
Correlation effects in transport through
quantum dot systems

ADAM MICKIEWICZ UNIVERSITY

FACULTY OF PHYSICS

Kacper Wrześniewski
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Abstract

This PhD thesis concerns theoretical studies of charge and spin transport through the sys-

tems consisting of coupled quantum dots attached to external leads. The considered structures

exhibit many interesting physical properties, not observed in bulk materials, resulting from var-

ious quantum effects and correlations, as well as different geometrical arrangements. With

recent progress in nanofabrication techniques, it has become possible to implement nanostruc-

tures composed of coupled quantum dots in a fully tunable manner. In consequence, such sys-

tems can have very promising applications as novel nanoelectronic devices, where both electron

charge and spin are exploited.

The focus of this dissertation is on various correlation effects and their influence on transport

through quantum dot systems. In particular, the quantum interference effects in triangular quan-

tum dots responsible for the appearance of dark states are extensively studied. This quantum

mechanical phenomenon reveals itself with non-trivial transport properties: current suppres-

sion, negative differential conductance, enhanced shot noise and coherent electron population

trapping. The underlying mechanism, conditions and parameters necessary for the emergence

of dark states, possible schemes for manipulation and exploitation of such states are the subject

of the comprehensive theoretical analysis in further part of the thesis.

Another important class of considered systems are quantum dot based Cooper pair splitters.

The proximity of superconductor induces pairing correlations in quantum dots and gives rise

to the formation of Andreev bound states for energies smaller than the superconducting energy

gap. The Andreev transport is analyzed with an emphasis on the current cross-correlations in

order to optimize the parameters for obtaining high Cooper pair splitting efficiency. The trans-

port properties of double quantum dot based Cooper pair splitters are also studied in the Kondo

regime. The interplay of Kondo and superconducting correlations are thoroughly analyzed, both

in the SU(2) and SU(4) Kondo regimes, and differences in transport behavior in these cases

are discussed.

The thesis begins with an introductory part consisting of motivation and aim of the work, de-

scription of the methodology, including an outline of the real-time diagrammatic technique and

the numerical renormalization group method, and the discussion of basic concepts in transport

through quantum dot systems. Subsequently, a set of seven papers, containing the theoretical

studies of introduced problems and constituting this dissertation, is presented.
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Chapter 1

Introduction
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1.1 Motivation and aim

For over three decades [1] quantum dot systems have been extensively studied experimen-

tally and theoretically [2,3]. Due to the manifestation of many quantum effects and correlations

at the nanoscale, quantum dots are attractive for applications in the fields of nanoelectronics,

spintronics [4,5] and quantum information processing [6], among many others. High tunability

of experimental realizations of such systems is another important feature stimulating extensive

research in this area. Finally, quantum dot systems provide a great playground for testing fun-

damental correlations between single charges and spins and examining their role in quantum

transport [7–11].

An accurate theoretical study of transport properties of quantum dot systems is a broad

and challenging task belonging to the field of mesoscopic physics. It combines the classical

and quantum mechanics and demands one to confront with difficult quantum many-body prob-

lems [12]. To tackle this task a variety of analytical and numerical methods and approaches

have been proposed. Many of them are computationally demanding and, in order to capture

the physics more and more accurately, under the constant development. The rich and beautiful

physics awaiting to be unraveled, the intellectual challenge and scientific adventure in this mod-

ern and active field, and, last but not least, the prospect of soon-to-be applications in common

technology, are all igniting the curiosity and strong motivation across the physics community.

Considering all of the above, the author devoted himself to follow this path.

This thesis is focused on the investigations of transport properties of coupled quantum dot

systems and the examination of the influence of various correlations on their transport behavior.

The analysis is divided into two parts. The first one addresses systems built of three quan-

tum dots arranged in a triangular geometry. This is a prominent example resembling a simple

planar molecular system. The triple quantum dot systems have a complex electronic structure

and a vast space of tunable parameters, which result in compelling and non-trivial transport

phenomena. In particular, the quantum interference effects leading to the formation of dark

states [13–16] are thoroughly analyzed and discussed. The second part of conducted studies

is devoted to quantum dot based Cooper pair splitters [17–20]. The Andreev transport [21] in

such hybrid structures is analyzed for wide range of transport parameters, both in the weak-

and strong-coupling regimes. In the former regime, the focus is put on examining the current

cross-correlations [22] and their dependencies on various system’s parameters. Strong posi-

tive cross-correlations are associated with high splitting efficiency, which is a desired feature
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of Cooper pair splitters. The negative current cross-correlations are also predicted and the

underlying mechanism is explained. In the strong coupling regime, the interplay of supercon-

ducting and Kondo [23–25] correlations is the prime objective of the research. The SU(2) and

SU(4) [26] Kondo regimes are considered in the case of double quantum dot based Cooper pair

splitters. The influence of superconducting correlations on the Kondo physics is studied along

with the Andreev transport properties of the system.

The main aim of this dissertation is to deepen the understanding of transport phenomena at

the nanoscale and in correlated quantum dot systems in particular. The presented theoretical re-

sults can be confronted with experimental data with up-to-date nanofabrication technology and

measurements techniques [26–30]. The analysis of fundamental quantum effects in considered

systems may also stimulate further research and progress in this broad and rapidly developing

field of contemporary physics.

The dissertation has a form of a series of seven publications preceded by the essential in-

troduction. Therefore, the thesis is divided into three chapters. The present Chapter 1 carries

forward with a brief description of the theoretical framework and discussion of basic concepts

in quantum transport through systems of coupled quantum dots, fundamental for understanding

the following research. The introduction is concluded with a short summary. Chapter 2 is the

most important part of the dissertation, where the results of theoretical studies performed by

the author, in the form of seven papers published in peer-reviewed international journals, are

presented. Finally, Chapter 3 includes appropriate appendices.
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1.2 Theoretical framework

This section presents a brief introduction to the methodology used for the conducted re-

search. The description of a general coupled quantum dot system in the Hamiltonian approach

is presented, followed by an outline of employed numerical and analytical methods for studies

of quantum transport. The real-time diagrammatic method is used in order to examine the be-

havior of the system in the weak coupling regime, while the numerical renormalization group

approach allows one to analyze the system’s transport properties in the strong coupling regime.

1.2.1 Hamiltonian

A general form of the Hamiltonian describing the considered systems can be written as a

sum of three parts

HTotal = HQD +HLeads +HTun, (1.1)

where HQD describes isolated quantum dots, HLeads is the leads’ Hamiltonian and HTun ac-

counts for tunneling between the corresponding leads and quantum dots. More specifically, the

studied systems are described with an extended Anderson impurity model [31] written in the

second-quantized notation. The single-impurity Anderson model allows one to conveniently

study the properties of a single orbital level interacting with metallic environment, however, it

can be easily extended to multi-level case. In our considerations it is always assumed that every

quantum dot in analyzed models has a single orbital level. This assumption can be justified

by assuming a large energy spacing between consecutive levels due to the ultra-small size of

quantum dots and examination of transport properties in the low temperature limit.

The Hamiltonian HQD is generally given by

HQD =
∑

i

εini +
∑

i

Uini↑ni↓ +
∑

〈ij〉

Uij
2

∑

σσ′

niσnjσ′ +
∑

〈ij〉

tij
2

∑

σ

(d†iσdjσ +H.c.). (1.2)

The first term describes the orbital energy εi of an electron on quantum dot i, with ni being the

occupation operator ni =
∑

σ niσ, where niσ = d†iσdiσ and d†iσ(diσ) is the creation (annihilation)

operator of an electron on quantum dot i with spin σ. The second term stands for the on-site

Coulomb interaction Ui, while the third term relates to the interdot Coulomb correlations, Uij .

Finally, the last term represents spin-conserving hopping between neighboring quantum dots,

with the hopping amplitude given by tij . The term H.c. stands for Hermitian conjugate. The
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parameters Uij and tij are divided by 2 to handle the double counting.

In the following studies, there are three types of leads considered in the examined systems.

The normal metallic (N) and ferromagnetic (FM) leads are both modeled as reservoirs of non-

interacting quasiparticles

HNLead =
∑

kσ

εkc
†
kσckσ, (1.3)

HFMLead =
∑

kσ

εkσc
†
kσckσ, (1.4)

where c†kσ(ckσ) is the creation (annihilation) operator of quasiparticle in a lead with momentum

k and spin σ. It is important to note, that the distinction between these two types of metallic

electrodes is in the dispersion relation, which for the ferromagnetic case is spin-dependent εkσ.

In the case of Cooper pair splitters, the quantum dot system is also coupled to superconduct-

ing lead. In the proceeding analysis, the mean-field BCS Hamiltonian [32] is used to model the

s-wave superconductor

HSCLead =
∑

kσ

εkc
†
kσckσ + ∆

∑

k

(c†k↑c
†
−k↓ +H.c.), (1.5)

with ∆ being the order parameter assumed to be momentum independent and real, as the phase

can be discarded in the case of single superconductor present in the system. Lastly, the term

HLeads in Hamiltonian (1.1) is a sum of the corresponding leads’ Hamiltonians discussed above,

depending on the details and geometry of the considered system.

Finally, the last term of the general Hamiltonian (1.1) expresses the tunneling between quan-

tum dots and attached leads. In all papers presented in Chapter 2, the spin conserving tunneling

is assumed. Then, the tunneling Hamiltonian takes the following form

HTun =
∑

rikσ

vriσ(c†rkσdiσ +H.c.). (1.6)

Here, vri are the tunnel matrix elements between lead r and quantum dot i. The tunnel coupling

for junction ri can be written as

Γσri = 2πρσr |vriσ|2, (1.7)

where ρσr is the corresponding density of states. For ferromagnetic leads it is obviously spin-

dependent, for nonmagnetic leads ρσr = ρr, while for superconducting leads ρσr = ρr denotes the

density of states of superconductor in normal state. For the ferromagnetic leads, the coupling
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strength is often also described by the spin polarization pr of lead r, defined as

pr =
ρ+
r − ρ−r
ρ+
r + ρ−r

. (1.8)

With the above, one can express the couplings in the following manner

Γ±ri = Γri(1± pr), (1.9)

with Γri = (Γ+
ri+Γ−ri)/2, where Γ+

ri is the coupling to the spin-majority and Γ−ri to spin-minority

electron band of the lead r. In the case of normal metallic (non-ferromagnetic) leads, the spin

polarization is equal to zero, i.e. pr = 0.

In the analysis of transport properties of hybrid systems with a single superconducting lead

presented in publications (V, VI, VII), the main focus is on the Andreev transport regime [21].

In order to rule out the normal tunneling processes and provide a clear understanding of Andreev

reflection processes, the infinite superconducting energy gap limit is assumed. This assumption

considerably simplifies the problem, as the limit |∆| → ∞ can be solved exactly [33]. Integra-

tion of fermionic degrees of freedom in superconductor generates an induced action, which can

be simply added to the bare action of the isolated quantum dot subsystem. Hence, the following

effective Hamiltonian is obtained for the system with a single quantum dot (SQD) [34–36]

HEff
SQD = HSQD −

ΓS

2
(d†↑d

†
↓ + d↓d↑), (1.10)

where the effective pairing potential ΓS is the coupling strength between the quantum dot and

the superconducting electrode. Subsequently, for the system with a double quantum dot (DQD)

coupled to superconductor [37, 38] the effective Hamiltonian can be written as

HEff
DQD = HDQD−

∑

i

ΓSi
2

(d†i↑d
†
i↓+di↓di↑)+

ΓSLR
2

(d†L↑d
†
R↓+d

†
R↑d

†
L↓+dR↓dL↑+dL↓dR↑), (1.11)

where ΓSi describes direct Andreev reflection processes in the system and ΓSLR =
√

ΓSLΓSR is

responsible for non-local Andreev reflections [37].
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1.2.2 Weak vs. strong coupling regime

The theoretical study of transport phenomena in mesoscopic systems is a challenging prob-

lem. The separate parts of the system, i.e. electrodes and an isolated finite subsystem with

discrete spectrum, such as a quantum dot or a molecule, are all well understood and quite ac-

curately described by the theory. However, when they are brought together into the contact, the

description becomes more complicated as new issues come into play. The diversity of phenom-

ena concerning the physics of interface, interactions between reservoirs and discrete system,

non-equilibrium conditions due to applied bias voltage, screening, field effects and many more

are all important effects. Nonetheless, their significance and influence on the transport behavior

depend mainly on the coupling strength between the individual parts of the system. Therefore,

it is convenient to study the transport in two antipodal cases: in the weak or the strong coupling

regime.

In the weak coupling regime, the coupling strength between electrode and quantum dot Γ

is assumed to be the lowest energy scale in the problem, Γ � U, T (kB ≡ 1), where Γ is the

total coupling strength given by a sum of all couplings between the quantum dot and attached

reservoirs. Experimentally, the couplings can be tuned by electric gates producing high tunnel

barriers. When the coupling is weak, the orbital levels on the quantum dots or molecular system

remain well defined, discrete states and the electronic transport takes place through a sequence

of single electron tunneling events. Because the coupling strength Γ is a small parameter in the

problem, the transport characteristics can be calculated with the use of perturbative methods.

The results presented in articles (I, II, III, IV, V, VI) are all concerning weak coupling regime

and designated quantities are found by means of the real-time diagrammatic technique, which

is described in Sec. 1.2.3.

The perturbation approach cannot be applied to the strong coupling regime [39], where Γ is

significantly larger compared to the weak coupling case. Strong Γ is responsible for hybridiza-

tion of the relevant states of two subsystems, i.e. electrodes and coupled quantum dots, which

results in a significant broadening of the corresponding energy levels and their finite lifetime.

The electron transport is no longer described by a sequence of tunneling events, but by the

scattering theory and Landauer approach [40, 41]. Moreover, when the system is studied in the

temperatures below the so-called Kondo temperature TK , T < TK , the Kondo effect emerges

with a strong zero-bias peak in the differential conductance. A more detailed description of the

Kondo effect is presented in Sec. 1.3.6. Here, it is important to note that the Kondo temperature
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is exponentially dependent on the coupling strength Γ, therefore, by increasing the coupling

strength Γ one can enhance TK . For the single-level Anderson model, TK can be found from

the poor man’s scaling approach [42, 43], and is given by

TK =

√
UΓ

2
eπε(ε+U)/ΓU , (1.12)

where ε is the level’s energy and U denotes the Coulomb on-site interaction for the single-level

system. The paper (VII) presents the results for the double quantum dot based Cooper pair

splitter in the strong coupling regime. The results were obtained by using the numerical renor-

malization group method, which is described in Sec. 1.2.4. This non-perturbative approach

allows one to study transport in the strong coupling regime and precisely capture the interesting

Kondo physics.

1.2.3 Real-time diagrammatic technique

In order to study the non-equilibrium transport through quantum dot systems, the real-time

diagrammatic technique (RTDT) [44–46] is employed. This approach is based on the perturba-

tion expansion of an operator of interest with respect to the parameter Γ, which is assumed to be

small in the weak coupling regime. In the presented calculations, the operators of interest are

the current operator along with higher order correlators, as well as the reduced density matrix

of the quantum dot subsystem.

The perturbation expansion of the expectation value of an operator O(t) can be written as

〈O(t)〉 = Tr

{
ρ0

∞∑

n=0

(−i)n
∫

C
dτ1

∫

C
dτ2...

∫

C
dτnTC[HT(τ1)IHT(τ2)I...HT(τn)IO(t)I]

}
.

(1.13)

The subscript I marks the operators represented in the interaction picture of quantum mechanics.

TC is the time-ordering operator on the Keldysh contour. The operator TC orders the time-

dependent operators on the Keldysh contour accordingly, in the way described by the following

conditions

TC [HT(τ1)IHT(τ2)I] =




HT(τ1)IHT(τ2)I for τ1 > τ2,

HT(τ2)IHT(τ1)I for τ1 < τ2.
(1.14)

In the RTDT approach, the tunneling is switched on adiabatically at the initial time t0. More-

over, the initial density matrix is assumed to factorize into a simple product of density matrix
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of quantum dots and density matrices of the leads, ρ0 = ρQD0 ρLead10 ρLead20 (...). In the case of

normal metallic and ferromagnetic leads, the Fermi function describes the electron distribu-

tion. Furthermore, the Wick’s theorem is applied to integrate out the leads’ degrees of freedom.

However, for quadratic terms of fermionic operators in quantum dots Hamiltonian HQD, the

Wick’s theorem does not hold and an exact treatment by means of reduced density matrix is

appropriate.

The time evolution of the system can be illustrated as a sequence of irreducible blocks

on the Keldysh contour, see Fig. 1.1. The upper and lower branches stand for the forward

and backward propagators. The tunneling lines are associated with contractions of the lead

0

0

d

d 0

0

d

R R R R
L

L

Figure 1.1: Time evolution of the reduced density matrix for a single level quantum dot with
four local states: χ = 0, ↑, ↓, d. The dot states are indicated on the forward (upper branch)
and backward (lower branch) propagators. The light-blue/(light-red) squares highlight the irre-
ducible diagrams of the first/(second) order. Each tunneling line represents electron leaving or
entering the dot and is labeled by (L)/(R) representing left/right junction.

operators and the direction of the arrow indicates if an electron of a given spin enters or leaves

the quantum dot. The vertices represent a product of lead and quantum dot operators. Fig. 1.1

also presents irreducible diagrams indicated by the color squares. An irreducible diagram is a

diagram in which every possible vertical cut at a fixed time crosses at least one tunneling line.

The full propagation can be written as a sequence of irreducible blocks. With every irreducible

block, there is an associated self-energy Σχ′χ(t′, t) corresponding to the transition rate from the

state χ at time t to state χ′ at time t′. Areas without tunneling lines represent free propagation:

Π(0) = 1. The bold characters express the matrix notation in the local states of the quantum dot

subsystem. The full propagator is then given by the Dyson equation [44, 45]

Π(t′, t) = 1 +

∫ t′

t

dt2

∫ t2

t

Σ(t2, t1)Π(t1, t). (1.15)
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In the long-time limit the propagator is stationary, which can be expressed as

lim
t0→−∞

Π(t′ − t0) = pst ⊗ eT , (1.16)

where pst is the probability vector of local states χ and eT = (1, ..., 1). In order to determine the

stationary probabilities pst, the Laplace transform of the transition rates needs to be performed

and then the following equation solved

Wpst = 0, (1.17)

along with the normalization condition Tr {pst} = 1. The matrix W consists of all transition

rates Wχ′χ being exactly related to self-energies, Σχχ′ = iWχ′χ. The self-energy Σχχ′ is given

by a sum of all topologically different diagrams having the state χ at the left-side ends and the

state χ′ at the right-side of the diagram. The contribution of the diagram can be calculated with

help of the diagrammatic rules. Below, general rules in energy space are listed:

1. Find all topologically different diagrams with 2n vertices connected with n tunneling lines,

where n responds to the expansion order. Assign the energies Eχ to respective states on the

forward and backward propagators and frequency ωl, junction and spin to each tunneling

line.

2. Add direction to each tunneling line expressing if the electron enters or leaves the quantum

dot. Assign γ−σri (ω) =
Γσri
2π

[1−f(ω−µr)] to the lines going according to the Keldysh contour

and γ+σ
ri (ω) =

Γσri
2π
f(ω−µr) to the lines going backward to the Keldysh contour, where f(ω)

is the Fermi-Dirac distribution function and µr denotes the chemical potential of lead r.

3. Draw a vertical line representing resolvent 1/(∆E + i0+) for each time interval between

two adjacent vertices. Here, ∆E is an energy difference of left-going and right-going lines

crossing the resolvent.

4. Add a prefactor (−1)b+c, where b is a number of vertices on the backward propagator and c

expresses the number of crossings of tunneling lines.

5. Assign appropriate matrix element to each vertex: 〈χ|d†σ|χ′〉 or 〈χ|dσ|χ′〉.

6. Integrate over the energies ωl of the tunneling lines and sum over all junctions and spins.

16



The examples of first-order and second-order diagrams contributing to appropriate self-

energies are presented in the Appendices of papers (I) and (IV).

The elements of matrix W and vector pst can be determined diagrammatically order by

order in Γ. A given order of the perturbation expansion corresponds to the respective number

of tunneling lines in the diagrams. Accordingly, to calculate the first-order and second-order

contributions, all topologically different, irreducible diagrams with one and two tunneling lines

need to be evaluated. The expansion of the matrix W begins in the first order, while that of

vector pst in the zeroth order. The corresponding zeroth and first-order probabilities can be

found by solving the equations [44, 45]:

W(1)pst(0) = 0 (1.18)

and

W(2)pst(0) + W(1)pst(1) = 0, (1.19)

with the normalization condition Tr
{
pst(n)

}
= δ0,n. In order to calculate the current, the fol-

lowing equation needs to be solved [44, 45]

I =
e

2~
Tr
{
WIpst} , (1.20)

where WI is the self-energy matrix accounting for the number of electrons transferred through

the quantum dot system. The perturbation expansion is also performed for the current, such that

the first-order current can be found from

I(1) =
e

2~
Tr
{
WI(1)pst(0)

}
, (1.21)

while the second-order current is given by

I(2) =
e

2~
Tr
{
WI(2)pst(0) + WI(1)pst(1)

}
. (1.22)

The total current is simply given by the sum of the first and second-order contributions

I = I(1) + I(2). (1.23)

The description of how to calculate the shot-noise and the current cross-correlations within the
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real-time diagrammatic technique framework is presented in Sec. 1.3.4.

1.2.4 Numerical renormalization group method

The equilibrium properties of correlated quantum impurity models can be studied by means

of numerical renormalization group (NRG) with a very high accuracy. The NRG approach is a

non-perturbative method developed originally by Kenneth G. Wilson [47] to solve the Kondo

Hamiltonian and overcome the difficulties with applying the perturbative schemes, which break

down in the strong coupling regime. Nowadays, Wilson’s NRG is considered as one of the most

accurate and versatile quantum impurity solvers [48].

The starting idea of the discussed approach is the division of the conduction band into

shorter and shorter energy intervals, with increasing resolution around the Fermi level. The dis-

cretization scheme is controlled by the parameter Λ > 1 (see Fig. 1.2), where Λ→ 1 would re-

cover the continuous limit. The consecutive intervals can be written as: I±n = ±D[Λ−(n+1),Λ−n],

with D expressing the half-width of the conduction band and n ∈ N denoting the interval num-

ber. Eventually, the continuum of electron states is substituted by the discrete Fourier basis with

new fermionic operator for each interval.

ω

ρ(ω)

0 D-D DΛ-2... ... DΛ-1

Figure 1.2: Logarithmic discretization of the conduction band controlled by the discretization
parameter Λ.

After the logarithmic discretization of the conduction band, the starting Hamiltonian (1.1)

is mapped onto the so-called Wilson chain, a semi-infinite tight-binding chain approximating

the leads, coupled to the impurity

HNRG = HQD +HTun +
∞∑

n=0

∑

σ

ξnf
†
nσfnσ +

∞∑

n=0

∑

σ

tn(f †nσfn+1σ +H.c.), (1.24)
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where the impurity (quantum dot) interacts only with the zeroth site of the Wilson chain through

HTun =
∑

σ vl(f
†
0σdσ+H.c.). The operator f †nσ(fnσ) is creating (annihilating) a spin-σ electron

on site n of the Wilson chain. The on-site energies of the Wilson chain ξn and the hoppings

tn are determined by tridiagonalizing the initial Hamiltonian with the corresponding density of

states ρ(ω). For a particle-hole symmetric flat band, assumed in paper (VII), the on-site energies

are given by ξn = 0 and hoppings are analytically approximated by tn ∼ Λ−n/2.

For the Hamiltonian (1.24) a recursive relation can be written as

Hn+1 = Hn + En+1 + Tn,n+1, (1.25)

with Hn given by

Hn = HQD +HTun +
n∑

m=0

∑

σ

ξmf
†
mσfmσ +

n−1∑

m=0

∑

σ

tm(f †mσfm+1σ +H.c.) (1.26)

and the terms describing on-site energies and hopping related to iteration n given by

En+1 = ξn+1

∑
σ(f †n+1σfn+1σ) and Tn,n+1 = tn

∑
σ(f †nσfn+1σ +H.c.).

Whilst increasing n, the Hamiltonian Hn more and more precisely approximates Hamilto-

nianHNRG (1.24). This observation advocates the iterative approach. The procedure starts with

the numerical diagonalization of H0, which describes the impurity coupled to the first site of

the Wilson chain. In the following steps, consecutive sites are added one by one and new states

are created with the help of fermionic operators f †n+1σ of the Wilson chain. This leads to a rapid

growth of the Hilbert space. In order to handle this issue, a maximum number of states kept at

each iteration Nkept is introduced to control the truncation scheme. Starting from an iteration

with a size of the Hilbert space exceeding Nkept, after the diagonalization procedure, the states

are sorted with respect to their eigenenergies and then Nkept lowest energy states are kept, while

higher energy states are discarded. The kept states are used to build a new Hilbert space in

subsequent iteration with another added site from the Wilson chain.

The transformation of the NRG: R : HN → HN+1, is often expected to have a fixed

point, which means that there exists an effective Hamiltonian Hfixed, for which the following

is true: R(Hfixed) = Hfixed. Therefore, after a certain number of NRG iterations, the obtained

spectrum of the Hamiltonian does not change under further transformations and the procedure

can be stopped, while the low-energy spectrum is well designated, allowing to capture the low-

temperature behavior of the system, including the Kondo physics.
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In 2000, Walter Hofstetter proposed an extension of the traditional NRG method by calcu-

lating the expectation value of an operator using the density matrix (DM), which was built from

states at the last NRG iteration [49]. Such DM-NRG allowed for the analysis of more complex

systems and magnetic field effects where the splitting of the ground state is important. The next

milestone in the development of NRG was the introduction of an approximate, but complete

eigenbasis by Anders and Schiller in 2005 [50], which is constructed from states discarded at

each iteration. An important step in building the complete Anders-Schiller basis is to supple-

ment all the states
{
|s〉Xn

}
from the iteration n with a set of degenerate environmental states

spanning the rest of the chain {|e〉n = |σn+1〉 ⊗ ...⊗ |σN〉}, that
{
|se〉Xn = |s〉Xn ⊗ |e〉n

}
[51].

The superscript X = K,D indicates kept (K) or discarded (D) state of a given iteration. Then,

the complete and orthogonal Anders-Schiller basis that spans the full Fock space of the Hamil-

tonian HNRG is given by
∑

n

∑

se

|se〉Dn Dn 〈se| = 1. (1.27)

The energies of the corresponding states are given by NRG approximation

HNRG|se〉Xn ≈ EX
ns|se〉Xn . (1.28)

The construction of complete many-body eigenbasis of the full NRG Hamiltonian pave the way

to the concept of full density matrix introduced by Weichselbaum and von Delft in 2007 [51]

ρNRG =
∑

n

∑

se

|se〉Dn
e−βE

D
ns

Z
D
n 〈se|, (1.29)

with Z =
∑

ns e
−βEDns and β = 1/T . The full density-matrix NRG enables very accurate

(sum-rule conserving) calculation of various operators of interest and correlation functions at

arbitrary temperatures and magnetic fields.

In NRG calculations, for the single-impurity Anderson model, it is convenient to perform

an orthogonal transformation from the left-right into the even-odd basis of the leads’ operators.

As a result, only the even linear combination of the lead operators couples to the quantum dot,

while odd combination is decoupled. However, it was not possible to use this transformation in

the calculations performed in the paper (VII) as the considered system is built of two quantum

dots, each one coupled to a separate metallic lead. Therefore, the calculations were done in the

two-channel fashion, i.e. the two metallic leads were modeled by two distinct Wilson’s chains
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attached to the corresponding quantum dots.

The calculations performed in (VII) were performed with the use of the Budapest Flexi-

ble DM-NRG code [52], which fully utilizes the concept of full density matrix. The code is

available under the GNU license.
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1.3 Basic concepts and effects in transport through quantum

dots

The following section presents a brief introduction to basic concepts and phenomena emerg-

ing in charge and spin transport through the quantum dot systems. In general, quantum trans-

port strongly depends on the dimensionality of considered systems, relevant energy scales and

geometry, rather than on exact material properties, atomic structure or even the size. It is espe-

cially the case for the quantum dots, which are zero-dimensional systems with electrons con-

fined in all three spatial dimensions. A quantum dot built of a few atoms can have a very

similar transport properties compared to a nanometer-sized one. The effective models and em-

ployed methods used in this thesis to describe the coupled quantum dots, can also model simple

molecules [11, 53–56] or even nanostructures like carbon nanotubes [28, 57–59]. Therefore,

the presented results and analysis are also of great importance for molecular electronics. Ad-

ditionally, the presented papers include discussions of the conditions and range of parameters,

for which the relevant effects are present, which is of great value for further experiments and

possible applications.

