems, the second stage of screening leads 

to an enhancement of S at very low temperatures of the order 
of T* [28]. For finite spin polarization, however, a suppres-
sion of the second stage of Kondo effect by the exchange field 
occurs, see figure 2, which suppresses the thermopower peak 
at T  <  T*, see figure 3(a). Clearly, leads’ polarization, even as 
small as p  =  0.01, is sufficient for the low-temperature peak 
in S(T) to be strongly suppressed. This is due to the fact that 
even very low values of p give rise to finite exchange field, see 
equation (13), which for p  =  0.01 can already become larger 
than T*. In a similar spirit, larger values of spin polarization 
resulting in greater exchange field can affect thermopower 
behavior at higher temperatures. Interestingly, for T TK≈  one 
can then observe a more subtle interplay between the Kondo 
correlations and the exchange field. For p  <  0.5, S(T) exhibits 
a dip with S(T)  <  0 at T TK≈ , which is characteristic of the 
(single-stage) Kondo effect [21]. On the other hand, with 
increasing spin polarization, thermopower changes sign and 
a positive peak appears instead, see the curves for p 0.9⩾  in 
figure 3(a). This can be explained as follows.

For T T TK< <∗  and p  =  0, there is a Kondo peak visible 
in the total transmission coefficient, ( ) ( )ω ω= ∑σ σT T , as can 
be seen in figure  4, which presents the energy dependence 
of ( )ωT  for different spin polarization p. Because U 21 /ε >− , 
the Kondo peak displays some asymmetry with respect to the 
Fermi energy ( 0ω = ). In fact, finite temperature, which is 
slightly below TK, results in a small shift of the maximum to 

0ω> . Because of that, ( )ωT  has a finite slope at 0ω = , which is 
responsible for nonzero thermopower of the device. For p 0≠  
the exchange field appears, which grows with increasing p. 
Thus, for sufficiently large spin polarization, exε∆  can become 
larger than TK. If this is the case, the Kondo peak becomes 
suppressed and split by 2 exε∆ , see figure 4. Moreover, with 
increasing spin polarization, the levels of DQD become split 
and the weight of the transmission coefficient becomes shifted 
to negative energies. This is visible as a gradual enhancement 
of the negative-ω Hubbard peak. For very large spin polariza-
tion, due to the factors p1( )± , the majority spin states are 
mainly responsible for the enhanced transmission for 0ω< . 
The above-described behavior results in a sign change of the 
derivative of ( )ωT  at 0ω =  with increasing p, which gives rise 

Figure 3.  Thermopower (a), the corresponding power factor (b) 
and the related spin counterparts (c), (d) calculated as a function of 
temperature for /ε = −U 31 , /ε = −U 22 , /= Γt 3 and /Γ = U 5, and 
for different values of spin polarization p, as indicated. The insets in 
(b) and (d) show the temperature dependence of the corresponding 
figures of merit, ZT and ZST.

Figure 4.  Energy dependence of the total transmission coefficient 
( ) ( )ω ω= ∑σ σT T  calculated for different values of spin polarization 

p and for parameters corresponding to figure 3 with = Γ−T 10 1 .
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to the associated sign change of the Seebeck coefficient vis-
ible in figure 3(a).

One could imagine a similar situation for T T≈ ∗, with a dip 
in the transmission coefficient corresponding to the second 
stage of screening being split by exε∆ . However, because exε∆  
becomes larger than T* at very small values of spin polariza-
tion, e.g. at p  =  0.01 for parameters assumed in figure 3, the 
difference between (1  −  p) and (1  +  p) factors in the spin-
resolved transmission coefficient is not significant. For this 
reason the relative depth of dips remains approximately con-
stant and we do not observe a negative peak at T T≈ ∗ for any 
value of spin polarization considered in figure 3. However, as 
presented in section 4.2, a sign change of thermopower in the 
second stage of screening may occur for p 0.02≈  and is even 
more pronounced for U 41 /ε = −  instead of U 31 /ε = − .

The temperature dependence of the power factor corre
sponding to the Seebeck coefficient shown in figure  3(a) is 
presented in figure 3(b). It exhibits local maxima for temper
atures corresponding to peaks (or dips) visible in S, including 
a small peak at T U≈ , associated with thermally excited 
hole-like (due to 01ε < ) transport. The inset in figure 3(b) dis-
plays the thermoelectric figure of merit ZT as a function of 
temperature. It also exhibits all the peaks of S(T), however, 
the contributions at intermediate temperatures, T T TK< <∗ , 
are somewhat suppressed by quite large heat conductance; see 
in particular the curve for p  =  0.01 in figure 3(b).