1.3.1 Sequential tunneling and cotunneling

One of the most important concepts regarding the quantum transport research in quantum

dot systems is the tunneling of electrons. Quantum dots are of ultra-small size and their exam-

ination is typically done at low temperatures, which in consequence leads to the crucial role of

discrete orbital levels. When the system is attached to external leads, the most common pro-

cesses that can take place is that an electron can either enter or leave the quantum dot through

the dot-lead tunnel barrier. When a weak coupling between quantum dot and lead is consid-

ered, most of processes transfer only one electron. Single electron tunneling refers to first-order

processes in perturbation expansion, while the transport regime described by aforementioned

processes is known as the sequential tunneling regime [60]. Therefore, in order to quantitatively

describe sequential transport in the system by means of the real-time diagrammatic method, all

first-order diagrams (with single tunneling line) have to be considered.

In articles (I) and (IV), the results also account for the second-order tunneling events known

as cotunneling [61]. Such tunneling act takes place through an intermediate virtual state of the

system, which is prohibited due to the energy conservation, except for a short time accessible
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(a) (b)

eV

eV

Figure 1.3: Two types of tunneling processes: (a) sequential tunneling and (b) cotunneling.

by virtue of the Heisenberg uncertainty. Cotunneling transport processes dominate the current

in the Coulomb blockade regime or in dark state regime, where sequential tunneling is expo-

nentially suppressed. In the real-time diagrammatic approach, when calculating the cotunneling

contribution, one needs to evaluate all second-order diagrams (with two tunneling lines). Figure

1.3 illustrates the discussed processes.

1.3.2 Coulomb blockade

Due to the quantization of charge and electrostatic interaction between the electrons,

nanoscopic systems, such as quantum dots, exhibit the single-electron charging effects [62].

The charging energy EC is a classical idea responding to the capacitance in electronic circuits.

The number of electrons on the isolated quantum dot is an integer number N and the total

charge can be expressed as Q = Ne, where e is the elementary charge of the electron. The

charge Q produces electric field and has associated electrostatic energy. The energy can be

expressed with capacitance of a charged capacitor C as E = Q2

2C
= ECN

2. Therefore, adding

another electron to the quantum dot requires an additional energy, which is often called the

single-electron charging energy, EC = e2

2C
. In studied systems, the transport energy is provided

by the applied bias voltage between the leads. Once more and more states enter the transport

voltage window, the step-like current-voltage dependence is exposed known as the Coulomb

staircase. However, if the energy is not provided or it is smaller than the charging energy, the

transport is exponentially suppressed and this situation is known as the Coulomb blockade [63].
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It is convenient to illustrate how the Coulomb blockade reveals itself in transport charac-

teristics by considering a simple case of a single-level interacting quantum dot coupled to two

metallic leads and assuming temperature much lower than the charging energy, T << EC . The

coupling strength is assumed as follows: ΓL = ΓR = Γ/2 and a symmetric bias between the left

(L) and right (R) leads is applied: µL = −µR = eV/2. The following results were calculated

with the aid of the real-time diagrammatic technique in sequential tunneling approximation.

Figure 1.4 shows the sequential current I and differential conductance G = dI/dV in density

plots as a function of applied bias voltage and the position of the quantum dot’s energy level ε.

The current dependence presented in Fig. 1.4(a) displays three extensive black regions where
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Figure 1.4: (a) The absolute value of the sequential current and (b) the differential conductance
calculated as a function of bias voltage and the position of the dot’s energy level ε. The param-
eters are Γ = 0.01, T = 0.015 in units of U = 2EC ≡ 1. The current is plotted in units of
I0 = eΓ/~. The numbers in brackets in panel (b) indicate the electron number in the dot, with
Coulomb blockade for the region with (1) electron.

the net current flowing through the system is equal to zero, i.e. I = 0. The central black re-

gion for −1 6 ε/U 6 0, with one electron occupying the dot [see Fig1.4(b)], is corresponding
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to the Coulomb blockade regime where the sequential tunneling is exponentially suppressed.

The low bias voltage does not provide the electrons with energy high enough to overcome the

charging energy of the singly occupied quantum dot. However, with further increase of the

voltage, the consecutive quantum dot’s states enter the transport window and the current starts

to flow through the system. Another important observation is that the presented current-voltage

dependence reveals the Coulomb staircases. It can be seen, that starting from V = 0 where

obviously I = 0 and then observing the current value along the higher bias voltage with a fixed

value of ε, the current increases in two substantial steps while reaching the maximal value of

|I|/I0 = 0.5, where I0 = eΓ/~. Such step-like dependence is due to the Coulomb correlations

U = 2EC that energetically separate the singly and doubly occupied states of the quantum dot.

In consequence, these two states enter the transport window at two different values of the bias

voltage. It is important to note, that there is one exceptional point on the x-axis representing the

position of the quantum dot’s energy level, with cross-section exposing qualitatively different

current-voltage dependence. It is for energy level ε/U = −0.5, which is called the particle-hole

symmetric point. In such a case, the singly and doubly occupied states enter the symmetric

transport window at the same time, as the excitation energies to empty and doubly occupied

states are equal. As a result, there is only one step in the current-voltage dependence and the

differential conductance assumes the highest value.

The dependence of the differential conductance remarkably reveals the effect of Coulomb

blockade in the form of Coulomb diamonds pattern, see Fig. 1.4(b). In the case of an unbiased

system V = 0, the diagram shows the stability regions with integer electron occupation number

in the quantum dot (labeled with the numbers in brackets) and indicates values of ε where res-

onant peaks in linear conductance emerge. Furthermore, the peaks in differential conductance

at finite bias voltage are associated with quantum dot states entering the transport window and,

thus, with the step-like dependence of the current. In consequence, the differential conductance

is a transport quantity that provides a lot of information about the electronic structure of the

examined system and is a great indicator of various regimes and transport phenomena.

Finally, it is important to note that, experimentally, all presented regimes are attainable by

applying appropriate bias voltage between the leads, while the position of the quantum dot

energy level ε can be tuned by the electrostatic potential of the corresponding electrostatic

gate [29, 64, 65].
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1.3.3 Tunnel Magnetoresistance

Tunnel magnetoresistance (TMR) is a transport phenomenon taking place in tunnel junc-

tions with ferromagnetic leads [66–69]. Due to the spin-dependent lead-dot coupling strengths,

the spin degree of freedom is exploited giving rise to the TMR effect. In the papers presented in

this thesis, the two co-linear configurations of leads’ magnetic moments are studied, the parallel

and antiparallel one, see Fig. 1.5. Such consideration allows one to designate quantitatively the

TMR by finding the currents in both magnetic configurations, i.e. the current flowing in the

parallel (IP ) and in the antiparallel (IAP ) magnetic configuration.

The theoretical model of TMR was proposed by M. Julliére [70], where the tunneling of

electrons in a single ferromagnetic junction between the respective conduction subbands was

analyzed. In the parallel magnetic configuration the majority (minority) electrons of the left lead

tunnel to the majority (minority) states in the right lead, while in the antiparallel configuration,

the majority (minority) electrons of the left lead tunnel to the minority (majority) states in the

right lead, see Fig. 1.5. Julliére showed that for a single ferromagnetic tunnel junction TMR

(a) (b)parallel antiparallel

ρL
+ ρL

- ρR
+ ρR

- ρL
+ ρL

- ρR
+ρR

-

Figure 1.5: The scheme of single ferromagnetic junction presenting the system in the parallel (a)
and antiparallel (b) magnetic configuration together with the corresponding densities of states
for majority and minority electron bands in the left (L) and right (R) leads.

strongly depends on spin polarization of the leads, pr = ρ+r −ρ−r
ρ+r +ρ−r

, where r = R,L, and the
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dependence has the following form

TMRJull = 2pLpR/(1− pLpR). (1.30)

The situation is more complex when a double ferromagnetic tunnel junction is considered, with

quantum dots embedded between the ferromagnetic leads [67–69, 71]. In general, in such sys-

tems the TMR deviates from TMRJull due to the various spin-dependent transport processes,

spin relaxation or partial polarization of the quantum dot. Hence, the calculation of the TMR as

a function of bias and gate voltages can give valuable insight into relevant transport processes

or can indicate interesting effects, such as spin accumulation, in the quantum dot.

Quantitatively, the TMR is given by [66–69]

TMR =
IP − IAP
IAP

, (1.31)

where IP (IAP ) is the current flowing through the system in the parallel (antiparallel) magnetic

configuration.

1.3.4 Current fluctuations

The noise is the signal is the inspiring title of the paper written by Rolf Landauer for Nature

- News & Views in 1998 [72]. The conveyed idea is that the noise in electronic systems is not

exclusively an unwanted part of the measured signal, but it can be used to get an additional

insight into electronic transport. The most common type of noise in mesoscopic systems is the

shot-noise, i.e. the noise associated with charge discreteness and current flow. It was introduced

by Walter Schottky in 1918 after studying the current fluctuations in a vacuum tube [73]. The

shot-noise originates from the quantization of the charge carriers and, especially in mesoscopic

systems, it can become a significant part of a measured signal.

When the electrons pass the conductor with a Poissonian statistics, i.e. each tunneling act is

an independent and random event, the shot-noise is then given by [73]

SP (ω) = 2|eI|, (1.32)

where e is electron charge and I is the average current. The Poissonian noise is independent of

the frequency ω. In the research presented in this thesis, the current and shot-noise are always
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calculated for the zero-frequency (ω = 0) as the applied bias voltage is constant in time.

The corresponding Fano factor F is introduced to describe the deviation of the measured

shot-noise from the Poissonian value [74]:

F =
S

2|eI| . (1.33)

When the designated Fano factor is lower than unity (F < 1), the shot-noise is called sub-

Poissonian and is very often associated with the antibunching of tunneling events correlated by

the charging effects. When the shot-noise is super-Poissonian (F > 1), it is related to bunching,

which can happen e.g. in the Coulomb blockade regime [22, 75, 76].

An interesting quantity to consider in multi-terminal systems is the zero-frequency cross-

correlation function between the currents flowing through distinct junctions. In articles (V) and

(VI), the analysis of cross-correlations between two currents flowing through the two separate

arms of the device was performed. The current cross-correlations can give additional insight

into transport processes and, in the case of Andreev transport and Cooper pair splitter devices,

it can help to optimize the system’s parameters for the efficient splitting properties. Finally, the

current cross-correlations in multi-terminal systems were successfully measured in many exper-

iments [77–79], which is always an important factor advocating for a comprehensive theoretical

study of the quantity in question.

From the Wiener-Khintchine theorem, the noise can be written as the Fourier transform of

the auto-correlation function, and for the zero-frequency it is given by

S =

∫ ∞

−∞
dt〈δI(t)δI(0) + δI(0)δI(t)〉, (1.34)

with δI(t) = I(t) − 〈I〉. In the real-time diagrammatic approach, the total shot-noise is found

from [75]

S =
e2

~
eT [WII + WI(PWI + pst ⊗ eT∂WI)]pst. (1.35)

The matrix WII describes the contributions coming from two current operators in a single irre-

ducible self-energy block. P is the so-called "decaying" propagator describing stationary part

of the propagation. The propagator can be found from W̃P = psteT − 1, with W̃ being equal

to the matrix W with arbitrary row replaced by (Γ, ...,Γ). The matrix ∂WI is the derivative of

the Laplace-transformed matrix WI . Finally, eT is a vector eT = (1, ..., 1). The zero-frequency
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current cross-correlations are defined as

SLR =

∫ ∞

−∞
dt〈δIL(t)δIR(0) + δIR(0)δIL(t)〉, (1.36)

Then, the real-time diagrammatic formula for cross-correlations in the sequential tunneling

approximation is given by

SLR =
e2

~
eT [WILPWIR + WIRPWIL ]pst, (1.37)

where the self-energy matrix WIL(R) takes into account the electrons transferred through the left

(right) junction.

More details about the mesoscopic shot-noise and the real-time diagrammatic approach can

be found in [22, 75, 80].

1.3.5 Dark states

The dark states in mesoscopic systems [13–16, 28, 81, 82] are the electronic analogs of the

well-known phenomenon from the atomic physics [83–85]. The effect arises due to a destruc-

tive interference of the electronic wavefunction effectively decoupling the system from one of

the external reservoirs. In consequence, the transport through the system is suppressed, while

the electrons are coherently trapped in the central part of the device. The effect reveals itself

in transport characteristics through a strong current blockade, associated negative differential

conductance and super-Poissonian shot-noise [14–16]. Apart from many important effects on

the electronic transport, the dark states are also considered to have potential applications in

quantum information technology [90, 91].

In particular, triple quantum dot systems [86, 87] are perfect playground to study the ef-

fects of dark states and their influence on the transport properties. Quantum dots in triangular

arrangement resemble a simple planar molecule and enable the investigation of quantum inter-

ference effects, similarly like in the Aharonov-Bohm rings [88, 89].

To illustrate the idea of a dark state in a triangular system, it is convenient to consider a triple

quantum dot with hopping t, in the singly occupied regime (Ui → ∞, Uij → ∞). The local

basis is defined as |1〉, |2〉, |3〉, where the integer i in the ket labels the state with an electron

occupying the i-dot, see Fig. 1.6. In order to find a dark state in this system, a small asymmetry

between the dots needs to be introduced, and in this case, it is achieved by detuning one of the
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dot’s (dot 2) energy level by a parameter ξ.

The Hamiltonian can be written as

H =




ε t t

t ε− ξ t

t t ε


 . (1.38)

The exact diagonalization of the above system allows one to find the eigenspectrum. One of the

eigenstates has the form

|ψDS〉 =
1√
2

(1|1〉+ 0|2〉 − 1|3〉), (1.39)

with eigenenergyEDS = ε−t. The state |ψDS〉 has the electron density distributed only between

dot 1 and dot 3, while the dot 2 has a vanishing amplitude. As a result, the presence of |ψDS〉

1 2

3

0

Figure 1.6: The scheme of a triangular quantum dot occupied by a dark state |ψDS〉 decoupling
the system from the right lead.

state effectively decouples the triple quantum dot from the lead associated with the quantum dot

2 and in consequence blocks the current flowing through the device.

1.3.6 The Kondo effect

The first observations of a resistance minimum in some metals [92] gave the beginning to

significant developments in the physics of magnetic impurities. An important progress was

achieved by P. W. Anderson, who proposed the Anderson model [31], where the short range

interaction U was introduced to explain the localized magnetic moments. Furthermore, the up-

permost advance in this field was done by Jun Kondo in 1964 [23], who applied third-order

perturbation theory in the coupling J to explain the problem of resistivity minimum. The mag-

netic impurity’s exchange interaction J leads to the scattering of the conduction electrons near

the Fermi level and, in consequence, provides an additional logarithmic term to the resistivity.
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Unfortunately, the perturbation approach is not valid at low temperatures, as the logarithmic

term diverges when T becomes of the order of TK .

The milestone contribution was provided by K. G. Wilson (who received the Nobel prize

in 1982 for his theory of critical phenomena in connection with phase transitions). Wilson

took the idea of renormalization group from the quantum field theory, developed his numerical

renormalization group [47] - a non-perturbative approach, and subsequently applied it to phase

transitions, and later to the Kondo problem. This allowed to numerically solve the problem of a

magnetic impurity interacting with a continuum of fermionic states.

In 1988, it was suggested that the Kondo effect should occur in small semiconductor

transistor-type devices [93, 94]. Quantum dots, also known as artificial atoms, can hold a small

number of electrons in a tunable fashion and seemed to be a perfect candidate as a device for

testing the Kondo problem. The first successful experiments confirming the presence of the

Kondo effect in quantum dots were performed at MIT by D. Goldhaber-Gordon et al. [25] and

at Delft by L. P. Koewenhoven et al. [95], reported in 1998 - almost 10 years after aforemen-

tioned theoretical predictions. The papers were quickly followed by another two important

experiments [96, 97], see also Fig. 1.7.

Figure 1.7: Illustration of the experiment performed by L. Kouwenhoven et al. [97] (A) Atomic
force microscope image of the device - a quantum dot defined in 2DEG in AlGaAs/GaAs het-
erostructure. (B) Differential conductance plotted vs bias voltage for temperature from 900mK
(thick red) down to 15mK (thick black).

A quantum dot attached to external leads is the system very similar to the magnetic impurity

hosted in a bulk metal, with the main distinction that the Kondo effect in quantum dots increases

the conductance. The electrons traveling in quantum dot setup has no other path around, than

to travel through the central part between the two separate leads. The Kondo resonance mixes
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the states between two distinct electrodes and thus the conductive properties are significantly

enhanced, in opposite to the bulk case were resistivity is enhanced.

In the Kondo regime, similarly like in the case of resistance in bulk sample, the conductance

in quantum dots depends on the Kondo temperature TK , which is a temperature at which the

conductance approximately reaches the half of its maximal value. At the lowest temperatures,

the conductance dependence achieves the quantum limit of 2e2

h
. In this limit, the electron trans-

mission through the system is perfect in both spin channels. Finally, it is important to stress

the advantage of tunability in quantum dots once again. All the parameters, on which Kondo

temperature depends, i.e. the level energy ε, Coulomb correlations U and coupling strength Γ

can be conveniently adjusted by the gate voltages [98–100].

Nowadays, the Kondo effect is incessantly a vibrant topic in the field of condensed matter

physics. It includes novel, widely explored problems, such as heavy fermions, Fermi liquid

theory for quantum impurities, Kondo insulators and among many others, the Kondo effect in

quantum dots and molecules.
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1.4 Summary

The presented PhD thesis, entitled Correlation effects in transport through quantum dot

systems, has a form of a series containing seven papers presented in Chapter 2. The articles

constitute the main part of the scientific achievement corresponding to the research performed

by the author during his PhD studies. The preceding part, Chapter 1, which presents the moti-

vation and aims, methodology and basic concepts in charge and spin transport through quantum

dot systems.

Considering the examined systems, the papers are ordered in the following way. In articles

(I, II, III, IV) the focus is on a triangular quantum dot setup. Subsequently, papers (V, VI,

VII) deal with Cooper pair splitters based on quantum dots. The results presented in (I, II, III,

IV, V, VI) were obtained by employing the real-time diagrammatic method, while the results

presented in (VII) were calculated with the aid of the numerical renormalization group method.

The common subject across all the papers are various correlations in the systems, their interplay

and effects on the charge and spin transport. A short summary of the performed research is given

below.

The presented series begins with the paper (I), entitled Spin effects in transport through

triangular quantum dot molecule in different geometrical configurations. In this publication,

comprehensive analysis of the current, differential conductance and Fano factor was performed

in the parallel and the antiparallel magnetic configurations, up to the second-order of perturba-

tion theory accounting both for sequential and cotunneling processes. Moreover, the resulting

TMR and various spin effects were studied. Two geometrical configurations were analyzed in

particular. In the mirror arrangement, the system was coupled to two external leads in symmet-

ric manner, which in consequence resulted in symmetry of transport characteristics under the

change of the bias voltage sign. The other one, i.e. the fork configuration, enabled the split-

ting of the current from the source electrode into two distinct drain electrodes. An enhanced

TMR and super-Poissonian shot noise were predicted in the mirror geometry, while negative

differential conductance and inverse TMR were found in the fork arrangement. The underlying

mechanisms leading to the described effects were thoroughly discussed and explained.

The next article (II), entitled Current Suppression in Transport Through Triple Quantum

Dots Coupled to Ferromagnetic Leads, presents an extension of the previous paper. By intro-

ducing the detuning parameter δ in one of the quantum dots, the symmetry of the quantum dots’

energy levels was broken. In consequence, two regimes with strong current suppressions were
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present in the system, along with trapping of either one or two electrons in the quantum dots.

The one-electron blockade unfolded itself as a dark state, while the two-electron blockade was

due to the Coulomb correlations. The differences between the blockades were revealed in the

shot-noise and the TMR.

The paper (III), entitled Influence of Magnetic Field on Dark States in Transport through

Triple Quantum Dots, is focused on the manipulation of dark states by means of external mag-

netic field. The system’s parameters were tuned to allow for the formation of one- and two-

electron dark states. Furthermore, the influence of the external magnetic field was considered.

It was shown that magnetic field can shift the bias voltage regime dominated by the one-electron

dark state. On the other hand, the bias range for the two-electron dark state can be decreased,

eventually leading to complete lifting of the blockade for the strong values of applied magnetic

field. The analysis of the states energetic structure and their magnetic properties allowed for the

convenient explanation of presented effects.

In the last article (IV) concerning the triple quantum dot systems, Dark states in spin-

polarized transport through triple quantum dot molecules, an extensive analysis of dark states

in quantum dots and their magneto-transport properties was performed. In particular, dark

states formed of one, two, four and five electrons were examined. Depending on the number

of particles forming a dark state, the TMR revealed an interesting behavior: for odd number of

electrons the TMR was strongly suppressed, while for an even electron number the TMR ac-

quired negative values. The considerations included both sequential and cotunneling processes

and the influence of the latter was in particular discussed by analyzing the behavior of the TMR

and the Fano factor. It was shown that the cotunneling processes were dominating transport in

dark states regimes, at the same time substantially modifying the TMR effect. Finally, the dark

states with high number of electrons were conveniently analyzed as the states formed by the

inference of holes, and it was shown that resulting transport characteristics could be understood

within the hole current framework. The comparison of appropriate electron and hole dark states

indicated, that the conclusions were correct and a very interesting example of the electron-hole

symmetry was revealed.

In the three consecutive papers (V, VI, VII) the theoretical study of transport concerns hy-

brid quantum dot systems coupled to superconducting electrode. Article (V), entitled Current

cross-correlations in double quantum dot based Cooper pair splitters with ferromagnetic leads,

contains a detailed study of current cross-correlation function as well as differential conductance
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for the Andreev transport. The noise analysis in mesoscopic systems can give an additional in-

sight into the transport processes and this is exactly the case in the considered problem. The

revealed enhanced positive cross-correlations are associated with high Cooper pair splitting ef-

ficiency of the device. The regimes of negative sign of cross-correlations indicate tunneling pro-

cesses in opposite directions through distinct junctions. The mechanisms responsible for both

effects were thoroughly explained with the help of relevant eigenstates and transition rates anal-

ysis. Moreover, it is worth to highlight the influence of the leads’ spin polarization and magnetic

alignment of the ferromagnetic leads on the transport properties. The results were enriched by

the derivation of approximate analytical formulas to evaluate the cross-correlations in the most

interesting transport regimes. Finally, the work consists of the analysis of the Coulomb cor-

relations influence on the transport properties. The conducted study for wide parameter space

allows one to identify the optimal regimes for the highly efficient splitting, which is of great

importance for the experiments and future applications.

In a similar spirit, the study of single quantum dot system in paper (VI), Cross-correlations

in a quantum dot Cooper pair splitter with ferromagnetic leads, was prepared. The differential

conductance and current cross-correlations analysis was extended by considering non-magnetic

electrodes, where the interesting uncorrelated transport is predicted near the particle-hole sym-

metry point. Moreover, the influence of external magnetic field was analyzed. The Andreev

states were split exposing additional lines in differential conductance and doubling the number

of corresponding excitations. The number of regimes, where negative cross-correlations were

present, remained independent of magnetic field, however, negative values were diminished.

On the other hand, the external magnetic field resulted in enhanced positive cross-correlations,

when the bias voltage is in resonance with excitation energies of the split Andreev states.

The main aim of the last paper (VII), Kondo physics in double quantum dot based Cooper

pair splitters, was to study the interplay of superconducting correlations and those leading to

the Kondo effect. For the SU(2) Kondo effect, the finite superconducting pairing potential

suppresses the Kondo resonance, which can reemerge for larger values of the coupling to super-

conductor. On the other hand, in the SU(4) Kondo regime, a crossover from the SU(4) to the

SU(2) Kondo state was observed. The behavior was explained with the support of the spectral

functions and the ground state analysis, which was also conveniently illustrated on the relevant

energy diagrams. The Andreev transmission and Cooper pair splitting efficiency were studied

as well, which, in consequence, allowed one to find the parameters and regimes for optimal
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splitting.

To summarize, the performed theoretical research was focused on studying the correlation

effects in the transport properties of coupled quantum dot systems and brought many interesting

results. The origin of analyzed and explained non-trivial effects is clearly in various correlations

present in the system. On the one hand, similar transport characteristics can be achieved by dif-

ferent means, e.g. current flow through the system can be blocked either by strong Coulomb

correlations, by superconducting correlations leading to a triplet blockade, or by quantum inter-

ference resulting in formation of dark states. On the other hand, the same type of correlations

can be also responsible for different effects, depending on other conditions present in the sys-

tem. Finally, the interplay of certain correlations may lead to a rich and non-trivial effects, such

as the suppression and reemergence of the Kondo effect in double quantum dot systems in the

proximity of the superconductor. Another important conclusion is that the analyzed transport

characteristics are very helpful in capturing and explaining those phenomena. In particular,

the quantities that are measurable in nowadays experimental setups, i.e. current fluctuations,

such as shot-noise or cross-correlations, and the TMR, can all indicate the dominant transport

processes and effects present in the system.
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1.5 Streszczenie (Summary of the thesis in Polish)

Zaprezentowana rozprawa doktorska, zatytułowana Efekty korelacji w transporcie przez

układy kropek kwantowych (ang. Correlation effects in transport through quantum dot systems),

ma formę cyklu siedmiu artykułów zamieszczonych w Rozdziale 2. Stanowią one główną część

osiągnięć naukowych autora, związanych z przeprowadzonymi badaniami zjawisk transportu

kwantowego w układach kropek kwantowych podczas studiów doktoranckich. Artykuły zostały

poprzedzone stosownym wprowadzeniem przedstawionym w Rozdziale 1 zawierającym opis

motywacji i celu dysertacji, zastosowanej metodologii oraz najważniejszych zjawisk pojawia-

jących się w badaniach transportu ładunkowego i spinowego przez układy kropek kwantowych.

Przedstawiony cykl artykułów został uporządkowany ze względu na rodzaj badanego układu

na dwie spójne tematycznie części. W artykułach (I, II, III, IV) skupiono się na analizie włas-

ności transportowych układu trzech kropek kwantowych w trójkątnej konfiguracji przestrzen-

nej. Natomiast, pozostałe trzy prace (V, VI, VII) dotyczą badania układów typu rozdzielaczy

par Coopera zbudowanych w oparciu o kropki kwantowe. Wyniki zaprezentowane w artykułach

(I, II, III, IV,V, VI) otrzymane zostały przy wykorzystaniu techniki diagramowej w czasie

rzeczywistym, natomiast w artykule (VII) do obliczeń użyto metody numerycznej grupy renor-

malizacji. Wspólnym tematem wszystkich prac są efekty korelacji występujące w badanych

układach, ich współoddziaływanie oraz wpływ na transport spinowy i ładunkowy. Wprowadze-

nie do poszczególnych artykułów oraz podsumowanie najważniejszych wyników zamieszczone

zostało poniżej.

Artykuł (I) zatytułowany Efekty spinowe w transporcie przez molekułę opartą na trójkąt-

nym układzie kropek kwantowych w różnych konfiguracjach geometrycznych przedstawia kom-

pleksową analizę spinowo sporalyzowanego transportu przez układ trzech kropek kwantowych.

W pracy przeprowadzono dokładną analizę prądu, konduktancji różniczkowej oraz szumów

ziarnistych dla szerokiego zakresu parametrów transportowych. W badaniach uzględniono

procesy tunelowania sekwencyjnego oraz kotunelowania. Rozważany układ potrójnej kropki

kwantowej był sprzężony z elektrodami ferromagnetycznymi, co w konsekwencji umożliwiło

także analizę tunelowego magnetooporu oraz innych efektów spinowych. Rozpatrzone zostały

w szczególności dwie konfiguracje geometryczne różniące się sprzężeniami kropek kwan-

towych do zewnętrznych elektrod. W konfiguracji nazwanej lustrzaną układ sprzężony był

symetrycznie do dwóch elektrod, co prowadzi do symetrii wszystkich charakterystyk trans-

portowych ze względu na zmianę znaku przyłożonego napięcia. Druga zbadana konfiguracja,
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rozwidlająca, polegała na przyłączeniu kropek kwantowych do trzech zewnętrznych elektrod.

Napięcie transportowe było przyłożone w taki sposób, aby możliwe było rozdzielenie prądu

pochodzącego z jednej elektrody – źródła, dwoma osobnymi ramionami struktury do dwóch

oddzielnych elektrod – drenów. W geometrii lustrzanej przewidziano obszary znacznego wz-

mocnienia tunelowego magnetooporu oraz fluktuacji prądowych. W geometrii rozwidlającej

pojawiły się zarówno ujemna konduktancja różniczkowa, jak i ujemny efekt tunelowego mag-

netooporu. Mechanizmy prowadzące do tych zjawisk zostały w pracy dokładnie omówione i

wyjaśnione.

Kolejny artykuł (II) o tytule Wygaszenia prądu w transporcie przez układ trzech kropek

kwantowych sprzężonych z elektrodami ferromagnetycznymi stanowi rozszerzenie badań z

artykułu (I). W układzie trzech kropek kwantowych w konfiguracji lustrzanej złamano symetrię

poziomów energetycznych kropek kwantowych, poprzez wprowadzenie parametru odstrojenia

δ na jednej z nich. Konsekwencją tej modyfikacji było pojawienie się w charakterystykach

prądowo-napięciowych dwóch obszarów, w których prąd jest silnie wygaszany, a na kropkach

kwantowych spułapkowane są odpowiednio jeden i dwa elektrony. Blokada jednoelektronowa

miała charakter stanu ciemnego, natomiast blokada dwuelektronowa wynikała z odpowied-

niej konfiguracji oddziaływań kulombowskich. Różnice pomiędzy obszarami transportu z obu

blokad widoczne były także w analizie fluktuacji prądu oraz tunelowego magnetooporu.

Artykuł (III) nosi tytuł Wpływ pola magnetycznego na stany ciemne w transporcie przez

układ trzech kropek kwantowych i skupia się na badaniach możliwości manipulacji stanami

ciemnymi poprzez przyłożone zewnętrzne pole magnetyczne. W pracy wyznaczono parame-

try układu trzech kropek kwantowych, dla których możliwe jest formowanie się stanów ciem-

nych, zarówno jedno- jak i dwuelektronowych. Następnie przeanalizowany został wpływ

zewnętrznego pola magnetycznego na własności tych stanów ciemnych. W szczególnosci

wykazano, że zakres napięć, dla którego pojawia się jednoelektronowy stan ciemny, można

zmieniać polem magnetycznym. Natomiast, w przypadku dwuelektronowego stanu ciemnego,

możliwe jest zmniejszenie wielkości obszaru napięć, gdzie występuje stan ciemny, a przy

odpowiednio silnym polu, całkowite zniesienie blokady prądu. Przeprowadzona analiza struk-

tury energetycznej stanów własnych układu oraz ich własności spinowe umożliwiły precyzyjne

wyjaśnienie tych mechanizmów.

W ostatnim artykule (IV) dotyczącym układu trzech kropek kwantowych o tytule Stany

ciemne w spinowo-spolaryzowanym transporcie przez molekuły oparte na trzech kropkach
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kwantowych przestawiona została kompleksowa analiza zjawiska tworzenia się stanów ciem-

nych, ze szczególnych uwzględnieniem ich wpływu na własności magneto-transportowe.

Badaniom poddano stany ciemne o różnej liczbie spułapkowanych elektronów w układzie

kropek kwantowych. W zależnosci od parzystości liczby elektronów, tunelowy magne-

toopór wykazuje różne zachowanie: przy nieparzystej liczbie magnetoopór ulega mocnemu

wygaszeniu, natomiast przy stanach ciemnych z parzystą liczbą cząstek, efekt tunelowego

magnetooporu przyjmuje ujemne wartości. W rozważaniach uwzględniono zarówno procesy

tunelowania pierwszego, jak i drugiego rzędu oraz ich wpływ na prąd, tunelowy magnetoopór

i fluktuacje prądu. Omówione różnice pomiędzy przybliżeniem sekwencyjnym, a uwzględ-

nieniem kotunelowania, podkreślają istotną rolę procesów drugiego rzędu w obszarze trans-

portu gdzie występują stany ciemne. Ponadto, w pracy przedstawiono opis stanów ciemnych o

wysokiej liczbie cząstek w obrazie transportu, gdzie nośnikami są dziury elektronowe. Porów-

nanie własności odpowiednich stanów opisanych w obu ujęciach wskazuje, że jest to trafna

obserwacja manifestacji symetrii elektronowo-dziurowej.

W kolejnych trzech artykułach (V, VI, VII) przeprowadzono teoretyczne badania transportu

w hybrydowych układach kropek kwantowych sprzężonych do elektrody nadprzewodzącej,

będącej źródłem wstrzykiwanych do układu par Coopera. Artykuł (V) zatytułowany Wza-

jemne korelacje prądu w rozdzielaczach par Coopera opartych na dwóch kropkach kwantowych

sprzężonych do ferromagnetycznych elektrod zawiera szczególową analizę funkcji wzajemnych

korelacji w układzie typu rozdzielacz oraz konduktancji różnicznkowej dla transportu An-

driejewa. Badanie szumów w układach mezoskopowych pozwala uzyskać dodatkowy wgląd

w procesy opisujące transport, a w rozważanym przypadku wzajemne korelacje w szczegól-

ności okazują się mieć istotne znaczenie. Badania pozwoliły znaleźć obszary o dużych, dodat-

nich wartościach korelacji sugerujące, że układ w tym obszarze wykazuje wysoką skuteczność

rozdzielania par Coopera. Omówione zostały także obszary, gdzie pojawiają się ujemne

wartości wzajemnych korelacji, wskazujące na przeciwny kierunek tunelowania w rozważanych

złączach. Mechanizmy odpowiedzialne za oba zjawiska zostały dokładnie wyjaśnione poprzez

analizę stanów własnych układu oraz procesów dominujących w transporcie. W szczególności,

należy zwrócić uwagę na wpływ polaryzacji elektrod ferromagnetycznych na transport An-

driejewa i procesy rozdzielania par Coopera, oraz odpowiedni dobór konfiguracji momentów

magnetycznych elektrod. Wyniki te wzbogacono o wyznaczenie przybliżonych formuł anality-

cznych na wartości wzajemnych korelacji w szczególnie istotnych obszarach transportu. Pon-
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adto, dokonano analizy transportu w zależności od siły korelacji kulombowskich na kropkach

kwantowych. Przeprowadzone badania w bardzo szerokim zakresie parametrów pozwalają na

znalezienie optymalnych parametrów i obszarów transportu, co posiada istotne znaczenie z

punktu widzenia eksperymentu i przyszłych zastosowań.

Badania korelacji przeprowadzono również dla układu opartego na jednej kropce kwan-

towej, a wyniki zaprezentowano w artykule (VI) Wzajemne korelacje w rozdzielaczu par Co-

opera opartego na kropce kwantowej sprzężonej do ferromagnetycznych elektrod. Analizę kon-

duktancji różniczkowej oraz wzajemnych korelacji rozszerzono o przypadek układu z niemag-

netycznymi elektrodami, w którym pojawił się obszar nieskorelowanego transportu w pobliżu

punktu symetrii elektronowo-dziurowej. W pracy przeanalizowano także wpływ zewnętrznego

pola magnetycznego, prowadzącego do rozszczepienia stanów Andriejewa, na wzajemne ko-

relacje. Obecność pola magnetycznego prowadzi do osłabienia ujemnych oraz wzmocnienia

dodatnich wartości wzajemych korelacji prądu, w stosunku do wartości wyznaczonych dla przy-

padku bez zewnętrznego pola magnetycznego.

Ostatni artykuł (VII), Fizyka Kondo w rozdzielaczu par Coopera opartego na dwóch krop-

kach kwantowych, przedstawia wyniki analizy transportu dla układu silnie sprzężonego z

elektrodami metalicznymi, co prowadzi do pojawienia się efektu Kondo. Głownym celem

było zbadanie współoddziaływania korelacji nadprzewodzących oraz tych prowadzących do

zjawiska Kondo. Okazało się, że dla efektu Kondo o symetrii SU(2), włączenie oddziały-

wań nadprzewodzących bardzo szybko prowadzi do zniszczenia zjawiska Kondo, jednak dalsze

zwiększenie siły sprzężenia do nadprzewodnika prowadzi do odbudowy tego efektu. Natomiast

w przypadku, gdy układ znajduje się w obszarze efektu Kondo typu SU(4), podczas zwiększa-

nia siły sprzężenia do naprzewodnika, obserwowane jest przejście do stanu Kondo o symetrii

SU(2). Zachowania te wyjaśniono poprzez dokładną analizę lokalnej gęstości stanów oraz stanu

podstawowego układu, co przedstawiono w postaci odpowiednich diagramów energetycznych.

Przebadano także własności transportowe, analizując transmisję Andriejewa oraz efektywność

rodzielania par Coopera, co umożliwiło znalezienie optymalnych parametrów pracy badanego

układu.

Podsumowując, przeprowadzone teoretyczne badania transportu przez układy sprzeżonych

kropek kwantowych dostarczyły wiele interesujących wyników i obserwacji. Wyraźnie

wykazano, że przeanalizowane i wyjaśnione efekty mają swoje źródło w korelacjach obecnych

w omawianych układach. Z jednej strony, podobne charakterystyki transportowe można otrzy-
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mać w badanym układzie na różne sposoby, np. przepływ prądu może zostać zablokowany

poprzez silne oddziaływania kulombowskie, przez korelacje nadprzewodnika prowadzące do

blokady trypletowej lub poprzez zjawisko kwantowej interferencji odpowiedzialnej za pow-

stanie stanu ciemnego. Z drugiej strony, te same korelacje potrafią odpowiadać za różne efekty,

w zależności od specyficznych parametrów badanego układu. Ponadto, współoddziaływanie

różnych korelacji może również prowadzić do ciekawych i nietrywialnych efektów, takich jak

np. wygaszenie i odbudowa efektu Kondo w układzie podwójnej kropki kwantowej sprzężonej

do nadprzewodnika. Kolejnym ważnym wnioskiem płynącym z przeprowadzonych badań jest

duże znaczenie i przydatność wyznaczonych charakterystyk transportowych dla zidentyfikowa-

nia i wyjaśnienia omawianych efektów. W szczególności, wielkości takie jak fluktuacje prądu i

tunelowy magnetoopór, które można wyznaczyć eksperymentalnie, potrafią wyraźnie wskazać

najważniejsze procesy oraz efekty w transporcie przez badany uklad. Przedstawione bada-

nia oraz uzyskane wyniki pokazują jak bogaty i ciekawy jest świat fizyki mezoskopowej,

oraz w szczególności, jakie potencjalne możliwości kryją się w układach kropek kwantowych.

Można oczekiwać, że przedstawiony tutaj cykl prac przyczyni się do dalszego zintensyfikowa-

nia teoretycznych i eksperymentalnych prac badawczych dotyczących różnego typu korelacji w

układach niskowymiarowych takich jak kropki kwantowe.
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We analyze the spin-resolved transport properties of a triangular quantum dot molecule weakly coupled to
external ferromagnetic leads. The calculations are performed by using the real-time diagrammatic technique up
to the second-order of perturbation theory, which enables a description of both the sequential and cotunneling
processes. We study the behavior of the current and differential conductance in the parallel and antiparallel
magnetic configurations, as well as the tunnel magnetoresistance (TMR) and the Fano factor in both the linear
and nonlinear response regimes. It is shown that the transport characteristics depend greatly on how the system
is connected to external leads. Two specific geometrical configurations of the device are considered—the mirror
one, which possesses the reflection symmetry with respect to the current flow direction and the fork one, in which
this symmetry is broken. In the case of first configuration we show that, depending on the bias and gate voltages,
the system exhibits both enhanced TMR and super-Poissonian shot noise. On the other hand, when the system
is in the second configuration, we predict a negative TMR and a negative differential conductance in certain
transport regimes. The mechanisms leading to those effects are thoroughly discussed.
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I. INTRODUCTION

Quantum dot systems have been the subject of broad
experimental and theoretical research for more than two
decades due to their potential applications in quantum
computing, spintronics, and nanoelectronics [1–6]. While
the transport properties of single quantum dots are rather
well understood [7–10], coupled quantum dot systems still
draw a considerable attention [11–16]. This is because such
artificial molecules allow one to study various interference
and correlation effects in a controllable fashion. In this regard,
an undoubtedly important example is a triple quantum dot
(TQD) system [17–26]. Recently, many relevant effects and
properties related to TQDs have been reported. In particular,
quantum entanglement in such systems have been widely
studied [27,28], with qubit dynamics and read-out [29], qubit
encoding [30], spin-entangled currents [31], and entanglement
switching via the Kondo effect [32]. Other studies of Kondo
physics on TQD were reported as well [33,34], including
the transport properties in the Kondo regime [35–37], the
Kondo-Aharonov-Bohm effect [38], or the anisotropic charge
Kondo effect [39].

Moreover, the charge and spin transport through TQD
systems also undergoes extensive investigation [40,41]. The
role of single-particle [42–44] and two-particle [45] dark
states in transport was analyzed. Superexchange blockade [46]
and various types of the Pauli spin blockade [47,48] were
also studied, and the mechanism of spin blockade control by
ac magnetic field was discussed [49]. Moreover, in serially
coupled TQD, the tunnel magnetoresistance (TMR) [50], long-
distance tunneling [51,52], dephasing-assisted transport [53],
and spin-orbit effects in a TQD shuttle [54] were examined.
All these indicate that there is a great, both theoretical and
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†weymann@amu.edu.pl

experimental, interest in triple quantum dot systems and, in
fact, there are still some problems that need to be addressed.

In this paper, we consider spin-resolved transport properties
of a triangular quantum dot molecule weakly attached to
external ferromagnetic electrodes, with a special focus on
the geometrical configuration of the device and its influence
on transport properties. We analyze two distinct setups of
coupling to electrodes and different ways the bias voltage is
applied. In the first configuration, which we call the mirror one,
since it possesses a reflection symmetry with respect to the
current flow direction, two of the three dots are coupled to the
leads. In such a setup, the system’s transport characteristics are
symmetric with respect to the bias reversal. On the other hand,
in the second configuration, called the fork one, one of the
dots is coupled to one lead and the other two dots are coupled
to the second lead. In this case, the reflection symmetry is
broken and consequently the current-voltage characteristics
are asymmetric with respect to the bias reversal.

To perform numerical calculations, we employ the real-
time diagrammatic technique [55], including the first and
second-order diagrams, which enable the description of both
sequential tunneling and cotunneling processes. In both geo-
metrical arrangements of the device, we determine the current,
the corresponding differential conductance, the TMR, and the
Fano factor in both the linear and nonlinear response regimes.
In the case of mirror geometry, we show that the TMR can be
enhanced in certain Coulomb blockade regimes and we also
find super-Poissonian shot noise. On the other hand, in the case
of fork geometry, we predict a negative TMR and a negative
differential conductance, associated with current suppression
due to Coulomb correlations. The mechanisms leading to the
aforementioned effects are thoroughly discussed.

The paper is organized as follows. The model Hamiltonian
of the TQD and the method used in the calculations are
described in Sec. II. The numerical results and their discussion
for TQDs in the case of mirror geometry are presented in
Sec. III, while Sec. IV is devoted to the case of fork geometry.
Finally, the paper is summarized in Sec. V.
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FIG. 1. (Color online) Schematic of a triple quantum dot system
in triangular geometry. The ith dot is coupled to the dot j through
the hopping matrix element tij . Each dot is coupled to a respective
lead j , with �σ

j describing the coupling strength, and μj denoting
the chemical potential of this lead. We consider two different
configurations of the device, the mirror and fork ones, as indicated
by the arrows, respectively. In the mirror geometry, the current
flows between the second and third lead with �σ

1 = 0, while in the
fork geometry the voltage drop is applied between the first and the
second-and-third lead.

II. THEORETICAL FRAMEWORK

A. Model

The schematic of the considered system is shown in Fig. 1.
It consists of three single-level quantum dots in a triangular
geometry. The dots are coupled to each other through the
hopping matrix elements tij and attached to external leads
with respective coupling strength �σ

j . The leads are assumed
to be ferromagnetic and their magnetizations can point either
in the same direction (parallel configuration) or in opposite
directions (antiparallel configuration). The Hamiltonian of the
system is given by

H = HLeads + HTQD + HTun , (1)

where HLeads describes the noninteracting electrons in the
leads,

HLeads =
∑

j=1,2,3

∑
kσ

εjkσ c
†
jkσ cjkσ , (2)

with εjkσ being the energy of an electron with spin σ ,
momentum k in lead j , and c

†
jkσ (cjkσ ) denoting the respective

creation (annihilation) operator. The Hamiltonian of the triple
dot reads

HTQD =
∑
jσ

εjnjσ + U
∑

j

nj↑nj↓ + U ′

2

∑
〈ij〉

∑
σσ ′

niσ njσ ′

+
∑
〈ij〉

tij

2

∑
σ

(d†
iσ djσ + d

†
jσ diσ ) , (3)

with njσ = d
†
jσ djσ , where d

†
jσ (djσ ) is the creation (annihila-

tion) operator of an electron with spin σ in the j th quantum dot,
and εj is the corresponding single-particle energy. The second

term takes into account the on-site Coulomb interaction U on
dot j , U ′ corresponds to the interdot Coulomb correlation, and
〈ij〉 denotes the summation over the nearest-neighbor dots. The
last term of HTQD describes the interdot hopping, with tij being
the hopping parameter between the dot i and j . The parameters
U ′ and tij are divided by 2 to avoid double counting. We
assume that the coupling between the dots is relatively large,
so that there is a considerable overlap of the wave functions
of neighboring dots, leading to the formation of molecular
many-body states, |χ〉, through which transport takes place.
The states |χ〉 are the eigenstates of HTQD, HTQD|χ〉 = εχ |χ〉,
where εχ is the corresponding eigenenergy.

The last term of the Hamiltonian describes tunneling
processes between TQD and leads, and can be written as

HTun =
∑

j=1,2,3

∑
kσ

vj (c†
jkσ djσ + d

†
jσ cjkσ ) , (4)

with vj denoting the tunnel matrix element between the
j th lead and respective quantum dot. The coupling between
j th lead and j th dot is described by �σ

j = 2π |vj |2ρσ
j ,

where ρσ
j is the spin-dependent density of states of lead j .

Introducing the definition of the spin polarization of lead j ,
pj = (ρ+

j − ρ−
j )/(ρ+

j + ρ−
j ), one can express the couplings as

�±
j = �j (1 ± pj ), where �j = (�+

j + �−
j )/2. Then, �+

j (�−
j )

denotes the coupling of the j th dot to the spin-majority (spin-
minority) electron band of lead j . In the following, we assume
that the couplings are symmetric, �j ≡ �/2 and pj ≡ p.

While the geometry of the considered system is quite gen-
eral, in this paper we will analyze two specific configurations
of the device, which we henceforth call the mirror and fork
ones. In the mirror geometry, the voltage drop is applied
between the second and third leads, μ2 − μ3 = eV , with μ2 =
−μ3 = eV/2, while the first lead is decoupled (�σ

1 = 0), see
Fig. 1. In this setup, for symmetric systems, the current-voltage
characteristics are symmetric with respect to the bias reversal.
In the fork geometry, on the other hand, the current flows
between the first (with chemical potential μ1) and second-and-
third leads, which are kept at the same chemical potential, μ2 =
μ3, see Fig. 1, and the voltage drop is applied symmetrically,
−μ1 = μ2 = μ3 = eV/2. In this case, the current symmetry
with respect to the bias reversal does not hold any more and
the transport characteristics are asymmetric around V = 0.
Transport through TQDs in a similar geometry has been
recently explored experimentally by Rogge and Haug [21].

B. Method

In order to calculate the spin-dependent transport properties
of a triple quantum dot system, we use the real-time diagram-
matic technique [55]. This method is based on a perturbation
expansion of quantities of interest, such as the reduced density
matrix or the current operator, with respect to the coupling
strength �. The elements of the reduced density matrix in the
steady state can be found from the following equation [55,56]:

W p = 0 , (5)

together with the normalization condition, Tr(p) = 1. Here,
W is the self-energy matrix whose elements, Wχχ ′ , describe
transitions between the TQD many-body states |χ〉 and |χ ′〉,
while p is the probability vector. The current flowing through
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the system can be found from [55,56]

I = e

2�
Tr(WIp) , (6)

where the self-energy matrix WI takes into account the number
of electrons transferred through the system. It can be calculated
by replacing one internal vertex resulting from the expansion
of tunneling Hamiltonian by the current operator. To calculate
the self-energies, one can use the respective diagrammatic
rules in a given order of expansion with respect to tunneling
processes [55–57]. Some details of the calculations are
presented in Appendix. In this paper, we determined the
self-energies up to the second order of expansion, which
allows us to describe both the sequential tunneling (first-order
processes) and cotunneling (second-order processes). While
sequential tunneling gives the dominant contribution to the
current out of the Coulomb blockade regime, it becomes
exponentially suppressed at low voltages where the system is
in the Coulomb blockade. In this transport regime, the current
can then flow due to the second-order tunneling processes [58].

Having determined the first and second-order diagrams,
the zeroth- and first-order occupation probabilities can be
found from the respective kinetic equations [56], W(1)p(0) = 0
and W(2)p(0) + W(1)p(1) = 0, where p(n) and W(n) denote the
probability vector and self-energy matrix in nth order of
expansion with respect to �. This allows one to find the first-
and second-order currents from

I (1) = e

2�
Tr(WI (1)p(0)) , (7)

I (2) = e

2�
Tr(WI (2)p(0) + WI (1)p(1)) . (8)

The total current is then simply given by I = I (1) + I (2).
In addition, we also calculate the Fano factor, [59] F =
S/(2|eI |), where S denotes the zero-frequency shot noise. The
Fano factor describes the deviation of the shot noise from its
Poissonian value, SP = 2|eI | [60]. To find the shot noise, one
needs to determine the self-energy matrix WII, in which two
internal vertices were replaced by the current operator. The
diagrammatic prescription of how to calculate the first and
second-order shot noise can be found in Ref. [56].

We would like to note that the employed method relies on
perturbative expansion of tunneling processes with respect to
the coupling strength, which is assumed to be the smallest
energy scale in the problem [55]. Thus the approximations
made in these considerations allow us to study the transport
properties in the weak coupling regime, but they are not
sufficient to capture higher-order many-body correlations,
such as the ones leading to the Kondo effect [61–63]. However,
since in the weak coupling regime the Kondo temperature is
usually exponentially small and the Kondo correlations are
negligible [64], our calculations are reliable in the whole range
of bias and gate voltages.

In the following, we present and discuss the numerical
results on the current, differential conductance and shot noise
in the parallel and antiparallel configurations of the device. The
behavior of these quantities is studied in both the sequential
and cotunneling regimes. In addition, we also calculate the
tunnel magnetoresistance (TMR), which is associated with a
change of magnetic configuration from parallel to antiparallel,

and can be defined as [65–68]

TMR = I P − IAP

IAP
, (9)

where I P and IAP denote the currents flowing in the parallel
and antiparallel configuration, respectively. Experimentally,
the magnetic configuration of the device can be changed by
sweeping through the hysteresis loop upon applying a small
external magnetic field, provided the two ferromagnets have
different coercive fields [69].

III. RESULTS IN THE CASE OF mirror GEOMETRY

In this section, we analyze the transport properties in the
case when the current flows between the second and third lead,
while the first lead is decoupled. In this geometry, the system
exhibits the left-right reflection symmetry with respect to the
current direction, see Fig. 1, and the current-voltage charac-
teristics are symmetric with respect to the bias reversal. The
absolute value of the current and the differential conductance
in both the parallel and antiparallel configurations, together
with the TMR in the case of mirror geometry are shown in
Fig. 2. These quantities are plotted as a function of the bias
voltage and the position of the dots’ levels, which are kept
the same, ε1 = ε2 = ε3 ≡ ε. The position of the levels can be
changed upon applying a gate voltage, therefore this figure
effectively presents the bias and gate voltage dependence of
transport characteristics.

The current and differential conductance dependencies on
the bias and gate voltages reveal typical Coulomb stability
diagram of the device. For voltages below a certain threshold,
the sequential tunneling is exponentially suppressed due to
the single-electron charging energy and the system is in the
Coulomb blockade regime. The blockade can be lifted by either
shifting the TQD levels to resonance or by applying a transport
voltage larger than the corresponding threshold voltage. This
results in a step in the current and the corresponding peak in
the differential conductance, see Figs. 2(a)–2(d). By increasing
the bias voltage, the next steps (peaks) occur whenever the
next energy level of TQD enters the energy window provided
by the bias voltage. For complex multilevel structures, as
considered in the present paper, this results in a very reach
Coulomb diamond pattern, which reflects various interactions
and correlations in the system, see Fig. 2.

By comparing the currents in the case of parallel and an-
tiparallel magnetic configuration, one observes that, generally,
the system is more conductive in the parallel configuration
compared to the antiparallel one. However, the general struc-
ture of the stability diagram is rather independent of magnetic
configuration. The difference in current values in the two mag-
netic configurations results from the asymmetry in couplings
to the leads, which occurs in the antiparallel alignment. In
the parallel configuration, the majority (minority) electrons of
one lead tunnel to the majority (minority) band of the second
lead. On the other hand, in the antiparallel configuration, this
situation is reversed and the majority (minority) electrons
of a given lead tunnel to the minority (majority) subband
of another lead. This implies that the current in the parallel
configuration is generally larger than that in the antiparallel
configuration. For the considered mirror geometry, in whole
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FIG. 2. (Color online) The absolute value of the current in (a) the
parallel and (b) the antiparallel magnetic configuration, (c) and (d) the
corresponding differential conductance, as well as (e) the sequential
and (f) the total (sequential plus cotunneling) TMR calculated in
the case of mirror geometry as a function of the bias voltage and
the dots’ levels position ε ≡ ε1 = ε2 = ε3. The parameters are U ′ =
0.4, t12 = t13 = −0.2, t23 = −0.1, � = 0.005, T = 0.025, in units of
U ≡ 1, and p = 0.5. The current is expressed in units of I0 = e�/�.
To facilitate direct comparison, the same color scale is used in the
following pairs of panels: (a) and (b), (c) and (d), and (e) and (f).

range of bias voltage, one always finds, I P > IAP, which gives
rise to positive TMR, see Figs. 2(e) and 2(f).

Although in the Coulomb blockade regime the sequential
tunneling processes are exponentially suppressed, the current
can still flow due to cotunneling processes [58]. Such processes
involve two, correlated in time, tunneling events occurring
through virtual states of the system. In spite of the fact that the
cotunneling current, which is ∝ �2, is considerably smaller
than the sequential current, it gives the dominant contribution
to transport in the Coulomb blockade regime. Its influence
can be, however, hardly visible in the current and differential
conductance dependencies shown in the full range of bias and
gate voltages. Nevertheless, the effect of cotunneling is clearly
evident in the TMR, which measures the relative change in
the current when the magnetic configuration is varied. This
is why in Fig. 2 we show both the TMR obtained using
only sequential tunneling processes and the total TMR. One
can immediately see that, as was to be expected, cotunneling
modifies the TMR mainly in the Coulomb blockade regime,

cf. Figs. 2(e) and 2(f). Furthermore, while in the linear
response regime the sequential TMR is given by [67] TMR =
TMRJull/2, where TMRJull = 2p2/(1 − p2) is the value of
TMR obtained from the Julliere model [65], the total TMR
exhibits a nontrivial dependence on both the number of
electrons on the TQD and the spin of the ground state. More
specifically, TMR = TMRJull (TMRJull = 2/3 for p = 0.5, as
considered in this paper), in the transport regime where only
elastic (spin-conserving) cotunneling processes are present.
This happens when the ground state is spin singlet, which
occurs for empty or fully occupied TQD as well as in the
case when the TQD is occupied by two electrons, i.e., for
−1 � ε/U � −1/2, see Fig. 2(f). For other occupancies, the
TMR is much smaller, TMR � TMRJull, which is associated
with inelastic cotunneling events that lead to spin relaxation
in the system and, thus, decrease the TMR.

The detailed behavior of the current, differential con-
ductance, and the TMR as a function of the bias voltage
for two different values of level position ε is shown in
Fig. 3. The left column of the figure corresponds to the
cross-section of Fig. 2 taken at ε/U = −0.7. In this case,
at equilibrium, the TQD is doubly occupied and the ground
state is the spin singlet. In the Coulomb blockade regime,
only the spin-conserving cotunneling processes are possible,
therefore the TMR reaches the value predicted by the Julliere
model [67], TMR = TMRJull. Note that this value is clearly
different from what one obtains within the sequential tunneling
approximation, see Fig. 3(e). By increasing the bias voltage
above the threshold, sequential processes become possible
leading to a step in the current and to a large maximum in the
differential conductance, see Figs. 3(a) and 3(c). Interestingly,
around the threshold voltage, the TMR becomes strongly
suppressed to rise again with increasing the bias voltage
further. The suppression of TMR around the threshold voltage
can be understood by realizing that the sequential current starts
flowing due to three-electron doublet states, which enter the
bias window. The occupation of such states at the threshold
voltage is comparable in both magnetic configurations and
therefore the difference between the corresponding currents is
relatively small. Consequently, the TMR becomes then much
suppressed. Further increase of the bias voltage, however,
results in spin accumulation in the antiparallel configuration,
and the TMR becomes enhanced again, see Fig. 3(e).