We now move to the discussion of spin thermoelectric 
properties of the considered device. A large conventional 
thermopower present at T T≈ ∗ gives a hope that breaking the 
spin-reversal symmetry by finite lead spin polarization will 
generate a considerable spin thermopower. However, genera-
tion of SS at such low temperatures is a matter of a delicate 
compromise. This is because while the spin Seebeck coef-
ficient can be generally enhanced by increasing spin polari-
zation, the second stage of screening and, consequently, 
the conventional thermopower become strongly suppressed 

if p is too large, as already explained in the discussion of 
figure 3(a). Nevertheless, as can be inferred from figure 3(c), 
there are such values of spin polarization for which the sym-
metry is sufficiently broken and a maximum in SS(T) appears, 
see the curves for p  =  0.001 and p  =  0.01. We note that 

S eS2 S
max maxħ/ ⋅ <  for p  =  0.001 (S S

max
( )  denotes the maximal 

value of S(S)(T) for a given value of p), while for p  =  0.01 the 
opposite inequality holds. Indeed, in the latter case the spin 
thermopower exceeds the conventional thermopower.

With increasing the degree of spin polarization of the 
leads, the maximum in SS moves to larger temperatures and 
for p 0.5⩾  the spin Seebeck coefficient exhibits a peak at 
T TK≈ , see figure 3(c). Contrary to the case of conventional 
Seebeck coefficient, the peak at T TK≈  has the same sign as 
the low-temperature peak for small spin polarization. This can 
be surprising, because the peak in S(T) changes sign when T 
increases from T T≈ ∗ to T TK≈ , see figure 3(a). However, in 
the case of spin Seebeck coefficient one needs to keep in mind 
that, for assumed parameters, the exchange field in QD1 is 
opposite to the exchange field in QD2, which compensates 
for this effect.

One can be surprised that p of the order of one percent 
is sufficient to induce a significant spin Seebeck coefficient. 
However, it is advisory to recall, that SS is in fact a ratio of a 
small spin bias VS and a small temperature gradient T∆ . Thus, 
even the largest value of SS, despite its fundamental aspects, 
does not guarantee a practical importance of the result, if the 
corresponding power factor QS is too small. For this reason 
in figure 3(d) we show the temperature dependence of QS. It 
can be clearly seen that the peak in QS(T) corresponding to 
p  =  0.001 is a few times smaller than the peak corresponding 
to p  =  0.01. This remains in agreement with intuition, that 
a lead spin polarization with degree much smaller than 1% 
cannot induce a significant spin current (although this very 
small spin current can still be much larger than the corre
sponding charge current). On the other hand, the peak of QS(T) 

Figure 5.  Thermopower (a), spin thermopower (b) and the corresponding power factors, (c) and (d), plotted as a function of spin 
polarization p for different values of the level position of the first quantum dot, as indicated in the figure. The other parameters are the same 
as in figure 3 with = Γ−T 10 4 .
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for p  =  0.01 is larger than the peaks corresponding to stronger 
lead polarization. This implies that the thermoelectric perfor-
mance of the considered device is best in the regime of the 
second stage of screening. Nevertheless, the corresponding 
spin-thermoelectric figure  of merit ZST, which is plotted in 
the inset of figure 3(d), is not too spectacular, with values only 
slightly exceeding e0.05 2 ħ( / )⋅ .

4.2.  Dependence on the leads’ spin polarization

In this section  we analyze how the spin thermoelectric 
properties depend on the magnitude of the exchange field, 
focusing on the second stage of the Kondo effect. We 
thus assume the same parameters as in the previous sec-
tion  and set T 10 4= Γ− , which is of the order of T*, and 
study the dependence on spin polarization for different 
values of QD1 level position. According to equation  (13), 
the exchange field is linear in p and also in 1ε  near the PHS 
point, since U U Ulog 4 21 1 1/( ) ( / )/ε ε ε| + | ≈ + . As can be seen 
in figure 5(a), which displays the dependence of S on p, the 
Seebeck coefficient in the regime of small spin polarization is 
a nonincreasing function of p (note the logarithmic scale for p 
in the plot). At sufficiently low spin polarization, S retains its 
value for a nonmagnetic system. However, for any 1ε  there is 
some critical value of p, which we denote pc, above which the 
Seebeck coefficient becomes suppressed. This critical polar-
ization decreases monotonically with increasing detuning 
from the PHS point, and is related to some critical value of 
the exchange field, Tc

exε∆ ≈ ∗, overcoming the second stage 
of the Kondo effect. As can be seen in figure 5(a), the height 
of S( p ) maximum depends on 1ε  in a nonmonotonic manner. 
This suggest a nontrivial dependence of S on 1ε , which is 
explained in section 4.3.