On the other hand, in the transport regime where sequential
processes are allowed, the TMR is generally below TMRJull

and displays an oscillatory behavior as a function of bias
voltage. This behavior is clearly related to single-electron
charging effects and is associated with consecutive steps in
the current and the corresponding peaks in the differential
conductance, which occur whenever the next charge states
become available for transport, see Figs. 3(a) and 3(c).

A similar behavior out of the Coulomb blockade regime can
be observed in the case of ε/U = −2, which is presented in the
right column of Fig. 3. Again, the TMR exhibits an oscillatory
behavior as a function of the bias voltage with a period
related to the energy difference between consecutive charge
states being active in transport. However, interesting behavior
occurs now for voltages around the threshold voltage, where
the TMR becomes enhanced above the Julliere value, see
Fig. 3(f). For ε/U = −2, at equilibrium, the TQD is occupied
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FIG. 3. (Color online) The bias dependence of [(a) and (b)] the
current and [(c) and (d)] the differential conductance in both magnetic
configurations, and [(e) and (f)] the TMR in the case of mirror
geometry for two values of TQD level position: ε/U = −0.7 (left)
and ε/U = −2 (right). The dashed line in (e) and (f) shows the TMR
obtained including only sequential processes. The horizontal dotted
line in (e) and (f) presents the TMR obtained from the Julliere model.
The other parameters are the same as in Fig. 2.

by four electrons and the ground state is a spin triplet. With in-
creasing the bias voltage, in the antiparallel configuration, the
occupation of either the lowest-weight or the highest-weight
triplet component is greatly enhanced, depending on the sign
of the bias voltage. This gives rise to strong nonequilibrium
spin accumulation, which increases the difference between
the parallel and antiparallel configuration, since the spin
accumulation in the parallel configuration is absent in the case
of left-right symmetric systems as considered here. When the
bias voltage reaches the threshold voltage, other excited states
become populated and spin accumulation is decreased. Conse-
quently, one observes a maximum in TMR for voltages around
the threshold voltage, with TMR > TMRJull, see Fig. 3(f).

In addition, we have also calculated the shot noise S and
the corresponding Fano factor F = S/(2|eI |). Figure 4 shows
the density plots of F as a function of bias and gate voltages
calculated in the case of mirror geometry for parameters the
same as in Fig. 2. The second row presents the total Fano

FIG. 4. (Color online) The bias and gate voltage dependence of
the Fano factor F in the parallel [(a) and (c)] and antiparallel [(b)
and (d)] magnetic configuration calculated in the case of mirror
geometry. The first row shows the Fano factor calculated using
only sequential tunneling processes, F seq, while the second row
presents the total Fano factor calculated taking into account both
sequential and cotunneling processes. The Fano factor is divergent in
the low-bias-voltage range, V → 0, therefore this regime is covered
by a thick horizontal line. The parameters are the same as in Fig. 2.

factor F , i.e., when both sequential and cotunneling processes
are taken into account. To elucidate the role of cotunneling, it
can be directly compared to the first row, which presents the
Fano factor, F seq, calculated using only sequential processes.
It can be seen that the cotunneling processes modify the Fano
factor mainly in the Coulomb blockade regime, however, their
influence is not that spectacular as in the case of the TMR.
The color scale used in Fig. 4 is adjusted in such a way that
white color corresponds to F = 1, blue to F < 1, and red color
corresponds to F > 1. When transport is due to uncorrelated
tunneling events, the shot noise takes the Poissonian value,
S = 2|eI |, and the Fano factor equals unity. On the other hand,
when F < 1, the shot noise is sub-Poissonian, while for F > 1,
the noise becomes super-Poissonian. Moreover, for low bias
voltages, the Fano factor is divergent because of thermal noise,
which gives a finite contribution to the noise, while I → 0 for
V → 0. This transport regime is covered by a thick horizontal
line in Fig. 4.

Before analyzing more detailed behavior of F , let us
make some general observations. First of all, one can see
that the shot noise is sub-Poissonian out of the Coulomb
blockade regime. This is due to the fact that sequential
tunneling events are correlated in time by the charging
energy (electrons tunnel one by one through the system),
which decreases the current fluctuations, yielding F < 1. On
the other hand, in the Coulomb blockade regime the shot
noise becomes super-Poissonian, which can be attributed to
bunching of inelastic cotunneling processes that leads to
enhanced current fluctuations. Moreover, in the case when only
elastic cotunneling is present, the noise becomes Poissonian
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and F = 1, since such processes are uncorrelated. This can be
clearly seen in the case when the TQD is empty (ε/U � 0.5)
or fully occupied (ε/U � −3), see Fig. 4.

An interesting behavior can be observed in the Coulomb
blockade regime with two electrons in the TQD, see Fig. 4
for ε/U ≈ −0.7. Then, at low bias voltage, the Fano factor
is slightly above 1, indicating super-Poissonian shot noise,
which then becomes greatly enhanced for voltages just before
the threshold for sequential tunneling. This can be understood
by realizing that at low voltages the TQD is mainly occupied
by the spin singlet state and transport is dominated by elastic
cotunneling processes. However, while increasing the bias
voltage, inelastic cotunneling events come into play, which,
firstly, give rise to spin relaxation suppressing the TMR,
cf. Figs. 2(f) and 3(e), and, secondly, enhance the current
fluctuations by bunching of cotunneling processes. As a matter
of fact, a similar enhancement of the shot noise can be observed
in other Coulomb blockade regimes, indicating the role of
inelastic cotunneling in transport.

Moreover, super-Poissonian shot noise can also be observed
beyond the Coulomb blockade regime, see the transport region
for ε/U ≈ −3 and |eV |/U > 1/2 in Fig. 4. In this regime,
five-electron (doublet) and six-electron (singlet) states are
active in transport. As checked numerically (not shown),
when the leads are nonmagnetic, the Fano factor is close to
unity and sub-Poissonian. For finite spin polarization, on the
other hand, F is increased and becomes larger than unity.
This super-Poissonian shot noise is thus related to the spin
dependence of tunneling processes. This can be understood
by realizing that for ferromagnetic leads, fluctuations between
tunneling through singlet and doublet states are enhanced,
which generally leads to larger current fluctuations and,
consequently, to enhanced Fano factor.

Finally, we note that the bias and gate voltage dependence
of the Fano factor in the two magnetic configurations is
qualitatively similar, and the main difference is associated
with the magnitude of F , cf. the left and right column of
Fig. 4. In the parallel configuration, the shot noise is generally
larger than in the antiparallel configuration due to an additional
factor related with the difference between the currents flowing
in a given spin channel. More specifically, the majority-spin
channel is more conductive than the minority-spin channel,
which generally increases the fluctuations of the current.

IV. RESULTS IN THE CASE OF fork GEOMETRY

The bias and gate voltage dependence of the current,
differential conductance in both parallel and antiparallel
configurations, and the TMR in the case of fork geometry
is shown in Fig. 5. This geometry is realized by setting
�1 = �2 = �3 and applying the bias voltage as follows: (μ2 =
μ3) − μ1 = eV , with −μ1 = μ2 = μ3 = eV/2, see Fig. 1.

In general, one observes similar transport characteristics as
in the case of the mirror geometry, i.e., Coulomb staircases
for current characteristics and diamonds for differential con-
ductance as a function of bias and gate voltages. However, a
closer analysis reveals important differences. First of all, now
the system no longer responds identically to a sign change
of the bias voltage. Moreover, one can see that the diamonds
are now somewhat distorted, which is especially visible for

FIG. 5. (Color online) The absolute value of the current in (a) the
parallel and (b) antiparallel magnetic configuration, [(c) and (d)] the
corresponding differential conductance, and (e) the sequential and
(f) the total TMR in the case of fork geometry as a function of the
bias voltage and the dots’ levels position ε ≡ ε1 = ε2 = ε3. The other
parameters are as in Fig. 2.

two large Coulomb blockade regions with two and three
electrons, see Figs. 5(c) and 5(d) for −3/2 � ε/U � −1/2.
More specifically, the resonant peak in the linear conductance
as a function of ε associated with the degeneracy between
two and three-electron states is hardly visible. Instead, one
observes a gap in the diamonds around ε/U ≈ −1, which
opens for positive bias voltage. Note that since the eigen-
spectrum of TQD does not depend on how the leads are
attached, the difference between conductances directly reveals
the difference between the mirror and fork geometry. In the
case of fork geometry, some of the transitions between the
TQD eigenstates are suppressed, which is visible as quenching
of certain Coulomb blockade lines, cf. Figs. 2 and 5.

Another interesting feature that occurs in the case of fork
geometry is associated with the nonmonotonic dependence of
the current on the bias voltage. In the bias and gate voltage
dependence of the current, there are three regions where
the current is suppressed, despite the increase of the bias
voltage, see Figs. 5(a) and 5(b). The first two regions occur
around ε ≈ 0 for positive bias voltage, while the second larger
region develops around ε/U ≈ −3 for negative bias. These
regions are accompanied with pronounced negative differential
conductance (NDC), see Figs. 5(c) and 5(d). Moreover, as
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can be seen in the figure, this effect does not depend on the
magnetic configuration of the system and NDC is present
in both parallel and antiparallel alignment. Since the NDC
that occurs around ε/U ≈ −3 is the most pronounced one,
let us now focus on this transport regime and explain the
mechanism responsible for the current suppression. Within
the mentioned current blockade, the system is predominantly
occupied by five electrons. More specifically, the first dot is
fully occupied with two electrons (cf. Fig. 1), while the three
remaining electrons have wave functions distributed between
the second and third dot. In fact, such a state is energetically
favorable in a relatively wide range of applied bias voltage
within the blockade. Consequently, since the first dot is fully
occupied, no more electrons can tunnel from the first lead
to this dot and the current becomes suppressed. However,
when the voltage is reversed, the electrons from the first
dot can escape to the first lead, while electrons from the
second and third leads can tunnel to the corresponding dots
and then further through the first dot to the first lead. One
therefore observes a strong suppression of the current only
for one bias polarization, i.e., eV < 0. Since this five-electron
state is favorable in both magnetic configurations, negative
differential conductance develops irrespective of the leads’
magnetizations’ alignment, see Figs. 5(c) and 5(d).

Furthermore, one can also see another region of negative
differential conductance, which occurs for a positive bias
voltage around ε ≈ 0, see Fig. 5. When the voltage is low,
the TQD is occupied by a single electron. Then, by increasing
the bias voltage above the threshold, the current starts flowing
due to one-electron and two-electron states. However, further
increase of the bias voltage decreases the occupation of
one-electron states and the system is mainly occupied by two
electrons. This two-electron state is a spin triplet, in which the
spacial distribution of the wave function is mainly distributed
between the second and third dots, cf. Fig. 1. When the
system is in this state, it is difficult to make a transition to
a one-electron state, as the tunneling rate from the first dot to
the first lead is strongly suppressed due to the small electron
density on this dot. Moreover, electron tunneling through the
second and third lead is also unlikely, as the corresponding dots
are already occupied by one electron and the on-site Coulomb
interaction U forbids the occupation of three-electron states
for the considered bias voltage. All this results in the current
suppression and associated negative differential conductance.
Further increase of the bias voltage eventually enables three-
electron states to participate in transport, which is visible both
as a new peak in the conductance plot and a consecutive step
in the current-voltage dependence. We would like to note that
the unequal spacial distribution of the many-body eigenstates
of the system is associated with the fact that the system is
not fully symmetric. This is because the hopping between the
second and third dot is assumed to be smaller than the hopping
between the first dot and the two other dots, t12 = t13 �= t23.

The bias and gate voltage dependence of the TMR in the
case of fork geometry is also much different compared to
the case shown in Fig. 2. It does not show symmetry when
the bias voltage is applied inversely, likewise the current and
the differential conductance. Moreover, we now find transport
regions where the current in the parallel configuration becomes
smaller than that in the antiparallel configuration, which leads

to a negative TMR, see Fig. 5(f). To understand this behavior,
we first note that at equilibrium and for ε/U ≈ −1.9, i.e.,
when negative TMR develops, the ground state of TQD is the
four-electron spin triplet. This state is almost degenerate with
the four-electron singlet state, which becomes predominantly
occupied when the bias voltage increases. In fact, in the
transport regime where negative TMR occurs, the singlet state
is occupied with the largest probability, while the occupation
of the triplet state is relatively small. Moreover, in the
antiparallel configuration, the occupation of the triplet state
is slightly larger than in the parallel configuration and, due to
nonequilibrium spin accumulation, the spin-down component
of the triplet is favored. This is generally the reason for
the increased current in the antiparallel configuration; the
increased occupation of one of the triplet components allows
for enhanced tunneling through the system compared to the
parallel configuration, in which the overall rate of tunneling is

−0.4

−0.2

0

0.2

0.4

0.6

(a)
I/

I 0
ε/U = −1.9

−0.08

−0.04

0

0.04

0.08 (c)

G
(e

2
/
h
)

−2 −1 0 1 2
−0.2

0

0.2

0.4

0.6

0.8 (e)

T
M
R

eV/U

(b) ε/U = −3

(d)

−1 0 1 2

(f)
TMRJull

eV/U

IP

IAP

GP

GAP

TMR

TMRseq

FIG. 6. (Color online) The bias dependence of [(a) and (b)] the
current and [(c) and (d)] differential conductance in both magnetic
configurations, and [(e) and (f)] the TMR in the case of fork geometry
for two values of the TQD level position: ε/U = −1.9 (left) and
ε/U = −3 (right). The dashed line in (e) and (f) shows the sequential
TMR. The horizontal dotted line in (e) and (f) presents the TMR
obtained from the Julliere model. The other parameters are the same
as in Fig. 2.
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smaller due to the small occupation of all components of the
triplet state.

By comparing the total TMR with the TMR obtained
using only sequential tunneling processes, one can see that
cotunneling plays an important role mainly in the Coulomb
blockade regime, cf. Figs. 5(e) and 5(f). Similar to the case of
mirror configuration, when only elastic cotunneling is present,
the TMR reaches the Julliere value, otherwise it is generally
suppressed due to inelastic cotunneling.

The effects of negative differential conductance and nega-
tive TMR can be explicitly seen in the relevant cross-sections
of Fig. 5, which are shown in Fig. 6 for ε/U = −1.9 and
ε/U = −3. The differences between the two magnetic config-
urations can now be directly observed. Moreover, the effects of
cotunneling processes can also be inferred. Since the Coulomb
blockade regime is relatively narrow, transport is mainly
determined by the first-order processes, while higher-order
processes play here a minor role. However, their influence is
much stronger in other transport regimes, especially when the
Coulomb blockade effects are more pronounced, see Fig. 5.

Finally, the bias voltage and level position dependence of
the Fano factor F calculated in the case of fork configuration
is presented in Fig. 7. The left (right) column corresponds
to the parallel (antiparallel) configuration, while the second
(first) row shows the results obtained by using both sequential
and cotunneling (only sequential) processes. Similar to the
case of mirror geometry, we generally find super-Poissonian
shot noise (F > 1) in Coulomb blockade regimes, where
both elastic and inelastic cotunneling processes are possible,
and Poissonian shot noise (F = 1) when the current is due
to elastic cotunneling. Moreover, in the sequential tunneling

FIG. 7. (Color online) The Fano factor F in the parallel [(a) and
(c)] and antiparallel [(b) and (d)] magnetic configuration calculated in
the case of fork geometry as a function of bias voltage and TQD’s level
position. The first row shows the Fano factor calculated using only
sequential tunneling processes, F seq, while the second row presents
the total Fano factor. The low-voltage regime, where F is divergent,
is covered by a thick horizontal line. The parameters are the same as
in Fig. 2.

regime, i.e., outside the Coulomb blockade, we again observe
sub-Poissonian values (F < 1). In addition, one can also
see the shot noise enhancement within the current blockade
regime where NDC occurs, which occurs for eV/U < 0 and
−3.5 � ε/U � −2.5 and is absent for opposite bias voltage.
Super-Poissonian shot noise is also present for positive bias
voltage around −0.5 � ε/U � 0. The mechanism leading to
the super-Poissonian shot noise in both cases is the same.
Most time the system is trapped in specific states, which are
responsible for the current suppression. As a result, there
occurs bunching of tunneling processes through the system.
It can be understood by realizing that eventual exit from a
blocked state is most likely followed by multiple tunneling
events, right before the system returns to the state, where
again further tunneling acts have extremely low occurrence.
Consequently, the shot noise becomes enhanced leading to
F > 1.

V. CONCLUDING REMARKS

In this paper, we studied the transport properties of a
triangular quantum dot molecule weakly coupled to external
ferromagnetic leads. The calculations were performed with
the aid of the real-time diagrammatic technique including
the sequential and cotunneling processes. We considered
two specific configurations of the device: the mirror one,
in which the system possesses reflection symmetry with
respect to the current flow direction, and the fork one, in
which this symmetry is broken. For these two configurations,
we determined the dependence of the current, differential
conductance, shot noise and TMR on the bias and gate
voltages. When the system was in mirror geometry, we found
enhanced TMR and super-Poissonian shot noise in certain
Coulomb blockade regimes. In the case of fork geometry,
on the other hand, we predicted negative TMR and negative
differential conductance associated with current suppression
due to Coulomb correlations.

Finally, we would like to note that the effects of both
enhanced and negative TMR, as well as negative differential
conductance are under the strong influence of capacitive
correlations between the quantum dots. Such correlations
lead to a particular spacial distribution of the wave functions
of TQD. By varying the value of the Coulomb correlations
between the dots, it is possible to manipulate the shape, range,
and magnitude of the aforementioned effects. However, the
influence is mainly quantitative and in most cases the above
effects are present also when capacitive coupling is negligible.

We also want to notice that in these considerations we
focused on spin-dependent transport through TQDs in the
case when the system possessed relatively high symmetry.
Nevertheless, symmetry breaking, by, e.g., finite detuning of
TQD levels, may lead to further interesting effects, such as
the spin blockade or coherent population trapping in dark
states [42–45]. Detailed analysis of such effects goes, however,
beyond the scope of the present paper and will be studied
elsewhere [70].
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APPENDIX: DETAILS OF CALCULATIONS

In this appendix, we present some details of calculations
using the real-time diagrammatic technique. The core of
calculation is essentially the determination of all irreducible
diagrams of a given order. One starts with writing down
topologically different irreducible diagrams, in which tun-
neling lines connect vertices resulting from the expansion of
the tunneling Hamiltonian, and estimating their contributions,
which can be done with the aid of diagrammatic rules [55,67].
The diagrams of a given order having at their ends the
same states are then summed up to find the corresponding
self-energy. Having determined all self-energies, one can then
solve the appropriate kinetic equations (cf. Sec. II B) for
density matrix elements [55,56,67]. The next step is to find the
diagrams that contribute to the current and to the shot noise,
and determine the self-energy matrices WI and WII [55,56,67].
These diagrams are given by diagrams contributing to W with
proper prefactors and lead indices, which take into account
the direction of current flow and the number of electrons
transferred through the system. Below, we show two examples
of diagrams of first and second orders and explicitly present
the formulas for the first-order self-energies.

1. Examples of first- and second-order diagrams

An exemplary first-order diagram that contributes to the
self-energy W

(1)
χ(n+1)χ ′(n) between the states |χ (n + 1)〉 and

|χ ′(n)〉, gives the following contribution:

= (−i)(−1)1
∫

dω
γ +

jσ (ω)

ω − εχ + εχ ′ + i0+
∣∣〈χ |d†

jσ |χ ′〉∣∣2
, (A1)

for given spin σ and lead j . Note that to indicate how the
number of electrons changes, we have explicitly written the
total occupation number next to the states, n = ∑

jσ njσ . In
the above formula, the factor (−1)1 is due to the fact that there
is one vertex on the backward propagator. The tunneling line
carries energy ω and εχ (εχ ′) is the energy of state on the
forward (backward) propagator. In addition, each tunneling
line carries a factor

γ ±
jσ (ω) = �σ

j

2π
f ±

j (ω) ,

where f +
j (ω) denotes the Fermi-Dirac distribution function

of lead j and f −
j (ω) = 1 − f +

j (ω). In Eq. (A1), the direction
of tunneling line is backward with respect to the Keldysh

contour, therefore it carries γ +
jσ (ω). For tunneling lines going

in opposite direction, one would have a factor γ −
jσ (ω) [55].

An example of second-order diagram, relevant for the
self-energy W

(2)
χ(n+2)χ ′(n), is shown below together with its

contribution:

= (−i)(−1)3
∑
χ ′′χ ′′′

∫∫
dω1dω2

γ +
jσ (ω1)

−ω1 − εχ ′ + εχ ′′′ + i0+

× γ +
j ′σ ′(ω2)

−ω1 + ω2 − εχ ′′ + εχ ′′′ + i0+
1

ω2 − εχ + εχ ′′′ + i0+

× 〈χ ′|djσ |χ ′′′〉〈χ ′′′|dj ′σ ′ |χ〉〈χ |d†
jσ |χ ′′〉〈χ ′′|d†

j ′σ ′ |χ ′〉, (A2)

where the prefactor (−1)3 comes from the fact that there are
two vertices on the backward propagator and one crossing of
tunneling lines, each carrying a minus sign. Note that now
one needs to sum over virtual states of the system |χ ′′〉 and
|χ ′′′〉 and that there are three resolvents in the double integral.
Compared to Eq. (A1), this formula is clearly more complex.

The integrals in the above equations for first- and second-
order diagrams can be solved by using the Cauchy’s formula.
Moreover, in the considered problem, each diagram, say, A

has its counterpart B, such that B = −A∗. Consequently,
since A + B = 2iIm{A}, one only needs to calculate the
imaginary parts of diagrams. For first-order diagrams, this
immediately leads to Fermi functions. On the other hand, for
the second-order diagrams, one ends up with single integrals,
which can be solved analytically by introducing digamma
functions and their derivatives [57,67]. Finally, we note that
the formulas obtained using diagrammatic rules [55,67] need
to be multiplied by a factor of (−i) to adapt to the matrix
notation introduced by A. Thielmann et al. [56], which is used
in this paper. This factor has already been explicitly included
in Eqs. (A1) and (A2).

2. Self-energies

After finding contributions coming from all irreducible
diagrams, one can determine the self-energies in a given order
of expansion. Here, we explicitly present the first-order self-
energies and merely notice that the formulas for second-order
self-energies are too lengthly to be presented here [57,67].

The matrix elements of W(1) are given by

W
(1)
χ(n)χ ′(n−1) = 2π

∑
jσ

γ +
jσ (εχ − εχ ′)|〈χ |d†

jσ |χ ′〉|2 ,

W
(1)
χ(n)χ ′(n+1) = 2π

∑
jσ

γ −
jσ (εχ ′ − εχ )|〈χ |djσ |χ ′〉|2 ,

while the diagonal elements are given by W (1)
χχ =

−∑
χ ′ �=χ W

(1)
χ ′χ .
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Defining the current operator as I = (IR − IL)/2, where Ij is the current operator through junction j , the first-order self-
energies contributing to the current are given by

W
(1)I
χ(n)χ ′(n−1) =

∑
σ

⎡
⎣f +

L (εχ − εχ ′)
∑
j=L

�σ
j

∣∣〈χ |d†
jσ |χ ′〉∣∣2 − f +

R (εχ − εχ ′ )
∑
j=R

�σ
j

∣∣〈χ |d†
jσ |χ ′〉∣∣2

⎤
⎦ ,

W
(1)I
χ(n)χ ′(n+1) =

∑
σ

⎡
⎣f −

R (εχ ′ − εχ )
∑
j=R

�σ
j

∣∣〈χ |djσ |χ ′〉∣∣2 − f −
L (εχ ′ − εχ )

∑
j=L

�σ
j

∣∣〈χ |djσ |χ ′〉∣∣2

⎤
⎦ ,

with W (1)I
χχ = 0. The summation in the above formulas accounts for the fact that more than one lead (out of three), corresponding

to either the left or right side of the device, is kept at the same chemical potential. Such situation happens in the fork geometry.
On the other hand, the elements of the first-order self-energy matrix W(1)II, relevant for the calculation of the shot noise, are

given by W (1)II
χχ = −W (1)

χχ/4 for diagonal elements of W(1)II and W
(1)II
χχ ′ = W

(1)
χχ ′/4 for χ �= χ ′.
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[70] K. Wrześniewski and I. Weymann (unpublished).

045407-11

53



Vol. 127 (2015) ACTA PHYSICA POLONICA A No. 2

Proceedings of the European Conference Physics of Magnetism, Pozna« 2014

Current Suppression in Transport Through Triple Quantum

Dots Coupled to Ferromagnetic Leads

K. Wrze±niewski
*
and I. Weymann

Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Pozna«, Poland

We consider transport through triple quantum dot system in a triangular geometry weakly coupled to external
ferromagnetic leads. The real-time diagrammatic technique in the lowest order perturbation theory is used to
calculate the current and Fano factor in the parallel and antiparallel magnetic con�guration of the system as well
as the resulting tunnel magnetoresistance (TMR). We focus on the transport regime where the current is suppressed
and show that it can lead to negative di�erential conductance and large super-Poissonian shot noise, which are
present in both magnetic con�gurations. Furthermore, we show that for voltages where the system is trapped in a
one-particle dark state the TMR becomes suppressed, while for two-particle blockade, the TMR is much enhanced.
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1. Introduction

Quantum dots are ideal systems to study various
correlations between single charges and spins at the
nanoscale [1]. They are also very promising for appli-
cations in future nanoelectronics, therefore there is a lot
of interest in fully understanding their various properties,
including electronic transport. In fact, many phenomena
known from di�erent areas of physics can be observed and
studied in arti�cial molecules built from several coupled
quantum dots. One prominent example, which comes
from atomic physics, is related with coherent population
trapping in a dark state, which can also occur in triple
quantum dot (TQD) systems [2�4]. The presence of such
states reveals itself in current suppression and negative
di�erential conductance. Recently, the role of dark states
in transport through coherent TQDs weakly coupled to
nonmagnetic leads was analyzed by means of the real-
time diagrammatic technique [5]. In this paper we will
extend these studies by assuming that the external elec-
trodes are made of ferromagnetic materials. Quantum
dots, when attached to ferromagnetic leads, can exhibit
a considerable tunnel magnetoresistance (TMR) e�ect
when varying the magnetic con�guration between par-
allel and antiparallel one [6, 7]. The goal is thus to ex-
amine the magnetoresistive properties of TQDs and the
e�ect of spin-dependent tunneling on transport through
TQDs with a focus on transport regimes where current
suppression occurs.

2. Theoretical description

The system consists of three single-level quantum dots
in a triangular geometry, coupled to each other via hop-
ping parameter t and attached to external ferromagnetic
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leads, see Fig. 1. The �rst (second) dot is coupled to the
left (right) lead with coupling strength Γσ and the bias
voltage is applied symmetrically to the system. The mag-
netizations of the leads are assumed to form either paral-
lel or antiparallel magnetic con�guration. The Hamilto-
nian of system is given by, H = HLeads+HTQD+HT, with
HLeads describing noninteracting electrons in the leads,

HLeads =
∑
j=L,R

∑
kσ εjkσc

†
jkσcjkσ, where c

†
jkσ, (cjkσ) is

the creation (annihilation) operator of an electron with
spin σ momentum k in the left (j = L) and right (j = R)
lead, while εjkσ denotes the corresponding single-particle
energy. The TQD Hamiltonian reads

HTQD=
∑

jσ

εjnjσ+U
∑

j

nj↑nj↓+
U ′

2

∑

〈ij〉

∑

σσ′

niσnjσ′

+
∑

〈ij〉

t

2

∑

σ

(d†iσdjσ + d†jσdiσ). (1)

Here, njσ = d†jσdjσ, where d
†
jσ creates an electron with

spin σ in the jth quantum dot, while εj denotes the re-
spective energy. The second and third terms take into
account the on-site Coulomb interaction U and the inter-
dot Coulomb correlation denoted by U ′, respectively.
The last term of HTQD describes the hopping between
the dots with t being the hopping parameter, assumed
equal for all dots. The summation 〈ij〉 is over nearest-
neighbor dots and the parameters U ′ and t are divided
by 2 to avoid double counting. Finally, the tunneling
Hamiltonian is given by

HT =
∑

j=L,R

∑

kσ

(vjc
†
jkσdjkσ +H.c.), (2)

where vj denotes the tunnel matrix elements between the
jth lead and the corresponding dot, see Fig. 1. The re-
spective coupling strength is given by, Γσj = 2π|tj |ρσj ,
where ρσj is the spin-dependent density of states in lead
j. With the de�nition of spin polarization for lead
j, pj = (ρ+j − ρ−j )/(ρ

+
j + ρ−j ), the coupling becomes,

Γ
+(−)
j = Γj(1 ± pj), where Γj = (Γ+

j + Γ−j )/2. Here,

(460)
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Γ+
j (Γ−j ) stands for coupling between given dot to the

spin-majority (spin-minority) electron band of lead j. In
the following we assume, ΓL = ΓR ≡ Γ and pL = pR ≡ p.
We also take the limit of U →∞ and exclude doubly oc-
cupied state of each dot from calculations.
To determine the transport characteristics we use the

real-time diagrammatic technique [8, 9]. This method is
based on a systematic perturbation expansion of the re-
duced density matrix and the operators of interest with
respect to the coupling strength Γ . In this analysis we
assume that the coupling is very weak and consider only
the lowest order of expansion, which corresponds to se-
quential tunneling. Moreover, we also assume that the
hopping between the dots is relatively large, t� Γ . This
leads to signi�cant overlap of the wave functions of the
neighboring dots, resulting in the formation of molecular
states, |χ〉, through which transport takes place.

Fig. 1. Schematic of TQD in a triangular geometry.
Dot 1 (2) is coupled to the left (right) lead with coupling
strength Γσ. Each dot is coupled to remaining two dots
with hopping parameter t.

Within the real-time diagrammatic technique, the oc-
cupation probabilities pχ can be found from a master-like
equation [8, 9]. On the other hand, the current can be
calculated from [8, 9], I = (e/2~)Tr{W Ip}, where W I

is the self-energy matrix which takes into account the
number of particles transferred through the system and
p is the probability vector. In the following, we study the
bias dependence of the current in the parallel (IP) and
antiparallel (IAP) magnetic con�guration and the TMR,
de�ned as [7], TMR = IP/IAP − 1. Moreover, we also
analyze the Fano factor, F = S/(2e|I|), where S denotes
the shot noise. The formula for S can be found in Ref. [9].

3. Results and conclusions

The currents IP and IAP as well as the resulting TMR
are shown in Fig. 2a for ε1 = ε3 ≡ ε = 1 meV and
ε− ε2 ≡ δ = 0.5 meV. For this level con�guration, when
1/2 . eV/U ′ . 3/2, the system is trapped in a one-
particle dark state. The TQD is then in a state, in which
the wave function is extended over only two dots, one of
which is not directly coupled to the leads. As a result,
the transfer of electrons through the system is blocked.
Although in the dark state regime the current is sup-
pressed, due to nonzero temperature there is still a �nite
occupation probability of single-particle states, which are

Fig. 2. The bias voltage dependence of (a) the current
in the parallel and antiparallel con�guration and the re-
sulting TMR, and (b) the Fano factor in both magnetic
con�gurations. The parameters are as follows: U ′ =
10 meV, ε1 = ε3 ≡ ε = 1 meV, ε − ε2 ≡ δ = 0.5 meV,
t = −1 meV, Γ = 0.025 meV, p = 0.5, T = 0.2 meV and
I0 = eΓ/~.

extended over all three dots and thus contribute to trans-
port. This gives rise to a thermally-activated nonzero
current and to the TMR in the blockade regime. As
can be seen in Fig. 2a, for negative bias voltage both
currents IP and IAP display typical Coulomb staircase
dependence. However, for positive bias, the current �rst
increases to drop when the system becomes trapped in
a dark state, which happens for 1/2 . eV/U ′ . 3/2.
The system exhibits then negative di�erential conduc-
tance, irrespective of magnetic con�guration. Moreover,
IP > IAP, in the whole range of considered bias voltage,
except for 1/2 . eV/U ′ . 3/2, when one �nds IP ≈ IAP.
As a result, the TMR is always positive and reaches ap-
proximately zero, when the system is trapped in one-
particle dark state, see Fig. 2a.

The presence of dark states is also revealed in the de-
pendence of the Fano factor on the bias voltage. The
Fano factor describes the deviation of the shot noise from
the Poissonian noise for uncorrelated events. In the dark
state regime, for both parallel and antiparallel con�g-
uration, the shot noise becomes super-Poissonian with
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Fano factor much larger than unity, see Fig. 2b. For
eV → 0, the Fano factor diverges due to the fact that
I → 0, while S is dominated by thermal noise. We also
note that generally FP > FAP, this results from the fact
that in the parallel con�guration there is a larger imbal-
ance between spin-resolved transport channels compared
to the antiparallel con�guration, which enhances the �uc-
tuations of the current.

Fig. 3. The bias voltage dependence of (a) the current
in the parallel and antiparallel con�guration and the re-
sulting TMR, and (b) the Fano factor in both magnetic
con�gurations. The parameters are the same as in Fig. 2
with ε = −25 meV.

By lowering the levels of the dots, the TQD becomes
successively occupied with electrons. The transport char-
acteristics for the case when there are three electrons in
the TQD for V = 0 are shown in Fig. 3. Now, for positive
bias the current grows monotonically and shows Coulomb
steps, while for negative bias voltage one observes current
suppression and negative di�erential conductance. With
increasing negative bias, the current exhibits a small peak
for eV/U ′ ≈ −0.8, i.e. when the applied bias matches the
excitation energy between three and two-particle states.
However, for eV/U ′ < −0.8, the system becomes trapped
in a two-particle blockade and the current is suppressed
in a wide range of negative bias voltage, see Fig. 3a. In
this blockade, the occupancy of the second dot is one,
while the occupancies of �rst and third dots are equal to

one half. Because of large on-dot Coulomb interaction,
the electrons cannot tunnel from right lead to the second
dot and transport is then blocked. Note, that electronic
spacial distribution in this blockade is signi�cantly di�er-
ent compared to single-particle dark state where clearly
one of the dots was not occupied at all. Now, its occu-
pancy is equal to one, forbidding tunneling from the lead
to this dot due to large U . This blockade is thus rather
due to �nite Coulomb correlations in the dots, contrary
to one-particle blockade discussed above, which was due
to the trapping in a dark state.
The magnetoresistive properties of the system are also

di�erent than those in the case shown in Fig. 2. For
two-particle blockade, the TMR is greatly enhanced, see
Fig. 3a. This can be attributed to nonequilibrium spin
accumulation in triplet states that develops in the an-
tiparallel con�guration, leading to large di�erence be-
tween the currents IP and IAP. Moreover, in the block-
ade regimes due to Coulomb interactions, we �nd super-
Poissonian shot noise, which is enhanced in the paral-
lel con�guration compared to the antiparallel one, see
Fig. 3b.
In conclusion, we have studied the spin-resolved se-

quential transport through triple quantum dot in triangu-
lar geometry weakly coupled to ferromagnetic leads. We
showed that when the system is trapped in one-particle
dark state, the TMR is generally suppressed, while for
two-particle blockade we predicted an enhancement of
TMR. Both blockade regimes are also associated with
super-Poissonian shot noise, which is larger in the paral-
lel con�guration compared to the antiparallel one.
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We theoretically study the electronic transport through a triple quantum dot system in triangular geometry
weakly coupled to external metallic leads. By means of the real-time diagrammatic technique, the current and Fano
factor are calculated in the lowest order of perturbation theory. The device parameters are tuned to such transport
regime, in which coherent population trapping of electrons in quantum dots due to the formation of dark states
occurs. The presence of such states greatly influences transport properties leading to a strong current blockade
and enhanced, super-Poissonian shot noise. We consider both one- and two-electron dark states and examine the
influence of magnetic field on coherent trapping in aforementioned states. When the system is in one-electron dark
state, we observe a small shift of the blockade’s region, whereas in the case of two-electron dark state, we show
that strong magnetic field can lift the current blockade completely.
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1. Introduction

Coupled quantum dot systems reveal many different
quantum phenomena favorable for future applications
in nanoelectronics and quantum computation [1, 2]. A
prominent class of such systems constitute those built
of three quantum dots [3, 4], in which a wide variety of
effects, interactions and possible configurations give rise
to rich physics and consistently stimulate an extensive
theoretical and experimental research. An important ex-
ample of a quantum-mechanical phenomenon that can
emerge in triple quantum dots (TQDs) is associated with
the formation of dark states, which lead to coherent elec-
tron trapping [5–8]. A dark state forms when destruc-
tive interference of electronic wave functions decouples
one of the dots from the respective lead and, as a re-
sult, the current can no longer flow through the system.
This work extends the previous studies on coherent pop-
ulation trapping in TQDs [5–7] by analyzing the role of
external magnetic field on the current flowing through a
triple quantum dot in triangular geometry in transport
regime where dark states form.

2. Model and method

The system is built of three single-level quantum dots
(see Fig. 1) arranged in a triangular geometry. The first
(second) dot is weakly coupled to the left (right) metal-
lic electrode and the dots are coupled to each other by
hopping matrix elements tij . The total Hamiltonian can
be written as H = HLeads +HTQD +HT. The first term,
HLeads =

∑
j=L,R

∑
kσ εjkσc

†
jkσcjkσ, describes noninter-

acting electrons in the leads, where c†jkσ is the creation
operator of an electron with spin σ, momentum k and

∗corresponding author; e-mail: wrzesniewski@amu.edu.pl

Fig. 1. Schematic of a triple quantum dot system in
triangular geometry. Dot 1 (2) is coupled to the left
(right) lead with coupling strength Γ. The dots are cou-
pled to each other via hopping matrix elements tij .

energy εjkσ in the left or right (j = L,R) electrode. The
TQD Hamiltonian reads

HTQD = (1)
∑

jσ

εjnjσ + Uj
∑

j

nj↑nj↓ +
U ′
ij

2

∑

〈ij〉

∑

σσ′

niσnjσ′

+
∑

〈ij〉

tij
2

∑

σ

(d†iσdjσ + d†jσdiσ) +B
∑

j

Szj .

The first term describes on-site energy εj , with njσ =

d†jσdjσ and d†jσ being the creation operator of an elec-
tron with spin σ in j-th quantum dot. The two next
terms describe intra- and inter-dot Coulomb interactions,
with strength Uj and U ′

ij , respectively. The fourth term
stands for hopping between the dots, while the last one
takes into account external magnetic field B in units of
gµB ≡ 1, with Szj being the z-th component of j-th dot
spin.

The last term of total Hamiltonian describes tunneling
between TQD and the leads and is given by

HT =
∑

j=L,R

∑

kσ

(Vjc
†
jkσdjσ + H.c.), (2)

where Vj is the tunnel matrix element between the j-th

(109)
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lead and the corresponding dot. The dot-lead coupling
strength is then given by Γj = 2π|Vj |2ρj , with ρj being
the density of states of lead j. It is assumed that ΓL =
ΓR ≡ Γ and that the system is symmetrically biased:
µL = eV/2 and µR = −eV/2.

We calculate the electronic current, shot-noise and
Fano factor using the real-time diagrammatic tech-
nique [9, 10]. This technique relies on perturbation ex-
pansion of the reduced density matrix and corresponding
operators with respect to Γ. In this analysis the weak
lead-dot coupling is assumed and only the lowest-order of
expansion is considered, which describes sequential tun-
neling processes. Due to relatively large hopping between
the dots, tij > Γ, there is a significant overlap of the elec-
trons’ wave functions of the dots, which results in the
formation of molecular states |χ〉. Electronic transport
takes places through those states and their occupation
probabilities pχ are found from an appropriate kinetic
equation [9, 10]. The current is then calculated from
I = (e/2~)Tr{WIp}, where WI is the self-energy ma-
trix, which takes into account electron tunneling through
the system, while p is the vector containing probabili-
ties pχ. Finally, we also determine the shot noise S and
the corresponding Fano factor F = S/(2e|I|) [10].

3. Results and discussion

The current as a function of bias voltage, for indicated
values of external magnetic field B, is shown in Fig. 2a.
The dots’ levels are set to εj = ε = U/2, therefore when
no bias is applied, the dots levels are unoccupied and the
system is empty. For B = 0, around eV/U ≈ 0.8, there is
a peak in the current due to the first one-electron state
entering the transport window. However, very close to
eV/U ≈ 1, there is a strong drop of the current and
transport through the system is blocked, see Fig. 2a.
This current blockade is due to the formation of a one-
electron dark state, that entered the transport window.
The wave function of this dark state has the following
form: |ΨDS1〉 = 1√

2
(|σ, 0, 0〉−|0, 0, σ〉), where |α1, α2, α3〉

is a local state of the system, in which dot j is either
empty (αj = 0), occupied by spin-σ electron (αj = σ)
or doubly-occupied (αj = d). In this one-electron dark
state the electron occupies the first and third dot with
equal probability, however, due to destructive interfer-
ence, the occupation of the second dot is equal to zero.
This effectively decouples the TQD system from the right
lead and blocks tunneling processes through the right
junction. As can be seen in Fig. 2a, the system remains
in the dark state for a significant range of bias voltage,
till the current starts flowing through the system again,
around eV/U >∼ 2.5, when two-electron states enter the
bias window. When the magnetic field is turned on, one
can clearly see in the current dependence that the en-
ergy levels of states taking part in transport are shifted
toward lower bias voltage and, consequently, the systems
becomes trapped in dark state already for smaller volt-
ages, while the size of this blockade remains almost un-
changed. This is due to the Zeeman splitting of the TQD

levels. The one-electron dark state is spin-split and now
the lower-energy dark state enters the transport window
earlier, which makes the blockade appear faster. On the
other hand, the dark state with opposite spin moves to-
ward higher energies. However, this shift does not in-
crease the size of the blockade, because the two-electron
triplet states reach the transport window earlier due to
the same mechanism, i.e. Zeeman-splitting-induced shift
of their energy.

Fig. 2. The bias voltage dependence of (a) the current
and (b) the Fano factor for different values of magnetic
field B. The parameters are: U1 = U3 = U13 = U = 1,
U2 = U + ∆, U12 = U23 = U −∆, where ∆ = U/5. The
dots’ levels are equal, εj = 0.5, t13 = 0.05, t12 = t23 =
0.1, Γ = 0.01, and T = 0.02 in units of U. The current
is plotted in units I0 = eΓ/~.

The bias voltage dependence of the Fano factor is pre-
sented in Fig. 2b. At zero bias voltage the Fano factor
is divergent due to the fact that the current vanishes
while the noise is finite due to thermal fluctuations. On
the other hand, in the bias range where the system is
trapped in the dark state, the shot noise becomes super-
Poissonian [7, 8]. For given parameters, the Fano factor
reaches F ≈ 2.5 for B = 0, and F >>∼ 4 when the system
is in finite magnetic field B.

When the dots’ levels are set to εj = ε = −U/2, at
zero bias the system is singly occupied. For assumed
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Fig. 3. The same as in Fig. 2 calculated for εj = ε =
−U/2.

parameters, the TQD can easily reach a two-electron
dark state. The current and Fano factor for this case
are shown in Fig. 3. For B = 0, the current exhibits a
plateau for 0.5 <∼ eV/U <∼ 1, which is related to two-
electron state entering the transport window, which is
not a dark one. Similarly to the previously analyzed
case, the dark state has higher energy than the first state
participating in transport. Therefore, in both cases we
are able to observe a strong peak in the current, fol-
lowed by sudden current suppression due to trapping
the system in a dark state. As can be seen in Fig. 3a,
the two-electron dark state enters the transport window
around eV/U ≈ 1 and has the following wave function:
|ΨDS2〉 = 1

2 (|d, 0, 0〉+ | ↑, 0, ↓〉 − | ↓, 0, ↑〉+ |0, 0, d〉). The
occupation of the second dot is again equal to zero, there-
fore the electrons are not able to reach the right electrode
and the current is blocked. However, the behavior of this
dark state in magnetic field is quite different from the
previous case. The difference results from the fact that
the two-electron dark state is formed by two particles of
opposing spin, i.e. it is a singlet state. Consequently,
this state is not split by external magnetic field. How-
ever, the one-electron and three-electron states that are
close in energy to this state are under strong influence

of magnetic field, and because of the Zeeman splitting
of those levels the current blockade shrinks with increas-
ing B. This is clearly visible in Fig. 3a. The bias voltage
range where the two-electron dark state is present gets
narrower as the magnetic field becomes stronger. Even-
tually, for the large enough field (B = U/2) the blockade
is lifted, however, a significant drop in current is still
visible.

The Fano factor dependence on V shown in Fig. 3b
again shows strong enhancement of shot-noise within the
blockade. The Fano factor for the two-electron dark state
is even higher than in previously discussed one-electron
case and reaches values F >>∼ 5. When the magnetic
field is present, due to the reduced size of the blockade,
the peak in the Fano factor also gets narrower. When
the magnetic field is strong enough to lift the blockade,
the Fano factor significantly drops as well (F < 3), see
Fig. 3b.

To conclude, we have studied the bias voltage depen-
dence of the current and the Fano factor for TQD sys-
tem in triangular geometry. We have focused on regimes
where the transport is blocked due to the presence of one
and two-electron dark states, and analyzed how the exter-
nal magnetic field influences transport in those regimes.
We have shown that the blockade’s position gets shifted
in the case of one-electron dark state, whereas in the
two-electron dark state regime, the presence of strong
magnetic field can lift the current blockade.
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We study the spin-polarized transport through a triple-quantum-dot molecule weakly coupled to ferromagnetic
leads. The analysis is performed by means of the real-time diagrammatic technique, including up to the second
order of perturbation expansion with respect to the tunnel coupling. The emphasis is put on the impact of dark
states on spin-resolved transport characteristics. It is shown that the interplay of coherent population trapping
and cotunneling processes results in a highly nontrivial behavior of the tunnel magnetoresistance, which can
take negative values. Moreover, a super-Poissonian shot noise is found in transport regimes where the current is
blocked by the formation of dark states, which can be additionally enhanced by spin dependence of tunneling
processes, depending on the magnetic configuration of the device. The mechanisms leading to those effects are
thoroughly discussed.

DOI: 10.1103/PhysRevB.97.075425

I. INTRODUCTION

Vast progress in theoretical and experimental studies of
artificial molecules, such as those realized in coupled quantum
dot systems, ceaselessly brings about many attractive and
relevant results and observations [1,2]. On the one side,
such nanostructures have promising applications for quantum
computation [3–5], where spin-polarized electron encodes a
qubit. On the other side, coupled quantum dots exhibit various
promising transport phenomena [6,7], which may be important
for novel spintronic and nanoelectronic devices. A particularly
prominent example of an artificial molecular nanostructure is
a system built of three quantum dots (TQD).

The properties of triple quantum dot systems have been
extensively studied in various regimes and configurations,
exposing rich Kondo physics [8–11], various transport effects,
and complex electron structure [12–17], as well as revealing
potential for applications in quantum computing [18–22] and
for generation of nonlocal, entangled electron pairs [23,24].
When the three quantum dots form a triangular geometry
[25–31], the system resembles a simple planar molecule and,
due to the interference effects, the formation of dark states
is possible [32–37]. This quantum-mechanical phenomenon
was first observed in atomic physics [38–41], and then found
also in mesoscopic systems, such as, in particular, coupled
quantum dots [42,43]. A dark state emerges when destructive
interference of electronic wave functions decouples the system
from one of the leads. When the system is in a dark state, it
results in a coherent electron trapping [42] and, consequently, a
strong current suppression, negative differential conductance,
and enhanced shot noise [32–35]. Interestingly, the dark states
in quantum dot systems are also considered to enable the
creation of spatially separated, spin-entangled two-electron
states [44] and, thus, open the possibility to build various
quantum logic devices as well as quantum memory [45]. It is

*wrzesniewski@amu.edu.pl

important to note that the mechanism of coherent population
trapping is very distinct from Coulomb, spin [46–49], and
Franck-Condon [50] blockades or Aharonov-Bohm [51] effect
on triangular quantum dots, to name a few.

All this provides a strong motivation for further consid-
erations of dark states in transport through triple quantum
dots and, in fact, there are still certain aspects that remain
unexplored. One of them involves the role of dark states
in spin-resolved transport behavior. In fact, spin-dependent
phenomena in transport through quantum dot systems are
currently intensively studied [52]. This is not only due to
expected applications for spintronics and spin nanoelectronics
[53], but also because of the possibility to controllably explore
the fundamental interactions between single charges and spins
[54]. First of all, the presence of ferromagnetic (FM) electrodes
introduces many qualitative and quantitative changes in trans-
port, resulting in magnetoresistive or spin diodelike behavior
[55–57]. Moreover, the effects, such as the suppression of the
Kondo effect with the emergence of an exchange field [58],
universal magnetoconductance scaling [59], an enhancement
of splitting efficiency of entangled Cooper pairs in QD-based
splitters [60,61], or spin thermoelectric effects [62–64] are all
among many interesting phenomena arising from the coupling
of quantum dots to FM leads. In this context, however, the
interplay between the coherent population trapping and spin-
resolved tunneling has so far hardly been explored. There-
fore, in this paper we address this problem and analyze the
spin-dependent transport through triple quantum dots weakly
attached to two ferromagnetic electrodes, focusing on the
parameter regime where the dark states form.

To determine the nonequilibrium transport characteristics,
we use the real-time diagrammatic technique [65], including
the first- and second-order diagrams with respect to the tunnel
coupling. This allows us to systematically include the sequen-
tial and cotunneling processes in the transport analysis. We
study the bias and gate voltage dependence of the current, dif-
ferential conductance and Fano factor in two different magnetic
configurations of the device: the parallel and antiparallel one.
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FIG. 1. Schematic of a triangular quantum dot system coupled to
ferromagnetic leads. The dot 1 (2) is attached to the left (right) lead
with coupling strength �σ

α , while the dots are coupled to each other
via the hopping matrix elements t .

Furthermore, by calculating the currents in the two magnetic
configurations we also determine the tunnel magnetoresistance
(TMR) of the system [55–57,66]. These quantities provide a
relevant insight into the spin-dependent transport properties
of the considered system and are especially interesting in the
regimes where dark states are present. In particular, we focus
on the transport regimes where one- and two-particle dark
states and their hole counterparts form. We show that when the
system is trapped in a dark state, the current flows mainly due
to cotunneling processes. Moreover, depending on a particular
type of dark state, we find a strong dependence of the current
on magnetic configuration of the device, which results in a
nontrivial behavior of the TMR. A similarly strong dependence
on magnetic configuration is also found in the case of shot
noise, which is generally super-Poissonian in the dark state
regions.

The paper is structured as follows. Section II consists
of a model description and the method used for numerical
calculations. In Sec. III we present the numerical results and
relevant analysis. This section is divided into four subsections
relating to different types of examined dark states. Finally, the
work is concluded in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Model

The schematic of the considered system built of three single-
level quantum dots forming a triangular geometry is presented
in Fig. 1. The dots are coupled to each other via the hopping
matrix elements t . The first (second) dot is weakly coupled to
the left (right) ferromagnetic electrode with the respective spin-
dependent coupling strength �σ

α . We consider two collinear
magnetic configurations of the electrodes: the parallel (P) one,
where both leads’ magnetizations point in the same direction
(two red arrows in Fig. 1) and the antiparallel (AP) one, where
the magnetizations point in opposite directions (red and green
arrows). The change of the system’s magnetic configuration
can be triggered upon applying a weak external magnetic field,
provided the coercive fields of ferromagnets are different. This
field is weak enough such that the Zeeman energy associated
with this field can be neglected.

The total Hamiltonian of the system is given by

H = HLeads + HTQD + HT, (1)

where the first term,

HLeads =
∑

α=L,R

∑
kσ

εαkσ c
†
αkσ cαkσ , (2)

describes the left and right ferromagnetic leads in the noninter-
acting quasiparticle approximation. Here, the operator c

†
αkσ is

the creation operator of an electron with spin σ , momentum k,
and energy εαkσ in the left or right (α = L,R) electrode. The
second term of the Hamiltonian models the triple quantum dot
and reads

HTQD =
∑
jσ

εjnjσ + Uj

∑
j

nj↑nj↓ + Uij

2

∑
〈ij〉

∑
σσ ′

niσ njσ

+
∑
〈ij〉

tij

2

∑
σ

(d†
iσ djσ + d

†
jσ diσ ). (3)

The on-site energy is given by εj , with njσ = d
†
jσ djσ and d

†
jσ

being the creation operator of an electron with spin σ in the
j th quantum dot. The intra- and interdot Coulomb interactions
are of strength Uj and Uij , respectively. The hopping between
the dots t is assumed to be equal between each pair of the dots.

The last term of the Hamiltonian accounts for the tunneling
between TQD and the leads, and it takes the standard form

HT =
∑
kσ

(vLc
†
Lkσ d1σ + vRc

†
Rkσ d2σ + H.c.) , (4)

where vL and vR are the tunnel matrix elements between the
left and right leads and the corresponding dots. The dot-lead
coupling strength is given by �σ

α = 2π |vα|2ρσ
α , with ρσ

α being
the spin-dependent density of states of lead α. Using the
definition of spin polarization of ferromagnetic lead α, pα =
(ρ+

α − ρ−
α )/(ρ+

α + ρ−
α ), the couplings can be written as �±

α =
�α(1 ± pα) for the spin majority (σ = +) or minority (σ = −)
subband, where �α = (�+

α + �−
α )/2. We assume equal left

and right coupling strengths, �L = �R ≡ �. The applied bias
voltage is also assumed to be symmetrical, μL = eV/2 and
μR = −eV/2.

B. Method

The spin-resolved transport properties of the considered
system are calculated with the aid of the real-time diagram-
matic technique [65,67–69]. This method relies on perturbation
expansion of the reduced density matrix and the corresponding
operators with respect to the coupling strength �. Here we
perform all calculations including the first order, accounting
for sequential tunneling processes, and the second order of
expansion, which describes cotunneling.

The reduced density matrix in the steady state can be found
from [65]

Wp = 0, (5)

with the normalization condition Tr{p} = 1. In the above
equation W is a matrix, the elements Wχχ ′ of which describe
transitions between the TQD many-body states |χ〉 and |χ ′〉,
while p denotes the probability vector. The states |χ〉 are the
eigenstates of HTQD obtained from the numerical solution of
the eigenvalue problem. Note that the triple-dot Hamiltonian
HTQD is not diagonal in the local occupation basis. However,
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in order to explain the microscopic mechanism of the dark
states and the blocking of transport through the system, we
will often express the states |χ〉 as superpositions of local
occupation states. Therefore, we assume that a ket in local
occupation basis represents occupation of consecutive dots in
the following way: |χ1χ2χ3〉, where χj denotes the allowed
(0,σ and d) local states, which stand for empty, spin σ , and
doubly occupied dot j , respectively. Moreover, to distinguish
between different states of the system, we will additionally use
the quantum numbers corresponding to the total charge Q and
spin zth component Sz of the TQD, |Q,Sz〉.

The elements of matrix W are exactly related to self-
energies, 	χχ ′ = iWχ ′χ , which can be determined diagram-
matically order by order in � [65,67–69]. A given order in
� corresponds to the respective number of tunneling lines in
diagrams; therefore to find the first- and second-order con-
tributions, we consider all topologically different, irreducible
diagrams with one and two tunneling lines. An exemplary
calculation of two different diagrams can be found in the
Appendix. The perturbation expansion of the matrix W starts in
the first order in �, while that of p starts in the zeroth order. The
corresponding probabilities can be found from the following
kinetic equations [65]:

W(1)p(0) = 0 (6)

and

W(2)p(0) + W(1)p(1) = 0, (7)

including Tr{p(n)} = δ0,n.
The current flowing through the system can be calculated

from [68]

I = e

2h̄
Tr{WI p}, (8)

where WI is the self-energy matrix, which accounts for the
number of electrons transferred through the TQD system. For
the current we again perform the perturbation expansion, such
that the current in the first order is given by

I (1) = e

2h̄
Tr{WI (1)p(0)}, (9)

while the second-order current can be found from

I (2) = e

2h̄
Tr{WI (2)p(0) + WI (1)p(1)}. (10)

The total current, i.e., the first-order (sequential) plus the
second-order (cotunneling) current, is then simply given by

I = I (1) + I (2). (11)

In addition to the current we also study the tunnel magne-
toresistance, which describes the change of system’s transport
properties when the magnetic configuration of the device is
varied. The TMR can be defined as [55–57,66]

TMR = IP − IAP

IAP
, (12)

where IP (IAP ) denotes the current flowing through the TQD
system in the parallel (antiparallel) magnetic configuration of
ferromagnetic leads.

Finally, we also determine the zero-frequency shot noise S

and the corresponding Fano factor F = S/(2|eI |), describing
the deviation of the shot noise from the Poissonian value, SP =
2|eI |. A detailed description of how to compute the current
fluctuations within the real-time diagrammatic technique in
a given order of expansion can be found in Ref. [68]. By
comparing the shot noise to the Poissonian noise SP , one can
obtain additional information about the statistics of tunneling
processes which is not contained in the average current [70]. In
particular, for F < 1, the shot noise is sub-Poissonian and its
reduction is related to antibunching of tunneling events, which
are correlated by the charging effects. On the other hand, when
F > 1, the noise is super-Poissonian and is associated with
some bunching mechanism, e.g., due to the Coulomb blockade
[68,70].

We note that in order to perform the perturbation expansion,
the coupling strength � is assumed to be the smallest energy
scale in the problem. Therefore, the approximations made
here allow us to study only the weak-coupling limit, while
the higher-order correlations, such as those leading to the
Kondo physics [71–73], are not captured. Nevertheless, the
obtained results are reliable above the exponentially small
Kondo temperature in a wide range of finite bias and gate
voltage, which makes this analysis relevant for present and
future experimental investigations of transport through multi-
quantum-dot systems.