Moreover, in figure 5(a) we can also notice a small sign 
change of S( p ) for U 41 /ε = −  and U 31 /ε = − . This is in fact a 
consequence of the same phenomenon as that responsible for 
the sign change of S(T) for T TK∼  described in section 4.1. The 
main difference is that the dip in the transmission coefficient, 
corresponding to the second stage of the Kondo screening, 
more easily gets smeared, than split. For this reason, the nega-
tive peak of S is rather small and develops only in a narrow 
range of parameters, see figure 5(a).

We also note that very close to the PHS point, one can 
observe a large peak in S( p ), see the curve for U0.4991ε = −  
in figure 5(a). This result, however, may be considered some-
what artificial. According to equation (7), S is proportional to 
the ratio of L1 and L0. Exactly at the PHS point, L1 is always 0 
while L0 decreases with temperature as T2. Moreover, L0 is a 
symmetric function of the detuning from the PHS point, while 
L1 is an anti-symmetric function. Thus, for U T21 / �ε| − | , 
when L0 and L1 are set by detuning, S may reach really large 
values. The role of spin polarization is here to split the trans-
mission coefficient dip and cause ( )ωT  to possess a finite slope 
at 0ω = , which additionally enhances L1. However, despite 
large value of S, the system does not conduct in this regime 
(neither heat, nor current, nor spin), so the result is not really 
physically interesting. This is confirmed by the values of Q, 

which are presented in figure 5(c). While for U0.491ε >− , the 
peaks of S( p ) correspond to the peaks of Q( p ), this is not the 
case for U0.4991ε = − ; Q is not enhanced in the regime of 
large p.

The dependence of the spin Seebeck coefficient SS on 
p is presented in figure  5(b). It significantly differs from 
the p-dependence of S, since SS vanishes for p  =  0. In fact, 
SS( p ) exhibits a peak, whose position varies with 1ε  by a few 
orders of magnitude. The height of the peak increases when 
1ε  approaches the PHS point. The existence of this peak is a 

consequence of a balance between the exchange field and the 
second stage of screening. If p is small enough, spin-reversal 
symmetry is approximately preserved and S 0S≈ . On the 
other hand, large values of spin polarization result in strong 
exchange field, which destroys the second stage of the Kondo 
effect, and thus decrease the spin caloritronic effects.

Figure 6.  Spin thermopower (a), the corresponding power factor 
(b) and the spin-thermoelectric figure of merit ZST (c) as a function 
of ε1 calculated for different values of hopping between the two 
dots, as indicated. The parameters are the same as in figure 3 
with = Γ−T 10 3  and p  =  0.5. The inset shows peaks of the spin 
thermopower at lower = Γ−T 10 4 .
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The exchange field can also be changed by tuning 1ε , which 
allows for moving the peak in SS( p ) to the desired range of p. 
The flexibility of the device upon this kind of tuning is reduced 
by the power factor corresponding to spin thermoelectric 
effects, QS, which is shown in figure 5(d). QS as a function of 
p exhibits peaks corresponding to those present in SS( p ) for 
all values of 1ε  considered. The height of these peaks is the 
largest for U U0.49 31 /ε− < <−  and drops significantly for 

U 2 0.011 /ε| + | < . This is associated with the suppression of 
the conductance already discussed in the case of conventional 
Seebeck coefficient. Moreover, as can be seen in figure 5, for 
a finite value of spin polarization, there exists such a value of 
1ε  for which large peaks in SS( p ) and QS( p ) occur.

4.3.  Dependence on the position of QD1 energy level

As follows from figure 5, the dependence of SS on 1ε  for large p 
is quite sharp. This is related to Fano-like interference, which 
occurs between transport paths through a weakly coupled 
molecular state of DQD that is a resonant one and another, 
strongly coupled state serving as the background [33, 36–38]. 
To shed more light on this behavior, in figure 6 we now plot 
the full 1ε -dependence of SS for fixed p  =  0.5 and the other 
parameters the same as in figure 5. In this figure we also study 
the influence of different hopping between the dots t, which 
strongly affects the formation of molecular states in DQD and, 
thus, strongly influences the interference effects.

The dependence of SS on 1ε  calculated at T 10 4= Γ− , i.e. for 
temperature corresponding to that used in figure 5, is shown 

as an inset to figure 6(a). However, in this case for the con-
sidered range of 1ε  the spin-thermoelectric power factor QS is 
quite small, as explained in the previous section (not shown 
in the plot). Moreover, it becomes even more suppressed with 
increasing t. For this reason, the main results shown in figure 6 
are calculated at larger temperature, T 10 3= Γ− , which is of 
the order of T* for t 3/= Γ . At this temperature, outside the 
PHS point, the conductance is not yet fully suppressed due to 
the second stage of Kondo effect, and QS values are larger, as 
can be seen in figure 6(b).