III. RESULTS AND DISCUSSION

In this section, we analyze the transport properties of the
considered system for a set of parameters, allowing for the
formation of one- and two-particle dark states in the TQD.
We want to emphasize that there are several possible means
to obtain dark states in such systems. An important factor is
to distinguish one of the relevant quantum dots by detuning
its parameters from the remaining two dots. For instance, this
can be obtained by dot-j energy-level detuning εj = ε ± �ε,
which was already considered [35]. Here, we follow the
approach proposed by Pöltl et al. [33], where the formation
of dark states is conditioned by an appropriate adjustment of
Coulomb interactions, while the dots’ energy levels are the
same, εj = ε, and all the interdot hoppings are also equal.
Experimentally, such a setup can be achieved by appropriate
tuning of the dot’s size and proper position arrangement.

The absolute value of the current in the parallel magnetic
configuration with the corresponding differential conductance,
as well as the sequential and total (sequential plus cotunneling)
TMR, are shown in Fig. 2 as a function of the bias voltage V

and the position of the dots’ levels εj = ε. Since ε can be
tuned experimentally by a gate voltage, this figure effectively
presents the gate and bias voltage dependence of transport
characteristics. Because a typical transport behavior of TQD
systems is already relatively well known [29,31,74,75], we
will mainly point out the differences due to the chosen set of
parameters of the discussed model and especially focus on the
effects related to the formation of dark states.

The triple quantum dot, as a multilevel system, is char-
acterized by a relatively complex Coulomb diamond pattern.
A first general observation is that, due to different Coulomb
interactions relevant for the second dot (j = 2), which is
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FIG. 2. (a) The absolute value of the current and (b) the dif-
ferential conductance in the case of parallel configuration, (c) the
sequential and (d) total (sequential plus cotunneling) TMR calculated
as a function of bias voltage and the position of the dots’ levels
εj = ε. The parameters are U1 = U2 = U3 = U13 = U , U12 = U23 =
U − �, where � = U/5, t = 0.1, � = 0.01, T = 0.03 in units of
U ≡ 1, and p = 0.5. The current is plotted in units of I0 = e�/h̄.
The dotted vertical lines in (a) indicate the cross sections related with
dark states discussed in further sections. Dashed lines together with
arrows show the ranges of voltages where the current is blocked due
to the formation of dark states. The numbers in brackets in (b) indicate
the TQD total occupation number in consecutive Coulomb blockade
regimes.

coupled to the right lead (cf. Fig. 1), the magnitude of the
current is not the same in both directions with respect to the
applied bias voltage [see Fig. 2(a)]. The current flowing in
the positive bias voltage direction is significantly lower, con-
trary to the current flowing in the opposite direction. For low
bias, the pattern exposes strong Coulomb blockade regimes
with an easily distinguishable number of electrons occupying
the TQD [see Fig. 2(b)].

Assuming that the hopping between the dots is much smaller
than the corresponding inter- and intradot correlations, one
can estimate the energies at which the occupation of TQD
changes and there is a resonant peak in the linear conductance.
In particular, for ε � 0 (ε � −5U + 2�), the TQD system
is unoccupied (fully occupied with six electrons). When
−U + � � ε � 0 there is a single electron on the TQD, for
−2U + � � ε � −U + � there are two electrons on the triple
dot, and for −3U + 2� � ε � −2U + � the TQD is triply
occupied. On the other hand, when −4U + 2� � ε � −3U +
2� (−5U + 2� � ε � −4U + 2�), the TQD is occupied
by four (five) electrons. The respective electron numbers are
indicated in brackets in Fig. 2(b).

The most interesting features visible both in the current
and the differential conductance are four extended regions
of current blockades, where I ≈ 0, outgoing from the one-,
two-, four-, and five-electron Coulomb blockade regimes.
The current is suppressed along the energy levels of formed
dark states, as they enter the transport window, and strong
negative differential conductance lines visible in Fig. 2(b) are
the signatures of that transport phenomena. The presence of
dark states also introduces a strong asymmetry in the bias
dependence of the current, resulting in substantial rectifying
properties of the system.

Two of these dark states are formed for TQD energy levels
ε close to the Fermi energy (ε = 0) and are accessible by
applying the bias voltage. The dots’ occupation numbers in
those dark states are respectively equal to 1 and 2. For the
following discussion, we therefore label the corresponding
states as one- and two-electron dark states: |DS1〉 and |DS2〉.
On the other hand, the two blockades emerging for ε � −4U +
2� (see Fig. 2) are related to the formation of two- and one-hole
dark states, |DS2〉h and |DS1〉h, which are symmetric to the
aforementioned electron dark states under the particle-hole
transformation. The occupation number of the TQD in these
states is equal to four and five electrons, respectively; however,
it is more convenient to analyze the opposite-direction hole
transport in those transport regimes. It is also important to
notice that the electron dark states are formed for the opposite
sign of the applied voltage bias, as compared to the hole dark
states (see Fig. 2). A detailed description of these electron and
hole dark states is the main content of the following sections.

In Fig. 2 we present the current and differential conductance
only in the case of parallel magnetic configuration. The trans-
port behavior is qualitatively very similar in the antiparallel
configuration and the differences are well captured by the
TMR, which is shown in Fig. 2(d). To elucidate the role of
cotunneling in transport, in Fig. 2(c) we also show the TMR
obtained using only the sequential tunneling processes. First
of all, one can note that the TMR behavior within the dark
state regimes is quite nontrivial. While for a wide range of bias
and gate voltages, one observes a typical spin valve behavior
with |IP | > |IAP |, resulting in TMR > 0 [57], this is not the
case in the dark state regimes. It can be seen that within the
one-electron and one-hole dark states, the TMR takes relatively
small values in the sequential tunneling approximation and
is strongly modified by cotunneling [cf. Figs. 2(c) and 2(d)],
which can lead to a sign change of the TMR. On the other
hand, both two-electron and two-hole dark state regions are
characterized by large negative TMR, TMR ≈ −0.25, which
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is much less affected by second-order processes. In fact,
these two dark states generate the most significant regions
of negative TMR in the system, which implies that, quite
counterintuitively, the antiparallel current is exceeding the
current flowing in the parallel configuration, |IP | < |IAP |.
This behavior is explained in detail in the following sections.
Finally, it is also important to note that cotunneling strongly
modifies the TMR value for the empty (fully occupied) system,
i.e., for low bias and ε � 0 (ε � −5U + 2�). In these transport
regions the TMR reaches Julliere’s value [66], which is due
to the presence of only elastic cotunneling processes [56].
One then finds TMR = TMRJull = 2/3 for the considered spin
polarization p = 0.5.

A. One-electron dark state

In this section we analyze in greater detail the system’s
transport behavior for such gate voltages where the one-
electron dark state |DS1〉 is formed. Before proceeding with
a discussion of distinct transport features, let us first make
a comment regarding the choice of parameters. As already
mentioned, to observe dark states it is crucial to introduce
some asymmetry between the dots. In the present paper this
is obtained by allowing for different Coulomb correlations
between the dots. However, contrary to multielectron states, the
one-electron states are not influenced by Coulomb correlations.
Consequently, the assumed asymmetry in Coulomb interac-
tions cannot result in breaking of the symmetry of electronic
density distribution in the TQD in the one-electron regime.
Therefore, in order to generate an appropriate dark state within
the one-electron sector of the TQD Hamiltonian, we introduced
a very small detuning to the hopping parameter between the
first and third dot, t13 = t − δt , with δt = 10−2t . This fine tun-
ing of parameters suffices to find a dark state in the one-electron
parameter space. We note that in an experimental setup, it is
often of great difficulty to prepare such a complex system
in perfect symmetry; consequently, it should be possible to
satisfy the condition favoring the formation of dark states. We
also notice that this small detuning does not affect the other
dark states which form due to asymmetry introduced by the
difference in corresponding Coulomb correlations.

The bias voltage dependence of the current, differential
conductance and the Fano factor in both parallel and antipar-
allel magnetic configurations as well as the TMR is shown
in Fig. 3. In the absence of applied voltage, the system’s
ground state is given by |Q=0,Sz =0〉 = |000〉 and the TQD
is empty. By increasing the positive bias voltage, eV > 0,
the first one-electron state enters the transport window. It is

the following spin doublet, |Q=1,Sz =± 1
2 〉 =

√
2
3 |0σ0〉 −

1√
6
(|σ00〉 + |00σ 〉). This state is a superposition of a single

electron delocalized over all three dots. It is important to note
here that both the left and right leads are coupled to the dots
with finite electron occupation. Therefore the current can flow
through the system, and transport takes place by tunneling
processes between the above-mentioned excited state |Q=
1,Sz =± 1

2 〉 and the empty TQD state. As a result, there is a
peak in the current for eV/U ≈ 0.25, i.e., for voltages at which
the first excited state enters the transport window, preceded by
an associated differential conductance peak [see Fig. 3(c)].
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FIG. 3. The bias voltage dependence of (a) the current, (c) the
differential conductance, and (d) the Fano factor in the parallel and
antiparallel magnetic configurations as well as (b) the TMR in the
transport regime where the one-electron dark state |DS1〉 forms. The
inset in (a) presents the closeup of the system’s behavior in the dark
state regime, where the sequential and total currents are shown on the
logarithmic scale. The dashed (solid) lines correspond to sequential
(sequential plus cotunneling) results. The dots’ energy levels are
ε/U = 0.2, while the other parameters are the same as in Fig. 2.
Note that in order to obtain a one-electron dark state we introduced a
small detuning in the hopping integral between the first and third dot,
t13 = t − δt , with δt = 10−2t .

Further increase of the applied bias voltage enables the next
excited state to enter the transport window, which is, however,
the following one-electron dark state doublet:

|DS1〉 =
∣∣∣∣Q = 1,Sz = ±1

2

〉
DS

= 1√
2

(|σ00〉 − |00σ 〉).

This state is dominating transport in a wide range of bias
voltage, 0.4 � eV/U � 1.7, resulting in a strong current
suppression and negative differential conductance right before
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FIG. 4. Graphical representation of the one-electron dark state
|DS1〉. The electron density is distributed between dots 1 and 3,
leaving dot 2 unoccupied and thus blocking the transport through
the right junction.

the current plateau [see Figs. 3(a) and 3(c)]. The form of this
dark state is as follows: The electron occupies evenly the first
and third dots, while the amplitude on the second dot is equal
to zero. As the electronic density is completely distributed
between dots 1 and 3 (see Fig. 4 for a graphical representation
of this dark state), the electron is not able to leave the system
through the second dot and further tunnel to the right electrode
coupled with that dot. It stays trapped in the TQD system,
completely blocking the current. Only if the bias voltage is
increased above eV/U � 1.7 is the blockade lifted as more
states enter the transport window.

One can see that the current dependence shows a similar be-
havior in both magnetic configurations, with generally higher
absolute values in the parallel configuration compared to the
antiparallel one. In the dark state region, when only sequential
tunneling processes are included, TMRseq is relatively low.
Despite the leads’ spin polarization the system stays in |DS1〉
with equal probabilities of both spin components, and in both
configurations the current has a similar value. When the system
is empty, the tunneling of majority-spin electrons from the
left lead is of higher probability. However, the occupation
probabilities of both spin directions are balanced by the fact
that the tunneling event in the opposing direction, from the
TQD back into the left electrode, is also of higher probability
for the electron with the spin zth component aligned with the
left electrode spin polarization. Nevertheless, as can be clearly
seen in the inset of Fig. 3(a), the sequential processes get
exponentially suppressed in the dark state region, while the
dominant contribution to the current comes from cotunneling,
in which electrons can be transferred between the left and right
leads through virtual states of the system. Thus, an accurate
analysis of the system’s spin-resolved transport behavior re-
quires resorting to the second-order processes. One can see
that cotunneling enhances the TMR in the dark-state region,
which has a maximum around eV/U ≈ 1.3, indicating that
elastic processes are relevant for transport. In such processes
the spin of the transferred electron is conserved, which tends
to enhance the magnetoresistive properties of the device.

Let us now discuss the behavior of the Fano factor in the
considered transport regime. Out of the blockade regime the
Fano factor is generally sub-Poissonian due to the fact that
the tunneling events are correlated by Coulomb correlations.
In the low-bias range, the Fano factor becomes divergent since
the current vanishes in the zero-voltage limit, while the noise is
still finite due to thermal fluctuations. An interesting behavior

can be observed within the dark-state bias window, where a
moderately enhanced super-Poissonian shot noise develops.
When only the first-order processes are included, the Fano
factor reaches values F � 3 in both magnetic configurations
[see Fig. 3(d)]. However, cotunneling processes reduce this
value to F ≈ 2 in whole blockade range, irrespective of
magnetic configuration. The reduction of the shot noise due
to cotunneling in the dark-state region is in agreement with
numerical results obtained earlier for a similar system, but with
nonmagnetic leads [35].

B. Two-electron dark state

When the position of the TQD’s energy levels is lowered
to ε/U = −0.5, the ground state of the system changes
to the one-electron spin doublet state, |Q=1,Sz =± 1

2 〉 =√
2
3 |0σ0〉 − 1√

6
(|σ00〉 + |00σ 〉). By applying the bias voltage

in the positive direction, it is possible to reach a two-electron
dark state, which is responsible for another strong current
suppression. This can be seen in Fig. 5, which presents the
corresponding transport behavior of the system. First, with in-
creasing the bias voltage, for eV/U � 0.3, the current exhibits
the first Coulomb step associated with a two-electron state
entering the transport window. However, around eV/U ≈ 1,
see Fig. 5(a), the current suddenly drops due to the following
singlet dark state (|DS2〉 = |Q=2,Sz =0〉DS),

|DS2〉 ≈ 1

2
(|d00〉 + |↑0↓〉 − |↓0↑〉 + |00d〉),

entering the transport window. The distribution of electronic
density in this state has a similar feature to the one-electron
dark state (cf. Fig. 4), i.e., the occupation of the second dot has
a vanishing amplitude. Nonetheless, in the present case, there
is a very small but finite amplitude on dot 2, allowing for a
current leakage [see the inset of Fig. 5(a)]. The presence of dark
state again results in a large negative differential conductance,
clearly visible in Fig. 5(c).

On the other hand, the TMR is a very sensitive quantity that
helps to identify nontrivial behavior within current blockades.
One can see that the TMR behavior in the regime where the
system is trapped in the state |DS2〉 is different from the
one-electron dark state (|DS1〉) case. The TMR has a negative
sign in almost the whole blockade regime, which also extends
slightly above eV/U ≈ 2, where the consecutive Coulomb
step appears and the new states enter the transport window,
allowing for current flow. The minimum in TMR is well
below TMRseq � −0.3 in the sequential approximation, with
cotunneling slightly modifying this value to TMR ≈ −0.2 [see
Fig. 5(b)].

This particular magnetoresistive behavior can be under-
stood by taking a closer look at the transport processes occur-
ring in this regime. First of all, we note that the negative TMR is
predicted in the sequential approximation and cotunneling only
slightly modifies it.1 Therefore, in order to identify the most

1Note that now the role of cotunneling is not that crucial as in the
case of a one-electron dark state, since there is a small leakage current
due to sequential tunneling processes resulting from extremely small
but finite occupation of the second dot.
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FIG. 5. The bias voltage dependence of (a) the current, (c) the
differential conductance, and (d) the Fano factor in the parallel and
antiparallel magnetic configurations as well as (b) the TMR in in the
two-electron dark state |DS2〉 transport regime. The parameters are
the same as in Fig. 3 with ε/U = −0.5.

important processes for the effect of negative TMR, let us make
a careful analysis of calculated quantities considering sequen-
tial tunneling. The most important factor in this case is how
the reduced density matrices for both magnetic configurations
vary between each other. In the case of parallel configuration,
the occupation probability of |DS2〉 is close to unity in whole
bias range of the blockade, p|DS2〉 → 1. However, this is not the
case for the antiparallel configuration, where with an increase
of the bias voltage, there is another state, |Q=2,Sz =±1〉 =√

7
8 |σ0σ 〉 + 1

4 (|σσ0〉−|0σσ 〉), that starts to get small nonzero
probability. It is a two-electron state, polarized in the same
direction as the left electrode, with finite electron density on
each quantum dot. We note that the occupation of the second
dot is finite in this state, which eventually increases the current
in the antiparallel configuration compared to the parallel one.

To find the reason for the difference in probability distri-
butions, we need to consider and compare the dominating
processes in both magnetic configurations. In the parallel
configuration, when the system leaves the singlet dark state
|DS2〉 by removing one of the majority-spin electrons, which
is a process of finite but very small probability, the TQD
remains occupied by a minority-spin electron. The immedi-
ate consecutive tunneling event brings another majority-spin
electron onto the TQD restoring |DS2〉 dark state, such that
the system remains trapped in this state for a relatively long
time and, as a result, p|DS2〉 → 1. In the case of antiparallel
configuration, a more complex tunneling sequence defines
the dominating scenario. Now, the system leaves the two-
electron dark state |DS2〉 by tunneling of the electron with spin
aligned along the polarization of the right lead; however, in the
antiparallel configuration, this is the opposite spin direction to
the magnetization of the left lead. This event leaves the TQD
with the electron of spin aligned along the magnetization of the
left electrode. Consecutive tunneling of another majority-spin
electron from the left lead is now preferred, which results
in a transition to the state |Q=2,Sz =±1〉 instead of a transi-
tion to |DS2〉, which was the case in the parallel configuration.
In consequence, the probability of the state |Q=2,Sz =±1〉 is
enhanced, which results in a larger current in the antiparallel
configuration compared to the parallel one [see Fig. 5(a)].

The difference in sequences of the most probable transport
processes in both magnetic configurations is also visible in the
behavior of the shot noise, which is shown in Fig. 5(d). One
can see that now the shot noise is enhanced in the dark state
region compared to the one-electron dark state case. Moreover,
there is a large difference in the Fano factor in both magnetic
alignments. The Fano factor reaches F ≈ 7 in the antiparallel
configuration and F ≈ 4 in the case of parallel configuration.
Note also that the influence of cotunneling on the shot noise
is now much smaller compared to the case shown in Fig. 3(d),
which is due to the reasons discussed above.

C. Two-hole dark state

The transport region with values of TQD’s energy levels
ε/U � −4 also displays nontrivial transport characteristics
(see Fig. 2). The triple dot is then occupied with a rela-
tively high number of electrons. There are two strong current
blockades located on the opposite sign of applied bias voltage
(compared to previously discussed cases), which, similarly, are
formed due to the presence of the dark states. Moreover, the
dark states in those regimes consist of four and five electrons
trapped in the system.

Let us first discuss the transport regime where the
TQD is occupied by five electrons in the absence of
applied bias. The associated transport characteristics
calculated for ε/U = −4 are presented in Fig. 6.
The ground state of the system is then given by the
following (unnormalized) doublet state: |Q=5,Sz =± 1

2 〉 =
2t(|σdd〉 + |ddσ 〉) + (

√
4�2 + 4t� + 9t2 − 2� − t)|dσd〉.

The first excited state, which is responsible for the first
Coulomb step in the direction of negative bias voltage,
is |Q=4,Sz=0〉= 1√

6
(|0dd〉 − |↑d ↓〉 + |↓d ↑〉 + |dd0〉) +

1√
12

(|d ↑↓〉 + |↓↑d〉 − |↑↓d〉 − |d ↓↑〉). It is a four-electron

075425-7

66
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FIG. 6. The bias voltage dependence of (a) the current, (c) the
differential conductance, and (d) the Fano factor in the parallel and
antiparallel magnetic configurations, as well as (b) the TMR in the
transport regime where the two-hole dark state |DS2〉h occurs. The
parameters are the same as in Fig. 3, with ε/U = −4.

state built of an eight-component linear combination of local
occupation basis states, which allows for transport together
with the five-electron ground state. The crucial factor for the
charge transport to happen is that the state |Q=4,Sz =0〉
allows for transitions to the five-electron state by means
of the tunneling process of an electron from the right lead
onto the TQD. Such processes can happen when the second
dot coupled to the right electrode is not fully occupied in
the considered state. This is, however, not the case for the
next state, which enters the transport window with further
increase of the bias voltage. This state results in the current
blockade, which appears for negative bias voltage in the range
of −2.2 � eV/U � −1.2 [see Fig. 6(a)]. The explicit form of
this four-electron singlet dark state (|DS2〉h=|Q=4,Sz=0〉DS)

is the following:

|DS2〉h ≈ 1

2
(|↓d ↑〉−|↓d ↑〉 − |dd0〉 + |0dd〉). (13)

In this case, when the system is trapped in state |DS2〉h, the
possibility of transition to the five-electron state is blocked.
Each of the components building this state contains a fully
occupied second dot; therefore tunneling of the electron from
the lead through the right junction is prohibited. In order to
leave this state, the electron has to either tunnel from the TQD
through the left junction, however the three-electron states are
above the transport window, or tunnel back through the right
lead, which is an event of very low probability. Consequently,
the system becomes trapped in the two-hole dark state |DS2〉h
and the current blockade develops.

It is convenient and more intuitive to analyze the transport
properties in this regime when the TQD states are considered
in the hole basis (h−basis). With the following electron-hole
transformation of local dot’s states, |0〉 → |d〉h, |σ 〉 → |σ̄ 〉h,
and |d〉 → |0〉h, we can rewrite |DS2〉h as

|DS2〉h ≈ 1

2
(|↑0↓〉h − |↓0↑〉h − |00d〉h + |d00〉h). (14)

Now, the blockade can be understood as the effect of negative
interference forming a two-hole dark state, where the second
dot is completely unoccupied by holes (doubly occupied by
electrons). Then, the second dot is effectively decoupled from
the right lead and the hole transport through this junction is
suppressed.

Because the structure of the two-hole dark state is quite
similar to the two-electron dark state, the transport behavior
is qualitatively similar in the two cases, cf. Figs. 5 and 6.
First of all, the range of the bias voltage where the dark
state dominates transport is of comparable size. Moreover,
the behavior of the TMR is also qualitatively similar, i.e., in
the whole range of bias where the current is suppressed the
TMR has negative values, TMR ≈ −0.2 [see Fig. 6(b)]. The
mechanism leading to such behavior is the same as in the case
analyzed in Sec. III B. The enhanced Fano factor in the dark
state regime reaches F ≈ 8 in the antiparallel configuration
and is reduced to F ≈ 5 in the case of parallel configuration.
A subtle difference when comparing the Fano factor behavior
in the case of dark states |DS2〉 and |DS2〉h is that for the latter
case the strongly enhanced value is present in the whole range
of the current blockade. This is contrary to the two-electron
dark state case, where there is a small range of bias voltage in
the blockade with significantly lower values of the Fano factor,
F ≈ 2, coincidental with TMR ≈ 0.

D. One-hole dark state

Finally, in this section we discuss the transport regime
where one-hole dark states are formed. To realize such a
situation, we set the TQD energy levels to ε/U = −5, so
that for zero bias the system is fully occupied and the ground
state is |Q=6,Sz =0〉 = |ddd〉. The corresponding transport
characteristics are displayed in Fig. 7. When applying the
negative bias voltage, the system starts to conduct the current
around eV/U ≈ −0.4 and then, for larger voltages, there is
a wide blockade for −2.2 � eV/U � −1.2 [see Fig. 7(a)].
The dark state responsible for this current suppression is
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FIG. 7. The bias voltage dependence of (a) the current, (c) the
differential conductance, and (d) the Fano factor in the parallel and
antiparallel magnetic configurations, as well as (b) the TMR in in the
one-hole dark state |DS1〉h transport regime. The parameters are the
same as in Fig. 3 with ε/U = −5.

the following doublet state: |DS1〉h = |Q=5,Sz =± 1
2 〉DS =

1√
2
(|σdd〉 − |ddσ 〉). Similarly to the previous case of a two-

hole dark state, we again see that the second dot is fully
occupied by two electrons. This configuration blocks the
electron flow through the right junction onto the TQD, which
is the promoted direction by the applied bias. The tunneling
processes through the left junction are now also energetically
very unfavorable and, as a result, the system remains trapped
in the dark state |DS1〉h blocking the current. The discussed
dark state can be also conveniently written in the hole basis as

|DS1〉h = 1√
2

(|σ00〉h − |00σ 〉h). (15)

It can be now clearly seen that the above one-hole dark state
has a similar form to |DS1〉 discussed in Sec. III A (see also

Fig. 4). Consequently, we find that the blocking mechanism
and interference effects are analogous in the two cases, with the
difference that the holes are considered instead of the electrons.

The TMR behavior in the current blockade regime also
has some similarities to the case of the |DS1〉 dark state. In
both cases the current obtained within the sequential tunneling
approximation is relatively low and the transport behavior is
predominantly determined by cotunneling processes. Further-
more, in the case of a one-hole dark state, cotunneling results in
a sign change of the TMR in the middle of the blockade, where
the first-order processes resulted in a maximum [see Fig. 7(b)].
This clearly confirms that the second-order processes are
important and dominate in this transport regime. Moreover,
these processes strongly enhance the current in the antiparallel
configuration. However, the region of negative TMR is now
significantly smaller than those predicted in the case of current
blockades caused by the formation of two-particle dark states
|DS2〉 and |DS2〉h. Finally, one can also see that the Fano factor
is consistently enhanced in the |DS1〉h dark state regime, reach-
ing F ≈ 3.5 in both magnetic configurations [see Fig. 7(d)].

IV. CONCLUSIONS

In this paper we have studied the influence of dark states
on the spin-resolved transport properties of a triple quantum
dot molecule attached to ferromagnetic contacts. The consid-
erations were performed by using the real-time diagrammatic
method and considering both sequential and cotunneling pro-
cesses. By optimizing the system parameters, we have shown
that the current flowing through the device can be blocked due
to the coherent population trapping in a dark state. We have
analyzed the transport behavior in the case of various dark
states in the system, including one- and two-particle (either
electron or hole) dark states. In all those cases we have shown
that transport is mainly determined by cotunneling processes
which result in a great modification of the magnetoresistive
properties of the system. In particular, we have demonstrated
that the interplay of spin-polarized transport with two-particle
dark states can lead to negative tunnel magnetoresistance.
Moreover, we have found super-Poissonian shot noise in the
current blockade regimes, which can be additionally enhanced
by spin dependence of tunneling processes. Finally, we have
also indicated that the dark states with high number of electrons
can be conveniently understood and analyzed as states formed
by interference of holes, and the resulting transport characteris-
tics can be discussed within the hole current framework. In this
respect, we have also emphasized some similarities between
the transport regions with the electron and hole dark states
containing the same numbers of particles.
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APPENDIX: DETAILS OF CALCULATIONS

In this Appendix we present the details of the performed cal-
culations with the aid of the real-time diagrammatic technique
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approach. In order to solve the kinetic equation (5) and obtain
the density matrix elements, one has to find the self-energies
	χχ ′ which are related to the elements of matrix W through
	χχ ′ = iWχ ′χ . The most difficult part of the calculations is
to evaluate all irreducible, topologically different diagrams
describing tunneling processes, which can be done with the
aid of the diagrammatic rules [65,67]. Because in this paper
we studied the effects of sequential tunneling and cotunneling,
one needs to determine the self-energies up to the second
order of perturbation expansion in the tunnel coupling �. In
practice, it is necessary to consider all the diagrams containing
one and two tunneling lines. Below, we present exemplary
contributions from the first- and second-order diagrams, as well
as their contributions to one specific self-energy.

1. First-order diagrams

The first-order diagrams involve a single tunneling line.
Below, we show a diagram contributing to the following
first-order self-energy 	

(1)
χ(N)χ ′(N+1):

= (−1)1
∑

j

∫
dω

γασ (ω)

ω − εχ ′ + εχ + iη
|〈χ ′|d†

jσ |χ〉|2,

where γασ = �σ
α

2π
fα(ω) is a factor associated with each tun-

neling line, fα(ω) is the Fermi-Dirac distribution of lead
α, and η = 0+. This diagram corresponds to an electron
with spin σ tunneling from the lead α, between |χ (N )〉 and
|χ ′(N + 1)〉 states, where N indicates total occupation number
N = ∑

jσ njσ .
When all the topologically different first-order diagrams

are evaluated, the respective self-energies can be determined.
In particular, the self-energy 	

(1)
χ(N)χ ′(N+1) is given by

	
(1)
χ(N)χ ′(N+1) = 2πi

∑
ασ

∑
j

γασ (εχ ′ − εχ )|〈χ ′|d†
jσ |χ〉|2.

2. Second-order diagrams

The second-order diagrams involve two tunneling lines.
Here, as an example we present a contribution from a diagram
that contributes to the second-order self-energy 	

(2)
χ(N)χ ′(N+2)

due to two tunneling events of electrons with spins σ , σ ′,

tunneling from the leads α, α′. It is given by

= (−1)3
∑
χ ′′χ ′′′

∑
jj ′

∫∫
dω1dω2

γασ (ω1)

−ω1 − εχ + εχ ′′′ + iη

× γα′σ ′(ω2)

−ω1 + ω2 − εχ ′′ + εχ ′′′ + iη

1

ω2 − εχ ′ + εχ ′′′ + iη

×〈χ |djσ |χ ′′′〉〈χ ′′′|dj ′σ ′ |χ ′〉〈χ ′|d†
jσ |χ ′′〉〈χ ′′|d†

j ′σ ′ |χ〉.
An important step simplifying the calculations is to use
the mirror rule. By reflecting any diagram horizontally and
changing directions of all tunneling lines, one obtains the
contribution which is an opposite sign complex conjugate of
the initial diagram. The pairs of such symmetric diagrams
contribute only with summed imaginary parts, while the real
parts cancel out. The integrations in the above formula can be
performed analytically by using the Cauchy’s principal value
theorem and realizing that integrals of the form

Fγ
ασ =

∫ ∞

−∞
dω

γασ (ω)

(ω − ε + iη)γ

can be evaluated using the digamma function and its deriva-
tives.

Finally, all contributions to the second-order self-energy
	

(2)
χ(N)χ ′(N+2) can be graphically represented as a sum of the

following diagrams:
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nel magnetoresistance of quantum dots coupled to ferromagnetic
leads in the sequential and cotunneling regimes, Phys. Rev. B 72,
115334 (2005).
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The Andreev transport properties of double quantum dot based Cooper pair splitters with one superconducting
and two normal leads are studied theoretically in the Kondo regime. The influence of the superconducting pairing
correlations on the local density of states, Andreev transmission coefficient, and Cooper pair splitting efficiency
is thoroughly analyzed. It is shown that finite superconducting pairing potential quickly suppresses the SU(2)
Kondo effect, which can however reemerge for relatively large values of coupling to superconductor. In the SU(4)
Kondo regime, a crossover from the SU(4) to the SU(2) Kondo state is found as the coupling to superconductor
is enhanced. The analysis is performed by means of the density-matrix numerical renormalization group method.

DOI: 10.1103/PhysRevB.96.195409

I. INTRODUCTION

Creation, manipulation, and detection of entangled pairs
of electrons is an important requirement for engineering
quantum information and computation protocols in solid state
systems [1–3]. As a natural source of entangled electrons
one can consider superconductors, in which two electrons
with opposite spins form spin singlet states—the Cooper
pairs [4–6]. It has been demonstrated experimentally that it is
possible to extract and split Cooper pairs in a double quantum
dot (DQD) setup involving one superconductor (SC) and two
normal (N) leads, each attached to a different quantum dot
[7–14]. In such a Cooper pair splitter (CPS), when the bias
voltage eV applied between the SC and N leads is smaller than
the superconducting energy gap �, the current flows through
the system due to the Andreev reflection processes [15]. One
can generally distinguish two types of such processes: (i) direct
Andreev reflection (DAR), in which the Cooper pair electrons
tunnel through one arm of the device, and (ii) crossed Andreev
reflection (CAR), when the Cooper pair electrons become split
and each electron leaves the superconductor through a different
arm of the device [16,17]. Since the latter processes are crucial
for the creation of entangled electrons, it is important to
optimize the splitting efficiency η of the device, i.e., to enhance
the rate of CAR processes as compared to the DAR processes.
This can be obtained, for example, by tuning the position of the
DQD’s energy levels and setting the system in an appropriate
transport regime [7,10].

Transport properties of double quantum dots with super-
conducting contacts have been recently explored both experi-
mentally [7–14,18] and theoretically [19–27]. The theoretical
investigations were however mostly devoted to transport prop-
erties in a relatively weak coupling regime. Various geometries
of the system were considered, with the two dots attached to
the leads forming either serial [19], T-shaped [22], or CPS
fork configurations [24,25]. In particular, the emergence of the
triplet blockade and its influence on transport were analyzed,
as well as various Andreev bound states (ABS) splitting mech-
anisms [20,25]. Moreover, unconventional pairing [24] in the
presence of inhomogeneous magnetic field was predicted and
the role of the spin-orbit interaction on nonlocal entanglement
was demonstrated [26]. Other important aspects of transport

*weymann@amu.edu.pl

in such systems, such as the current and noise correlations
[21,27] and spin dependence of transport controlled by means
of ferromagnetic contacts [23,25,27], were also thoroughly
discussed.

In this paper we extend those studies by focusing on
the Andreev transport in the strong coupling regime, where
electronic correlations can give rise to the Kondo effect
[28,29]. When a spin one-half impurity is coupled to the
conduction band of a metallic host, for temperatures T lower
than the Kondo temperature TK , the conduction electrons
screen the impurity’s spin and a delocalized singlet state is
formed. Its emergence results in the formation of an additional
peak at the Fermi energy in the local density of states [29].
For single quantum dots, in the case of spin SU(2) Kondo
effect, this leads to an enhancement of the conductance to its
maximum value of 2e2/h [30,31]. For double quantum dots,
depending on the DQD occupation, one can observe different
types of the Kondo effect. In particular, when both the spin and
orbital degrees of freedom are degenerate, an SU(4) Kondo
state is formed in the system [32,33].

When the leads are superconducting the situation becomes
much more interesting [34–38]. First of all, for dot coupled to
superconductor, the occurrence of the Kondo phenomenon is
conditioned by the ratio of the Kondo temperature to the super-
conducting energy gap TK/�, and a quantum phase transition
occurs as this ratio is varied [35,39–42]. Furthermore, for two-
terminal hybrid junctions involving quantum dot and N and SC
leads, the Kondo state can be formed by screening the dot’s spin
by the normal lead [34,35], while finite coupling to SC lead
can result in an enhancement of the Kondo temperature [43].

From the theoretical side, the accurate studies of transport
properties of nanostructures in nonperturbative regime require
resorting to sophisticated numerical methods. One of them
is the density-matrix numerical renormalization group (DM-
NRG) method [44,45], which allows for obtaining results of
very high accuracy on the transport behavior of the considered
system [46]. In these considerations we employ DM-NRG
to address the problem of the Kondo effect and Andreev
transport in double quantum dot based Cooper pair splitters.
In particular, we study the DQD energy level dependence of
the local density of states as well as the Andreev transmission
coefficient, together with the splitting efficiency of the device.
We then focus on the two transport regimes when the system
in the absence of coupling to superconductor exhibits either
the SU(2) or the SU(4) Kondo effect, and study the influence
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of superconducting pairing correlations on these two types of
Kondo state. We show that, contrary to single quantum dots
[43,47], the SU(2) Kondo state becomes quickly suppressed
by even small superconducting pairing potential. On the other
hand, the pairing correlations result in a crossover from the
SU(4) to the SU(2) Kondo effect.

The paper is organized as follows. In Sec. II we present
the model, Hamiltonian, and method used in calculations, and
describe the main quantities of interest. Section III is devoted to
numerical results and their discussion. In Secs. III A and III B
we analyze the DQD level dependence of the local density of
states and the Andreev transmission coefficient, together with
splitting efficiency, respectively. The SU(2) [SU(4)] Kondo
regime is thoroughly discussed in Sec. III C (Sec. III D).
Finally, the conclusions can be found in Sec. IV.

II. THEORETICAL DESCRIPTION

A. Model and parameters

The considered system consists of two single level quantum
dots attached to an s-wave superconductor (SC) and coupled
to two normal (N) electrodes; see Fig. 1. The Hamiltonian of
isolated double quantum dot has the form

HDQD =
∑
jσ

εj d
†
jσ djσ +

∑
j

Ujnj↑nj↓ +
∑
σσ ′

ULRnLσnRσ ′ ,

(1)

with d
†
jσ creating a spin-σ electron in dot j of energy εj .

The on-dot Coulomb correlations are denoted by Uj , with
njσ = d

†
jσ djσ , while the interdot Coulomb interactions are

described by ULR . The normal electrodes are modeled as free
quasiparticles by the Hamiltonian, HN = ∑

jkσ εjkc
†
jkσ cjkσ ,

where c
†
jkσ is the creation operator for an electron with spin

σ , wave number k, and energy εjk in the j th lead. The
BCS superconductor is modeled by HS = ∑

kσ ξka
†
kσ akσ +

�
∑

k (ak↓a−k↑ + H.c.), where a
†
kσ creates an electron with

momentum k, spin σ , and energy ξk. The superconducting
order parameter, assumed to be real, is denoted by �. The
double dot is coupled to external leads by the tunneling

FIG. 1. Schematic of the considered system. Two single-level
quantum dots, described by on-site energy εj (j = L for left and
j = R for right dot) and Coulomb correlations Uj are coupled to
a common s-wave superconductor (SC), with coupling strength �S

j ,
and attached to two separate normal (N) electrodes, with coupling
strength �j . The two dots are coupled capacitively by ULR .

Hamiltonian

HT =
∑
jkσ

(
Vjkc

†
jkσ djσ + V S

jka
†
kσ djσ + H.c.

)
, (2)

where the tunnel matrix elements between the dot j and the
normal lead j (superconductor) are denoted by Vjk (V S

jk).
Assuming momentum independent tunnel matrix elements,
the coupling between the dot j and the corresponding normal
electrode is described by �j = π |Vj |2ρj , where ρj is the
density of states of lead j . On the other hand, the coupling
between the dot j and superconductor is given by �S

j =
π |V S

j |2ρS , with ρS the density of states of the superconductor
in the normal state.

In our considerations we focus on the Andreev transport
regime; therefore, to exclude the normal tunneling processes,
in the following we take the limit of infinite superconducting
energy gap. In this limit the double dot coupled to supercon-
ductor can be described by the effective Hamiltonian of the
form [20,25,48]

H eff
DQD = HDQD −

∑
j

�S
j (d†

j↑d
†
j↓ + dj↓dj↑) + �S

LR(d†
L↑d

†
R↓

+ d
†
R↑d

†
L↓ + dR↓dL↑ + dL↓dR↑). (3)

Now, the proximity effect is included through pairing potential
induced in the DQD, where the first term, proportional to �S

j ,
describes the direct Andreev reflection (DAR) processes, while
the last term, proportional to �S

LR =
√

�S
L�S

R , corresponds
to the crossed Andreev reflection (CAR) processes. In DAR
processes Cooper pairs are transferred through one arm of
the splitter. On the other hand, in CAR processes Cooper
pair electrons become split and each electron leaves the
superconductor through a different junction with normal lead.

The effective double dot Hamiltonian is not diagonal in
the local basis defined by the states |χLχR〉 = |χL〉|χR〉,
in which the left (right) dot is in state |χL〉 (|χR〉), with
χj = 0,σ,d, for empty, singly occupied, and doubly occupied
dot j . Because the effective Hamiltonian commutes with
the total spin operator, H eff

DQD has a block-diagonal form in
the corresponding spin quantum number. As we show in the
Appendix, the spin triplet space is quite trivial because it
is not affected by the superconducting correlations due to
symmetry reasons. In the spin doublet subspace we present a
general solution to the eigenproblem. However, in the singlet
subspace it is in general not possible to find simple analytical
formulas for the eigenstates and eigenenergies; therefore, in
this subspace we discuss the eigenspectrum only in some
limiting situations. The first one is the particle-hole symmetry
point of the model, ε = −U/2 − ULR , and the second one is
the fully symmetric SU(4) Kondo regime, ε = −ULR/2 with
ULR = U . The analytical formulas presented in the Appendix
will be crucial to understanding the complex behavior of the
system in the considered transport regimes. Moreover, the
eigenenergies will help to relate the position of peaks observed
in transport quantities to energies of Andreev bound states
(ABS), which can be inferred from excitation energies between
the corresponding molecular states of the double quantum dot
proximized by SC lead.

In our analysis we assume that the system is symmetric,
i.e., we set �L = �R ≡ � and �S

L = �S
R ≡ �S . For the two
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quantum dots we also assume UL = UR ≡ U and εL = εR ≡
ε. To perform the calculations, we set U ≡ 1 and take ULR =
U/2 and � = U/20. We note that since both the couplings
and the position of the DQD levels can be tuned individually
by applied gate voltages [33], the chosen set of parameter
is of relevance for current and future experiments. We also
notice that a weak left-right asymmetry would induce rather
quantitative changes to the results we present and discuss in
the following, while qualitatively we expect our predictions to
be relevant. However, the assumption of the superconducting
energy gap being the largest energy scale in the problem needs
to be treated with a certain care. While this assumption allows
us to focus exclusively on the behavior of Andreev reflection
processes, and for that reason it was adapted in many previous
theoretical works [19,20,24,25,49–59], from an experimental
point of view, the condition � > U does not need to be fulfilled
in any Cooper pair splitting device. Nevertheless, there are
superconductors, in which the gap is of the order of a couple of
meV [60]; consequently, experimental realizations of splitters
with large � should be possible.

B. Quantities of interest and method

The main quantity of interest is the transmission coefficient
for Andreev reflection processes, TA(ω), which can be written
as

TA(ω) = T DAR
A (ω) + T CAR

A (ω), (4)

where the first term describes the transmission due to DAR
processes, which is explicitly given by

T DAR
A (ω) = 4

∑
jσ

�2
j

∣∣〈〈djσ |djσ̄

〉〉r
ω

∣∣2
, (5)

while the last term denotes the transmission coefficient due to
CAR processes and is described by

T CAR
A (ω) = 4�L�R

∑
σ

[|〈〈dLσ |dRσ̄ 〉〉rω|2 + |〈〈dRσ |dLσ̄ 〉〉rω|2].
(6)

Here, 〈〈A|B〉〉rω is the Fourier transform of the retarded
Green’s function, 〈〈A|B〉〉rt = −i�(t)〈{A(t),B(0)}〉. The DAR
and CAR transmission coefficients can be used to define the
Cooper pair splitting efficiency of the device as

η = T CAR
A (ω)

T CAR
A (ω) + T DAR

A (ω)
. (7)

When η → 1, transport is exclusively due to CAR processes,
which means that each Cooper pair leaving the superconductor
becomes split into two separate leads. On the other hand, if
only DAR processes are responsible for Andreev transport,
η → 0.

With the Andreev transmission coefficient, it is possible to
determine the Andreev current flowing between the supercon-
ductor and the normal leads [23]

IA(V ) = e

h

∫
dω[f (ω − eV ) − f (ω + eV )]TA(ω), (8)

where f (ω) denotes the Fermi-Dirac distribution function
and it is assumed that the chemical potential of the left
and right lead is equal to eV , while the superconductor is
grounded. From the above formula it is easy to find the Andreev

differential conductance, which in the limit of vanishing
temperature can be approximated by

GA(V ) ≈ e2

h
[TA(ω = eV ) + TA(ω = −eV )]. (9)

Consequently, the measurement of differential conductance
allows one to probe the energy dependence of the Andreev
transmission coefficient.

Another interesting quantity is the local density of states,
which is given by the total normalized spectral function

A =
∑
ij

Aij = −
∑
ij

√
�i�j Im〈〈diσ |d†

jσ 〉〉rω. (10)

Thus Ai ≡ Aii corresponds to the local density of states
of one of the quantum dots, while Aij describes the cross
correlations between the two quantum dots generated by
proximity-induced interdot pairing potential �S

LR . Because we
consider a symmetric situation, AL = AR , and ALR = ARL.

To determine the relevant correlation functions we use
the density-matrix numerical renormalization group method
[44–46]. This nonperturbative method allows for obtaining
very accurate results on the static and dynamic properties of
the system. In NRG, the initial Hamiltonian is transformed
to an NRG Hamiltonian, in which the leads are modeled
as tight-binding chains with appropriate hopping integrals
[44]. The calculations are performed in an iterative fashion
by keeping an assumed number NK of the lowest-energy
eigenstates. Here, we exploited the full spin symmetry of the
system and kept at least NK = 2000 states per iteration. The
imaginary parts of the Green’s functions were determined from
discrete NRG data by performing appropriate broadening [61]
and averaging over Nz = 2 shifted discretization meshes [62].
The real parts of the Green’s functions were obtained from the
Kramers-Kronig relation.

C. Stability diagram and transport regimes

The linear Andreev conductance plotted as a function of
the position of each dot level assuming a weak coupling
between the double dot and normal leads is shown in Fig. 2.
The numbers in brackets indicate approximate expectation
values of the occupation number of each dot, (〈nL〉,〈nR〉),
with nj = ∑

σ njσ . The conductance was calculated using the
rate equations within the sequential tunneling approximation
[25]. We note that although this method is not suitable for
capturing the correlation effects studied here, it allows us
to indicate the considered transport regimes in the phase
diagram of the device. In this paper we in particular focus
on the symmetric case, εL = εR ≡ ε, a cross section of Fig. 2
marked with a dashed line. By sweeping ε, which can be
experimentally done with gate voltages [33], the device can
be tuned from the empty or fully occupied orbital regime to
the SU(4) and SU(2) Kondo regimes, respectively.1 The SU(4)

1Note that the SU(2) and SU(4) Kondo regimes can be greatly
modified by finite coupling to superconductor, such that the Kondo
effect can even become fully suppressed. Therefore, referring to the
appropriate Kondo regime should be considered as a guide to estimate
the corresponding parameter space in the phase diagram of the device
in the limit of weak coupling to superconductor.
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FIG. 2. Linear Andreev conductance Glin
A calculated as a function

of the position of each dot level, εL and εR , using the rate equations.
The parameters are U = 1, ULR = U/2, � = U/100, and �S =
U/10. The numbers in brackets indicate the average occupation of
each dot, (〈nL〉,〈nR〉), with nj = ∑

σ njσ .

Kondo regime is marked with a thick dashed line, while the
SU(2) Kondo regime is surrounded by dotted lines in Fig. 2.
These transport regimes will be studied in detail in the next
sections, and the influence of the proximity-induced pairing
potential on the corresponding Kondo states will be thoroughly
analyzed.

III. RESULTS AND DISCUSSION

In this section we present and discuss the main results
on the local density of states and the Andreev transmission
coefficient. We will first study the general gate voltage
dependence of transport characteristics assuming εL = εR ≡
ε, i.e., along the dashed line marked in Fig. 2. Then, we shall
focus on some more relevant transport regions, including the
SU(2) and SU(4) Kondo regimes.

A. Local density of states

The normalized spectral function plotted as a function of
energy ω and DQD level position εL = εR ≡ ε is shown in
Fig. 3. This figure is calculated for different values of the
coupling to superconductor, as indicated, and it demonstrates
the evolution of local density of states with increasing �S .
When �S = 0, one observes the transport behavior typical
for a double quantum dot system [63]; see Fig. 3(a). When
the position of the DQD energy levels is lowered, the DQD
becomes consecutively occupied with electrons. For ε � 0
(ε � −U − 2ULR), the DQD is empty (fully occupied). When
−ULR � ε � 0 (−U − 2ULR � ε � −U − ULR), the double
dot is singly occupied (occupied with three electrons), while
for −U − ULR � ε � −ULR , the DQD is occupied by two
electrons, each located on a different quantum dot. The
above energies also specify when the charge on the DQD

FIG. 3. Total normalized spectral function A of DQD-based
Cooper pair splitter plotted as a function of energy ω and double
dot level position, εL = εR ≡ ε, calculated for different values of
coupling to superconductor �S , as indicated. The parameters are
U = 1, ULR = U/2, � = U/20, and T = 0.

changes and the local density of states exhibits a resonance.
In between those resonant energies, the system’s spectral
function exhibits an enhancement due to the Kondo effect.
In the odd occupation regime, i.e., when DQD hosts either
one or three electrons, the system exhibits the SU(4) Kondo
effect resulting from orbital and spin degeneracies [32,33].
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One can estimate the SU(4) Kondo temperature, T
SU (4)

K , from
the half width at half maximum (HWHM) of the Kondo
peak in the total spectral function for ε = −ULR/2, which
for assumed parameters yields T

SU (4)
K /U ≈ 0.017. On the

other hand, when the DQD is occupied by two electrons,
each dot exhibits the spin SU(2) Kondo resonance [29,30].
The corresponding Kondo temperature, T SU (2)

K , estimated from
HWHM of the Kondo resonance in the spectral function
for ε = −U/2 − ULR , is equal to T

SU (2)
K /U ≈ 10−4. Note

that for the parameters assumed in calculations T
SU (2)

K �
T

SU (4)
K . This is why in Fig. 3(a) the SU(2) Kondo peak

is much less pronounced as compared to the SU(4) Kondo
resonance.

When the coupling to superconductor becomes finite, the
behavior of the spectral function starts changing. First, one
observes the suppression and splitting of the Kondo resonance
in the doubly occupied transport regime; see Figs. 3(b)–3(d).
This splitting increases with �S ; however, when �S � U/2,
a single resonance starts forming; see Figs. 3(e) and 3(f).
This resonance is again due to the Kondo effect, since for
�S � U/2, the doublet state becomes the ground state of
the system. On the other hand, the SU(4) Kondo resonance
looks much less affected, at least for small values of coupling
to superconductor. This is, however, not entirely true, since
with increasing �S , the SU(4) Kondo resonance merges with
resonance resulting from the formation of Andreev bound
states. A thorough discussion of the influence of strength
of coupling to superconductor on the corresponding Kondo
resonances will be presented in the next sections.

Let us now analyze the behavior of separate contributions,
AL and ALR , to the total spectral function A. Their energy
and DQD energy level dependence is shown in Fig. 4 for �S =
U/10. At first sight, one can notice that the qualitative behavior
of A is mainly determined by the spectral function of single
quantum dot AL. For the considered value of �S , AL exhibits
a pronounced split Kondo resonance for −U − ULR � ε �
−ULR and the SU(4) Kondo resonance when −ULR � ε � 0
(−U − 2ULR � ε � −U − ULR), similar to the total spectral
function; cf. Figs. 4(a) and 4(b).

On the other hand, the off-diagonal spectral function, which
accounts for the cross correlations between transport processes
through the two dots, behaves in a clearly different manner.
First of all, we note that finite value of ALR results solely
from proximity-induced interdot pairing, and it vanishes if
CAR processes are not allowed in the system. One can see
that ALR takes considerable values for energies corresponding
to resonances in A; cf. Figs. 4(a) and 4(c). Moreover, if on
one side of the resonance ALR is positive, on the other side it
changes sign. This effect is most pronounced for −ULR � ε �
0 (−U − 2ULR � ε � −U − ULR), i.e., when DQD hosts an
odd number of electrons; see Fig. 4(c). Positive sign of ALR can
be associated with processes that occur in the same direction
through both normal junctions, while negative sign of ALR

indicates that the two processes are anticorrelated [27].

B. Andreev transmission and splitting efficiency

The energy and DQD level dependence of the Andreev
transmission coefficient calculated for different values of

FIG. 4. Normalized spectral function: (a) A, (b) AL, and (c) ALR ,
plotted versus energy ω and double dot energy level position ε. The
parameters are the same as in Fig. 3 with �S = U/10.

coupling to superconductor is presented in Fig. 5. When
the coupling �S is relatively small, one can see that TA(ω)
becomes finite in the low-energy regime and it is considerably
enhanced for ε ≈ −ULR and ε ≈ −U − ULR; see Fig. 5(a).
The area when the maximum occurs grows with increasing �S

and, at the same time, the maximum value slightly decreases.
Moreover, for �S = U/5, TA(ω) becomes finite in almost the
whole energy range considered in the figure, with maximum
values occurring still for ε ≈ −ULR and ε ≈ −U − ULR; see
Fig. 5(c). Note that TA(ω) exhibits a similar split structure as
that visible in the local density of states; cf. Figs. 3(d) and 5(c).
Further increase of the coupling strength results in a decrease
of the size of the Coulomb blockade regime, which is seen
as merging of the two maxima at the particle-hole symmetry
point ε = −U/2 − ULR [Fig. 5(d)]. For even larger �S the
transmission coefficient drops and the energy range where
TA(ω) is enhanced shrinks; see Fig. 5(e).

The different contributions to the transmission coefficient
coming from DAR and CAR processes are presented in Fig. 6
for �S = U/10. The first general observation is that the
total Andreev transmission is mainly determined by crossed
Andreev reflection processes. This can be expected because
the rate of direct Andreev reflection is conditioned by the
value of on-site Coulomb correlations, while the rate of
CAR processes depends on the interdot correlations. Because
ULR < U , as in typical experimental realizations [7], one
finds more CAR processes compared to DAR ones. This
is in fact a very desired situation for Cooper pair splitting
experiments, in which one would like to suppress DAR
processes and maximize CAR ones.

From the application point of view, it is thus interesting to
analyze the Cooper pair splitting efficiency η of the device.
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FIG. 5. Andreev transmission coefficient plotted versus energy ω

and double dot energy level position ε, and calculated for different
values of �S , as indicated. The other parameters are the same as in
Fig. 3.

This is presented in Fig. 6(d). One can see that the splitting
efficiency, depending on DQD energy level position ε and
energy ω, takes values ranging from very low (η ≈ 0.2) to its
maximum value of η = 1. We recall that for η = 1 transport
is exclusively due to CAR processes, while for η = 0, only
DAR processes contribute to Andreev conductance; cf. Eq. (7).
Clearly, large splitting efficiency is observed at low energies
and for −U − 2ULR � ε � 0; see Fig. 6(d). Moreover, a
region of enhanced η is present in the Coulomb blockade
regime with two electrons. Then, mainly CAR processes are
responsible for Andreev transport. Note also that there are
transport regimes where the splitting efficiency is rather poor
and mainly DAR processes are responsible for transport; see
the transport regime with odd number of electrons for elevated
energies |ω| in Fig. 6(d).

FIG. 6. (a) Total Andreev transmission coefficient and its contri-
butions due to (b) CAR and (c) DAR processes, as well as (d) Cooper
pair splitting efficiency η plotted as function of energy ω and double
dot energy level position ε. The parameters are the same as in Fig. 3
with �S = U/10.

The splitting efficiency greatly depends on the strength
of coupling to superconductor. This dependence is explicitly
demonstrated in Fig. 7, which shows the energy and DQD
level dependence of η calculated for different values of �S

corresponding to those considered in Fig. 5. In this figure
one can identify optimal parameters, for which the process
of Cooper pair splitting is most efficient in the considered
transport regime.

Finally, we would like to emphasize that the splitting
efficiency also strongly depends on the ratio of interdot and
intradot Coulomb correlations U/ULR . In typical experimental
realizations, U � ULR , which is desired to enhance CAR
processes and suppress DAR ones, obtaining thus large values
of η. The splitting efficiency however generally decreases
when the ratio of U/ULR becomes smaller. In particular, the
amount of DAR and CAR processes becomes equal when
U = ULR , such that η = 1/2 in the whole parameter space.

C. SU(2) Kondo regime

We now focus in greater detail on the SU(2) Kondo regime,
where for �S = 0 the DQD is occupied by two electrons,
each on a different quantum dot; see Fig. 2. To simplify the
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FIG. 7. Splitting efficiency η calculated for different values of
coupling strength to superconducting lead, as indicated, and for
parameters the same as in Fig. 3.

discussion, we consider the particle-hole symmetry point of
the model, ε = −U/2 − ULR . Nevertheless, the conclusions
drawn here shall apply to the whole two-electron Coulomb
blockade regime where the spin SU(2) Kondo effect can
develop.

The total normalized spectral function in the SU(2) Kondo
regime, together with its contributions AL and ALR , calculated
as a function of �S for ε = −U/2 − ULR , is shown in Fig. 8.
The dashed lines indicate the energies of the Andreev bound
states, while the insets present the zooms into the low-energy
behavior of the spectral function, where the suppression of the
Kondo resonance with increasing �S is clearly visible. The
general behavior is as follows: finite coupling to supercon-
ductor results in the splitting and suppression of the Kondo
resonance, which, however, emerges again for �S ≈ U/2. In
fact, for this value of �S , the system exhibits a phase transition

FIG. 8. Energy dependence of (a) the total normalized spectral
function A and its contributions: (b) AL and (c) ALR calculated as a
function of the coupling to superconductor �S and for ε = −U/2 −
ULR . The insets show the zoom into the suppression of the SU(2)
Kondo resonance with increasing �S . The dashed lines indicate the
energies of the Andreev bound states, cf. Eq. (12), while the dotted
lines present the excitation energies between corresponding singlet
and triplet states; cf. Eq. (13). The other parameters are as in Fig. 3.

and the ground state changes from spin singlet to spin doublet.
Consequently, the Kondo resonance develops once �S � U/2;
see Fig. 8.