At first sight, one can immediately notice a striking quali-
tative similarity between the curves shown in figure 6(a) and 
those in the inset. A closer look, however, reveals some dif-
ferences. First of all, the two plots have different scales for 
the horizontal axis. It turns out that the sharp interference 
peaks get broadened with increasing temperature. Moreover, 
the width of those peaks scales approximately linearly with T, 
while the maximal value of SS is rather independent of temper
ature. We also note that SS is anti-symmetric around the PHS 
point, which is caused by the corresponding sign change of 
the exchange field exε∆  around this point.

The spin-thermoelectric power factor as a function of 1ε  is 
shown in figure 6(b). One can clearly see that QS is optimized 
for t 3/= Γ  and only in this case reaches considerable values. 
For smaller values of hopping t, the temperature considered in 
figure 6(b) is above T* and SS is not enhanced. On the other 
hand, for larger hoppings, T T ∗�  and the conductance is 
generally blocked by the second stage of screening. Since QS 
must be sufficiently large for any measurement to be possible, 

Figure 7.  Dependence of thermopower (a), spin thermopower (b) and the corresponding power factors, (c) and (d), on the first dot level 
position ε1 and temperature T. The parameters are the same as in figure 3 with p  =  0.5. Note the logarithmic color scale for the power 
factors.
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one should not overestimate the meaning of large spin-ther-
moelectric figure of merit. With this in mind, let us analyze 
figure 6(c), which presents ZST as a function of 1ε .

As can be seen in the figure, ZST exhibits maxima for those 
values of 1ε  for which SS| | has peaks. Due to the square depend
ence of ZST on SS, see equation  (9), the differences in peak 
heights are now more prominent than in the case of SS. The 
influences of thermal and electrical conductance compensate 
each other. The maximal ZST equals e0.5 2 ħ/⋅ , which is quite 
large, see figure 6(c). However, it occurs for strong t, for which 
QS is rather low and the measurement is hardly possible. On 
the other hand, for t 3/= Γ , corresponding to reasonably large 
QS, maximal ZST remains of the order of e0.1 2 ħ/⋅ .

Finally, to make the analysis of (spin) thermoelectric prop-
erties of our magnetic device complete, in figure 7 we present 
the thermopowers and the corresponding power factors as a 
function of temperature and QD1 energy level. One can see 
that both S and SS change sign in the PHS point. However, S 
as a function of T exhibits more sign changes than SS(T). The 
regimes of large Seebeck and spin Seebeck coefficients can be 
clearly identified in the figure. While for S and Q the largest 
values are obtained at relatively high T and large detunings 
from the PHS point, SS and QS are maximized for temperatures 
of the order of T* and close to (but not at) the PHS point.

5.  Conclusions

We have analyzed the thermoelectric and spin-thermoelectric 
properties of the DQD in a T-shaped configuration, coupled to 
two leads magnetized in parallel. The calculations were per-
formed in the linear response regime with the aid of the NRG 
and we focused on the parameter regime where the system 
exhibits the two-stage Kondo effect. We determined the full 
temperature dependence of the (spin) Seebeck coefficient, 
together with the corresponding power factor and figure  of 
merit. We also studied the dependence of the spin caloritronic 
properties on the degree of spin polarization of the leads, 
dot level detuning and the strength of hopping between the 
dots. It was demonstrated that the thermal conductance ful-
fills the modified Wiedemann–Franz law found previously for 
nonmagnetic systems. In addition, we showed that the spin 
Seebeck coefficient can be strongly enhanced in the regime 
corresponding to the second stage of the Kondo effect. This 
enhancement is very sensitive to the value of lead spin polar-
ization. Moreover, it can be tuned by changing the DQD 
parameters, such as level position and hopping between the 
dots. We also showed that in order to keep the power factor at 
an experimentally relevant level, one needs to set the temper
ature of the order of T*. Since T* strongly depends on t, this 
effect can be tuned by changing the hopping between the dots 
and the temperature.

We would also like to emphasize that the spin thermoelec-
tric properties of the considered device are very sensitive to 
the spin polarization of the leads, and even small values of 
p (of the order of 1%) can induce large spin Seebeck effect. 
Such a value of spin polarization may be a consequence of 
current-induced spin accumulation even for very small driving 

currents. It can also occur in the case of the anti-parallel con-
figuration of lead magnetization for two asymmetrically cou-
pled electrodes. Then, even very small coupling asymmetry 
changes the effective spin polarization from 0 to a finite value 
of p L R( )/= Γ − Γ Γ. It therefore seems quite realistic to expect 
p 0.01�  in an experiment, which will cause the conventional 
Seebeck effect to be strongly suppressed (compared to the 
nonmagnetic case) and the spin Seebeck effect to be present 
and even possibly strong. All this implies that the effects 
studied in this paper may also be relevant for a system in 
which one would not expect them to appear.
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