Let us shed more light on the system’s behavior by using
some analytical arguments. For the particle-hole symmetry
point, it is easy to find the eigenspectrum of the effective
Hamiltonian (3). We will consider the lowest-energy singlet
(|S〉), doublet (|Dσ 〉), and triplet (|Tδ〉) states. The first two
states have the following explicit form:

|S〉 = α(|dd〉 − |00〉) − β(|↑↓〉 − |↓↑〉),
|Dσ 〉 = 1

2 (|σ0〉 + |0σ 〉 + |σd〉 + |dσ 〉),
where the coefficients are given by α =√

(γ − U − ULR)/(4γ ), β = 2�S/
√

γ (γ − U − ULR), and
γ =

√
(U + ULR)2 + 16�2

S . Note that these states correspond
to the states |D2

σ 〉 and |S4〉 presented in the Appendix.
The triplet state is threefold degenerate with components
|T+〉 = |↑↑〉, |T−〉 = |↓↓〉, and |T0〉 = (|↑↓〉 + |↓↑〉)/√2. The
energies of the above states are given by

ES = − 1
2

[
U + ULR +

√
(U + ULR)2 + 16�2

S

]
,

ED = − 1
2 (U + 2ULR + 4�S),

ET = −U − ULR, (11)
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respectively. Note that the energy of the triplet state does not
depend on �S . This is to be expected since the triplet state does
not match the symmetry of the s-wave superconductor. The
excitation energies between singlet and doublet states define
the relevant ABS’s energies

EABS = ±ULR

2
± 2�S ∓ 1

2

√
(U + ULR)2 + 16�2

S, (12)

which are marked with dashed lines in Fig. 8.
In the case of �S = 0, the singlet and triplet state are

degenerate and the system exhibits the SU(2) Kondo effect
on each quantum dot; see the insets in Figs. 8(a) and 8(b).
However, when �S becomes finite, the induced interdot pairing
relevant for crossed Andreev reflection results in the singlet-
triplet splitting and causes the singlet state |S〉 to be the ground
state of the system. Because of that, the Kondo resonance gets
very quickly suppressed when �S increases and only split
Kondo peaks are visible; see the insets in Fig. 8. The position
of the split Kondo peaks is determined by the excitation energy
between the singlet and triplet states, such that the peaks occur
for

ω ≈ ± 1
2

[
U + ULR −

√
(U + ULR)2 + 16�2

S

]
. (13)

Thus, for small values of �S , the position of side peaks depends
in a parabolic way on the coupling to superconductor, ω ≈
±4�2

S/(U + ULR). This parabolic dependence can be seen in
Figs. 8(a) and 8(b) and the corresponding insets.

The value of �S at which the Kondo resonance becomes
suppressed can be estimated by comparing the characteristic
energy scales, i.e., the Kondo temperature and the singlet-
triplet excitation energy. One can then find the value of the
coupling to superconductor, �T S

S , at which the suppression of
the Kondo resonance develops

�T S
S ≈ 1

2

√
T

SU (2)
K (U + ULR). (14)

For assumed parameters and recalling that T
SU (2)

K /U ≈ 10−4,
one gets �T S

S /U ≈ 0.006. This estimate is validated by NRG
calculations of the total normalized spectral function for small
values of �S , which is plotted as a function of energy on
logarithmic scale in Fig. 9(a). One can clearly see the Kondo
peak for �S � �T S

S and a gradual decrease of its height with
increasing �S , until the peak becomes completely suppressed
for �S � �T S

S . The vertical dashed lines in Fig. 9(a) mark the
energy of the side Kondo peak as estimated from Eq. (13). The
agreement between this analytical formula and full numerical
calculations is quite satisfactory.

For �S � �T S
S and such values of �S that the ground state

is spin singlet, the system does not exhibit the Kondo effect
at all. The spectral function reveals then just peaks at energies
corresponding to the Andreev bound states; see Fig. 8. When,
however, the energies of Andreev bound states cross the zero
energy for �S ≈ �SD

S , with

�SD
S = U (U + 2ULR)

8ULR

(15)

(for assumed parameters this happens when �SD
S = U/2), the

doublet state |Dσ 〉 becomes the ground state of the system.
Then, one observes the reemergence of the Kondo resonance.
This is explicitly presented in Fig. 9(b), which shows the total

FIG. 9. Total normalized spectral function A plotted vs energy
on logarithmic scale for selected values of �S . Panel (a) presents
the suppression of the Kondo resonance with �S , which occurs for
the critical value of �S = �T S

S ≈ 0.006U ; cf. Eq. (14). The vertical
dashed lines in (a) show the excitation energies between the singlet
and triplet states for given �S ; cf. Eq. (13). At these excitation energies
side Kondo peaks occur. Panel (b) presents the restoration of the
Kondo effect when �S � �SD

S . The parameters are the same as in
Fig. 8.

normalized spectral function plotted on logarithmic energy
scale for the corresponding values of �S . Note that the Kondo
temperature is now clearly larger compared to the case of
�S = 0; cf. Figs. 9(a) and 9(b). This basically results from
the difference in excitation energies to virtual states allowing
for spin-flip processes driving the Kondo effect. For �S = 0,
the energy is given by the charging energy of each dot, while
for �S � �SD

S , it is given by the doublet-singlet excitation
energy, which is smaller than U . Consequently, there is a larger
exchange interaction in the latter case, which explains the
observed difference in Kondo temperatures.

It is also interesting to notice that the maximum value
of A at ω = 0 is comparable for �S = 0 and �S = U , and
approaches 2; see Fig. 9. In the former case this limit can
be easily understood since each of the two quantum dots
contributes with the Kondo resonance, such that AL = AR →
1. In the latter case, on the other hand, one finds AL = AR →
1/2 and ALR = ARL → 1/2, cf. Fig. 8, which implies that
the off-diagonal spectral function, that encompasses cross
correlations between the two dots, contributes 1/(π�) to the
height of the Kondo peak in the total spectral function.
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FIG. 10. Excitation energies �E between the singlet, doublet,
and triplet states plotted as a function of the coupling to supercon-
ductor for parameters the same as in Fig. 8. The excitation energies
are measured relative to the ground state energy, which is set to zero.
The evolution of the ground state from the singlet (|S〉) to the doublet
(|D〉) state is clearly visible. The values of �S at which the Kondo
effect becomes suppressed or emerges are indicated. T

SU (2)
K denotes

the SU(2) Kondo temperature for �S = 0. Note that for �S = 0 the
singlet and triplet (|T 〉) states are degenerate.

The low-energy behavior of the system in the two-electron
transport regime is summarized in Fig. 10, which shows the
evolution of the excitation energies �E between the relevant
states, cf. Eq. (11), when �S is varied. For two indicated values
of �S , the transport behavior of the system greatly changes.
When �S � �T S

S , the Kondo singlet is the ground state of the
system and the electrons experience a π/2 phase shift [29]. At
�S ≈ �T S

S , there is a crossover, such that for �T S
S � �S � �SD

S ,
the interdot pairing-induced singlet becomes the ground state
of the system. Consequently, there is no Kondo effect (phase
shift is equal to zero). On the other hand, when �S ≈ �SD

S ,
the system exhibits a phase transition and for �S � �SD

S the
doublet state becomes the ground state of the splitter. This
results in the reemergence of the Kondo effect.

Note that the system’s behavior as a function of �S is
completely different from the case of a single quantum dot. In
single quantum dots attached to superconducting and normal
leads, in the subgap transport regime, the increase of �S results
in an enhancement of the Kondo temperature [43]. Since in
the case of DQD for �S = 0 the Kondo effect develops on
each quantum dot, one could naively expect that for finite
�S the behavior will be qualitatively the same as in the
single quantum dot case. The above-presented analysis clearly
demonstrates that such conjecture is completely unjustified.
The proximity-induced interdot pairing potential spoils this
picture and, once �S � �T S

S , it immediately results in the
suppression of the Kondo resonance on both quantum dots.
Thus the coupling to superconductor has a strong destructive
influence on the SU(2) Kondo effect in DQD-based Cooper
pair splitters. Note also that a very large value of the coupling
�S , i.e., �S � �SD

S , can induce the Kondo effect again.

FIG. 11. (a) Total Andreev transmission coefficient and its
contributions due to (b) CAR and (c) DAR processes, as well as
(d) the Cooper pair splitting efficiency η plotted as function of
energy ω and the strength of coupling to superconductor �S . The
dashed lines indicate the energies of the Andreev bound states given
by Eq. (12), while the dotted lines present the excitation energies
between corresponding singlet and triplet states given by Eq. (13).
The parameters are the same as in Fig. 8.

Let us now analyze the behavior of the Andreev trans-
mission, its contributions due to DAR and CAR processes,
and the splitting efficiency in the SU(2) Kondo regime. The
dependence of these quantities on energy and strength of
coupling to superconductor is presented in Fig. 11. First of
all, one can see that the transmission coefficient achieves
considerable values mainly in the low-energy regime, in
between the Andreev bound states. Moreover, an enhancement
of transmission can be also seen along the energies of Andreev
bound states; see Fig. 11. Interestingly, we note that for
small values of �S and low energies, mainly CAR processes
dominate transport, which results in almost perfect splitting
efficiency; see Fig. 11(d). We recall that this is the regime
of suppressed and split Kondo resonance, which now we can
clearly associate with the interdot pairing generated by crossed
Andreev reflection. Note that despite suppression of the Kondo
effect, in this transport regime T CAR

A (ω) is still considerable
and extends to energy regions greater than T

SU (2)
K . When
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FIG. 12. Energy dependence of (a) the total normalized spectral
function A and its contributions: (b) AL and (c) ALR calculated as a
function of the coupling to superconductor �S and for ε = −ULR/2.
The dashed and dotted-dashed lines indicate the energies of the
Andreev bound states, while the dotted line shows the splitting of
the doublet states, as given by Eq. (18). The other parameters are as
in Fig. 3.

�S � �SD
S , at low energies the splitting efficiency is smaller

and it indicates that CAR and DAR processes contribute to
Andreev transport on an equal footing. On the other hand, for
larger energies, η first becomes suppressed and then increases
again. However, in this transport regime the total transmission
is relatively low; see Fig. 11.

D. SU(4) Kondo regime

In this section we consider more thoroughly the behavior of
the spectral function and Andreev transmission in the SU(4)
Kondo regime; see also Fig. 2. For �S = 0 and when the
DQD is singly occupied, the system exhibits the SU(4) Kondo
effect resulting from the spin and orbital degeneracies. For the
present analysis we thus assume ε = −ULR/2. The normalized
spectral function calculated as a function of energy and the
strength of coupling to superconductor is shown in Fig. 12.
At first sight, one can deduce that for relatively low values
of �S , i.e., �S � U/5, the SU(4) Kondo resonance is hardly
affected by the superconducting proximity effect. Only when
the coupling to superconductor becomes larger (�S � U/5)
does the Kondo phenomenon get suppressed—the resonance
in the spectral function becomes then broadened and departs
to larger energies. In fact, for �S ≈ U/5, the ground state
of the system changes from the spin doublet to spin singlet
state, and this is the reason for vanishing of the Kondo effect.
For �S � U/5, A exhibits only resonances at larger energies

FIG. 13. (a) Total Andreev transmission coefficient and its con-
tributions due to (b) CAR and (c) DAR processes, as well as (d) the
Cooper pair splitting efficiency η plotted as function of energy ω

and the strength of coupling to superconductor �S for parameters the
same as in Fig. 12. The dashed and dotted-dashed lines indicate the
energies of the Andreev bound states, and the dotted line shows
the splitting of the doublet states, as described by Eq. (18).

corresponding to the Andreev bound state energies; see the
dashed and dotted-dashed lines in Fig. 12, which mark the
energies of Andreev bound states. The ABS’s energies were
determined from the excitation energies between appropriate
singlet and doublet states obtained from numerical solution
of the eigenvalue problem. The resonances associated with
excitations due to Andreev bound states are also clearly visible
in the spectral function of individual quantum dots AL as well
as in ALR , shown in Figs. 12(b) and 12(c), respectively.

At energies corresponding to Andreev bound states, the
Andreev transmission coefficient also becomes enhanced. This
can be seen in Fig. 13, which presents the energy ω and
�S dependence of TA(ω) and its contributions due to CAR
and DAR processes, together with the splitting efficiency
η. We again notice that generally T CAR

A (ω) > T DAR
A (ω) [cf.

Figs. 13(b) and 13(c)], which leads to large splitting efficiency,
especially visible for low energies [Fig. 13(d)]. In fact, for
�S ≈ U/5, i.e., when the doublet-singlet transition occurs,
the total transmission coefficient has a local maximum, which
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FIG. 14. Energy dependence of (a) the total normalized spectral
function A, its contributions (b) AL and (c) ALR , and (d) the total
Andreev transmission coefficient TA(ω) plotted as a function of
energy ω and �S in the SU(4) Kondo regime for the symmetric
case with ULR = U . The dotted-dashed (dashed) lines indicate the
energies of the Andreev bound states E1

ABS (E2
ABS), cf. Eq. (22),

while the dotted lines show the doublet splitting energy; cf. Eq. (18).
The other parameters are the same as in Fig. 3.

results mainly from CAR processes; see Fig. 13. Consequently,
the splitting efficiency becomes then very close to unity. On
the other hand, there are also transport regimes where η is
very much suppressed, which indicates that DAR processes
are dominant; see the transport region for |ω| ≈ U/5 and
low values of �S (�S ≈ U/10) in Fig. 13(d). The trans-
mission coefficient in these transport regimes is however
relatively low.

To shed more light on the influence of superconducting
pairing correlations on the SU(4) Kondo regime, let us now
assume a fully symmetric situation, namely ULR = U . For
this case, the dependence of the relevant spectral functions
and the total Andreev transmission coefficient on ω and �S

is shown in Fig. 14. In the symmetric case, one can find
the eigenenergies and eigenstates in the spin singlet subspace
explicitly. These are presented in Table III in the Appendix,
while the eigenspectrum in the doublet subspace can be found
in Table I. Note that in the doublet subspace we can find
the eigenspectrum for arbitrary parameters; therefore, if only

TABLE I. Eigenvalues and unnormalized eigenvectors of the
effective DQD Hamiltonian in the doublet subspace. Here,

�D = [(2ε + 2ULR + U )2 + 16�2
S]

1
2 and α = (2ε + 2ULR + U +

�D)/(4�S).

State Eigenenergy Eigenvector

|D1
σ 〉 ε |σ0〉 − |0σ 〉

|D2
σ 〉 2ε + ULR + U−�D

2 α(|σ0〉 + |0σ 〉) + |σd〉 + |dσ 〉
|D3

σ 〉 2ε + ULR + U+�D

2 |σ0〉 + |0σ 〉 − α(|σd〉 + |dσ 〉)
|D4

σ 〉 3ε + 2ULR + U |σd〉 − |dσ 〉

the doublet states are considered we will present the analytical
formulas for the general case of ULR �= U . From the inspection
of the spectrum of H eff

DQD one can see that for �S → 0 the
ground state is indeed fourfold degenerate and given by the
doublet states

∣∣D1
σ

〉 = 1√
2

(|σ0〉 − |0σ 〉) (16)

with energy E1
D = −ULR/2 and

∣∣D2
σ

〉= 1√
16�2

S +α2
[α(|σ0〉+|0σ 〉) + 4�S(|σd〉+|dσ 〉)],

(17)
with α = U + ULR +

√
(U + ULR)2 + 16�2

S , and the energy,
E2

D = U/2 −
√

(U + ULR)2 + 16�2
S/2. With increasing �S ,

the two doublet states become split and the ground state is
given by the state |D2

σ 〉. The doublet splitting energy is given
by

ω = ± 1
2

[
U + ULR −

√
(U + ULR)2 + 16�2

S

]
. (18)

This energy difference is marked with dotted lines in Figs. 12,
13, and 14. It coincides with the resonances in the spectral
function AL obtained from NRG calculations. These reso-
nances are however not visible in the total spectral function,
since the peak in AL is counterbalanced by an associated
minimum in ALR; see, e.g., Figs. 12(b) and 12(c). Pronounced
maxima can be also observed in the Andreev transmission
coefficient shown in Figs. 13 and 14(d). Note that while around
the Fermi energy both the spectral function and Andreev
transmission show features at the doublet-doublet excitation
energy [Eq. (18)], for larger ω, the resonances occur at energies
corresponding rather to the Andreev bound states.

The influence of the superconducting pairing correlations
on the SU(4) Kondo state can be better resolved in the spectral
function plotted versus energy on logarithmic scale. This
is presented in Fig. 15. Now, one can clearly see that the
maximum in the spectral function strongly depends on �S . For
very small pairing correlations, A exhibits a resonance at finite
ω; see Fig. 15. Now for assumed parameters and �S = 0 one
finds T

SU (4)
K /U ≈ 0.004. However, with increasing �S , this

resonance becomes suppressed and moves towards the Fermi
energy. This is a clear indication of a crossover from the SU(4)
to the SU(2) Kondo effect. Finite pairing correlations break the
fourfold degeneracy of the ground state and reduce it to twofold
degeneracy due to only the spin degrees of freedom. Because
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FIG. 15. (a) Total spectral function plotted vs energy on logarith-
mic scale and (b) the temperature dependence of the linear-response
normal conductance for different values of �S , as indicated in the
legends. The inset in (b) presents the crossover of the universal
scaling of the conductance vs T/TK from the SU(4) to the SU(2)
Kondo regime. The other parameters are the same as in Fig. 14. For
�S = 0 and assumed parameters T

SU (4)
K /U ≈ 0.004.

of that, the SU(4) Kondo effect becomes suppressed. One can
estimate the strength of coupling �S when this crossover takes
place (�DD

S ) by comparing the doublet splitting energy with
the corresponding Kondo temperature. This leads to

�DD
S ≈ 1

2

√
T

SU (4)
K (U + ULR). (19)

For parameters assumed in Fig. 15 one then finds �DD
S ≈

0.045U . This estimate agrees reasonably well with the
numerical data shown in Fig. 15(a).

Moreover, we corroborate the SU(4)-SU(2) crossover by
calculating the temperature dependence of the normal con-
ductance, which for potential drop between the left and right
leads in the linear response regime can be expressed as [23,64]

G = 2e2

h

∫
dω

(
−∂f (ω)

∂ω

)
A, (20)

where f (ω) is the Fermi-Dirac distribution function. We note
that, since the total conductance may contain contributions
from Andreev reflection processes, the normal conductance G

should be considered as a theoretical tool to gain information
about the type of scaling and, thus, the type of the Kondo

effect in the system. The temperature dependence of G is
shown in Fig. 15(b). For �S = 0, G(T ) exhibits the SU(4)
universal scaling; see the inset in Fig. 15(b). However, with
increasing �S , e.g., for �S = 0.05U � �DD

S , the scaling does
not collapse onto the SU(4) universal function any more.
Instead, for �S > �DD

S , one finds that the SU(2) Kondo effect
becomes responsible for the conductance enhancement. The
conductance reveals the SU(2) universal scaling for �S up to
�S ≈ 3U/10 (not shown), since for larger �S the doublet is
not the ground state of the system any more and the Kondo
effect is not present in the system.

Note also that the maximum value of the low-temperature
conductance, which corresponds directly to A at ω = 0,
depends in a nonmonotonic fashion on �S . For �S = 0, G =
2e2/h, while for �DD

S � �S , G is clearly larger than 2e2/h

and approaches almost 4e2/h; see Fig. 15(b). This can be
understood by realizing that finite coupling to a superconductor
leads to an enhancement of the average occupation of each dot,
such that the occupation of the double dot becomes larger than
one. Moreover, finite coupling to a superconductor results in
a large enhancement of ALR , such that the total conductance
reaches G ≈ 4e2/h.

When the coupling to superconductor is enhanced further,
a doublet-singlet transition occurs for �S = 3U/8. For �S >

3U/8, the ground state of the system is given by the following
singlet state (cf. state |S2〉 in Table III):

|S〉= 1√
2

[
|00〉 + 1

2
(|d0〉+|0d〉) + 1

2
(|↑↓〉−|↓↑〉)

]
, (21)

with the energy ES = −2�S . The excitations between the
singlet and the two doublet states allow us to estimate the
analytical formulas for the energies of the relevant Andreev
bound states, which are given by

E1
ABS = ±U

2
∓ 2�S,

E2
ABS = ±U

2
± 2�S ∓

√
U 2 + 4�2

S. (22)

The energies of those Andreev bound states are presented in
Fig. 14 with dotted-dashed and dashed lines, respectively. In
fact, for �S > 3U/8, the resonances present in the spectral
function for positive energies are exactly due to the Andreev
bound states; see Fig. 14. At the ABS energy E1

ABS an
enhancement of the Andreev transmission is also clearly
present; see Fig. 14(d).

Summing up, in the SU(4) Kondo regime, i.e., for ε =
−U/2 with ULR = U , the SU(4) Kondo effect is present
for �S � �DD

S . At �S ≈ �DD
S , there is an SU(4)-SU(2)

crossover, and for �DD
S � �S � 3U/8 the system exhibits the

SU(2) Kondo resonance. When �S ≈ 3U/8, there is a phase
transition and the ground state changes from the spin doublet
to the spin singlet state, such that for larger values of �S

the system does not exhibit the Kondo effect any more. These
findings are schematically summarized in Fig. 16, which shows
the evolution of the ground state when the strength of coupling
to superconductor increases.
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FIG. 16. Excitation energies �E between the corresponding
singlet and two doublet states plotted as a function of the coupling to
superconductor for parameters the same as in Fig. 14. The excitation
energies are measured relative to the ground state energy, which is set
to zero. The values of �S at which the symmetry of the Kondo state
or the ground state of the system changes are indicated.

IV. CONCLUSIONS

We have analyzed the transport properties of double
quantum dot based Cooper pair splitters strongly coupled
to external electrodes, focusing on the Kondo regime. The
two dots were attached to a common s-wave superconductor
and each dot was coupled to a separate metallic electrode.
The considerations were performed in the subgap transport
regime, where transport was driven by direct and crossed
Andreev reflection processes. By using the density-matrix
numerical renormalization group method, we determined the
behavior of the local density of states of DQD and the Andreev
transmission coefficient, together with Cooper-pair splitting
efficiency. First, we have analyzed the dependence of the
transport properties on the position of the DQD energy levels
and then we have focused on the SU(2) and SU(4) Kondo
regimes.

We have shown that the superconducting pairing correla-
tions can greatly influence the Kondo effect in the system. In
the SU(2) Kondo regime, we predict a very quick suppression
of the Kondo resonance with increasing the strength of cou-
pling to superconductor. This effect is in stark contrast to the
single quantum dot case, where increase of pairing correlations
resulted in an enhancement of the Kondo temperature [43,47].
The disappearance of the SU(2) Kondo peak is directly
associated with the formation of a spin singlet state between
the two quantum dots triggered by proximity-induced interdot
pairing potential. With increasing the strength of coupling
to superconductor further, we demonstrate that the system
undergoes a transition to the doublet state. In this transport
regime, the Kondo effect reemerges and the total spectral
function shows a pronounced Kondo peak. The occurrence
of this resonance is associated with contributions coming
from both individual quantum dots Ai , as well as from cross

correlations described by the off-diagonal part of the spectral
function Aij .

In the SU(4) Kondo regime, on the other hand, the impact of
superconducting pairing correlations on the Kondo state is less
abrupt and now the Kondo effect persists for larger couplings
to superconductor as compared to the SU(2) case. More
specifically, we predict that, in the fully symmetric situation,
the SU(4) Kondo effect becomes first reduced to the SU(2)
Kondo effect, which becomes then fully suppressed once
�S > 3U/8. For this value of coupling to superconductor, the
ground state changes from the spin doublet to the proximity-
induced singlet state and, consequently, there is no Kondo
effect. The spectral function exhibits then only resonances at
energies corresponding to energies of Andreev bound states.
Interestingly, in the SU(4) Kondo regime, when ULR < U , we
find that the Andreev current is mainly due to CAR processes,
which yields almost perfect Cooper pair splitting efficiency.

Finally, we would like to note that most of our findings, and
especially the suppression or reemergence of the Kondo state
as the coupling to superconductor is varied, could be tested
with the present-day experimental technology. We hope that
our research will stimulate further efforts in this direction.
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APPENDIX: SPECTRUM OF THE EFFECTIVE
DOUBLE DOT HAMILTONIAN

Here we present the eigenvalues and eigenvectors of
isolated double quantum dot with proximity-induced pairing
potentials, as modeled by the effective Hamiltonian (3). Be-
cause the Hamiltonian possesses the full spin SU(2) symmetry,
we can write H eff

DQD in blocks labeled by the spin quantum
number. Moreover, it is enough to use 10 spin multiplets
instead of 16 local states. Let us first start from the trivial
triplet subspace. The triplet state |Tδ〉 has the components:
|T+〉 = |↑↑〉, |T−〉 = |↓↓〉, |T0〉 = (|↑↓〉 + |↓↑〉)/√2, and the
energy ET = 2ε + ULR .

The Hamiltonian block in the spin doublet subspace is
explicitly given by

H
eff,S= 1

2
DQD =

⎛
⎜⎝

ε 0 −�S −�S

0 ε −�S −�S

−�S −�S ε3 0
−�S −�S 0 ε3

⎞
⎟⎠, (A1)

with ε3 = 3ε + 2ULR + U . This matrix is written in the
following states: |σ0〉, |0σ 〉, |σd〉, and |dσ 〉, respectively, and
its eigenvalues together with unnormalized eigenvectors are
listed in Table I.

Now, let us consider the singlet subspace which is spanned
by the following five states: |00〉, |d0〉, |0d〉, |S0〉 = (|↑↓〉 −
|↓↑〉)/√2, and |dd〉. The effective DQD Hamiltonian in this
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TABLE II. Eigenvalues and unnormalized eigenvectors of the
effective DQD Hamiltonian in the singlet subspace for the particle-

hole symmetry point, ε = −U/2 − ULR . Here, �S = (U 2
LR + 4�2

S)
1
2 ,

α = (ULR + �S)/(2�S), and �̃S = [(U + ULR)2 + 16�2
S]

1
2 .

State Eigenenergy Eigenvector

|S1〉 −2ULR |d0〉 − |0d〉
|S2〉 −ULR − �S |dd〉 + |00〉 + α(|d0〉 + |0d〉)
|S3〉 −ULR + �S α(|dd〉 + |00〉) − |d0〉 − |0d〉
|S4〉 −U+ULR+�̃S

2 |dd〉 − |00〉 + U+ULR+�̃S

2
√

2�S
|S0〉

|S5〉 −U+ULR−�̃S

2 |dd〉 − |00〉 + U+ULR−�̃S

2
√

2�S
|S0〉

subspace is given by

H
eff,S=0
DQD

=

⎛
⎜⎜⎜⎜⎝

0 −�S −�S

√
2�S 0

−�S 2ε + U 0 0 −�S

−�S 0 2ε + U 0 −�S√
2�S 0 0 2ε + ULR −√

2�S

0 −�S −�S −√
2�S ε4

⎞
⎟⎟⎟⎟⎠,

(A2)

TABLE III. Eigenvalues and unnormalized eigenvectors of the
effective DQD Hamiltonian in the singlet subspace in the SU(4)
Kondo regime, that is for ε = −U/2 and ULR = U . Here, �S =
(U 2 + �2

S)
1
2 and α = (U + �S)/(2�S).

State Eigenenergy Eigenvector

|S1〉 0 |d0〉 − |0d〉
|S2〉 −2�S |S0〉 − √

2|00〉 − 1√
2
(|d0〉 + |0d〉)

|S3〉 2�S |S0〉 + √
2|00〉 − 1√

2
(|d0〉 + |0d〉)

|S4〉 2U − 2�S α(|d0〉 + |0d〉 + √
2|S0〉) + |dd〉

|S5〉 2U + 2�S α|dd〉 − (|d0〉 + |0d〉 + √
2|S0〉)

where ε4 = 4ε + 2U + 4ULR is the energy of the fully
occupied double dot. The first eigenstate is |S1〉 = (|d0〉 −
|0d〉)/√2 and its eigenenergy reads 2ε + U . The next eigenen-
ergies are given by polynomials of various Hamiltonian param-
eters and do not have simple analytical structure; therefore,
we will not present them here. Instead, let us consider some
limiting situations. The first one is relevant to the SU(2) Kondo
regime, ε = −U/2 − ULR , and the second one is associated
with the SU(4) Kondo regime, when ε = −ULR/2 and U =
ULR . The eigenspectrum in the former case is presented in
Table II, while the states and energies in the latter case are
listed in Table III.
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quantum dots coupled to ferromagnetic leads in the sequential and cotunneling regimes,

Phys. Rev. B 72, 115334 (2005).

122



[72] R. Landauer, The noise is the signal, Nature 392, 658 (1998).

[73] W. Schottky, Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern,

Annalen der Physik (in German) 57, 541 (1918).

[74] U. Fano, Ionization Yield of Radiations. II. The Fluctuations of the Number of Ions, Phys.

Rev. 72, 26 (1947).

[75] A. Thielmann, M. H. Hettler, J. König, and G. Schön, Cotunneling Current and Shot Noise

in Quantum Dots, Phys. Rev. Lett. 95, 146806 (2005).
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