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Abstract

Among different types of molecular systems, there is one specific class of molecules
which exhibit an intrinsic magnetic moment, i.e. the so-called single-molecule magnets
(SMMs). Due to their peculiar physical properties such as an energy barrier for the spin
reversal or long spin relaxation times, SMMs are inherently predestined for applications
in novel molecular electronic and spintronic devices. The following thesis is therefore
devoted to studying transport properties of such molecules, with the main emphasis
laid on discussing how the flow of spin-polarized current through a SMM can affect the
magnetic state of the molecule.

The system under investigation consists of a SMM bridged between two metallic, ferro-
magnetic electrodes with collinear magnetic moments. Furthermore, electronic transport
is assumed to take place via the lowest unoccupied molecular orbital (LUMO) level of
the molecule. Within the thesis I consider transport in both the limits of weak and strong
coupling between the molecule and electrodes, using for this purpose different perturba-
tion approaches, such as Fermi golden rule or the real-time diagrammatic technique, as
well as the Willson’s numerical renormalization group method, which is nonperturbative.

I show that due to exchange interaction between an electron occupying the LUMO
level and the SMM'’s core spin, during tunneling of spin-polarized electrons through a
molecule one can observe an effect analogous to the current-induced magnetic switching
(CIMS) phenomenon, known from other magnetic systems, for instance, nanowires or
spin valves. The origin of the CIMS mechanism in SMMs stems from angular momentum
transfer between a spin-polarized current and the molecule, and it allows for manipulating
the SMM’s spin state without application of an external magnetic field. I also focus
on studying dynamical aspects of the magnetic switching mechanism, together with
other spin effects that can arise in the situation under consideration. Finally, I analyze
the possibility of employing a pulse of circularly polarized electromagnetic radiation for
stimulating the mechanism of CIMS.
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CHAPTER 1

Introduction and motivation

hen at the beginning of the eighteenth century, Stephen Gray was carrying out

his experiments on electricity, which eventually led him to the discovery that
‘the Electick Vertue passes by the Line of Communication’ [1-3] (or that some materials
conduct current, as it would be said nowadays), nobody would have expected that, within
next three hundred years, people would be able to control motion of single electrons.

In traditional electronic devices, the mechanism of information processing exploits
usually electronic charge. However, it should be noted that the charge is not the only
degree of freedom that electrons possess, as they are also characterized by spin, which
in principle might be utilized in transport processes. It was just the discovery of the
giant magnetoresistance (GMR) effect in artificially layered magnetic structures [4, 5]
that gave the first practical realization of a simple spin-based device, a spin valve. Its
functionality relied on the interplay of these two degrees of freedom, and its behavior
could not be fully understood without taking into account the electron spin [6-8]. The
GMR discovery originated a new area of electronics, called spintronics (sometimes also
referred to as magnetolectronics or spin-based electronics), which aims at developing
a future generation of devices operating on the basis of spin-dependent effects |9, 10].
Making use of the spin degree of freedom raises hopes for a new class of integrated
circuits for commercial use, which due to their nonvolatility, higher data processing
speed, and smaller size compared with conventional electronic devices [10-12] would be
a great technological leap forward

An ever-increasing demand for faster and more efficient information processing tech-
nologies fuels the downsizing trend in building smaller and smaller electronic devices,
with the ultimate goal of reaching a molecular level, where a single molecule can be
functioning as a fully operating part of a bigger spintronic system. In recent years, with
the advent of technological advances in experimental techniques, it has actually become
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Figure 1.1: Schematic visualization of spin-dependent transport through a single-molecule mag-
net (SMM). Exchange interaction between tunneling electrons and the molecule’s spin can ef-
fectively lead to the reversal of the latter.

possible to study transport properties of nanoscale objects, like quantum dots [13], nan-
otubes [14-17] and other molecules [18-23]. The main interest in investigating transport
properties of single molecules stems from the fact that — owing to their unique optical,
magnetic and/or mechanical properties — molecules are suitable for building hybrid de-
vices of features which would be rather hardly accessible for conventional silicon-based
electronic systems [9,24-28|. For instance, one interesting feature of nanomolecular sys-
tems, which does not have counterpart in the case of bulk materials, concerns the inter-
play between the quantized electronic and mechanical degrees of freedom [18].
Furthermore, since molecules are the result of chemical synthesis, specific functions
can be imposed on them during their preparation [26]. Among many different classes of
molecules through which electronic and spin transport can be considered, particularly
interesting seem to be the ones exhibiting intrinsic magnetic moment [29], as they are
promising for potential applications in information storage and processing technologies [9,
30,31]. A molecule to be considered as a candidate for a molecular memory cell has to
satisfy two main requirements. First, it has to be magnetically bistable; and second, its
state should persist for a sufficiently long time [32]. It turned out that systems which meet
the above prerequisites, offering additionally some unique features, are single-molecule
magnets (SMMs) [33-38|. Interestingly enough, it has also been suggested that SMMs
can be a suitable base for implementation of quantum computing operations [39-43].
Despite the fact that SMMs have attracted much attention, especially among chemists,
and a great deal of effort was put into experimental measurements of electronic trans-
port through these molecules [44-49],' the research concerning transport properties of
individual SMMs is still on its early stage. It means that many questions haven’t been
addressed, or even brought up yet. In particular, since it has been demonstrated that
transport through a SMM is technologically feasible, at least in the case of nonmagnetic

Tt should be noted that all these experiments employed metallic, but nonmagnetic electrodes.
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The strength of the molecule-elctrodes coupling

Figure 1.2: As the strength of the molecule-electrodes coupling increases, the character of elec-
tronic transport through a SMM changes. In the weak coupling regime (the left-hand side),
tunneling of electrons can be assumed to occur via molecular many-body states. In the opposite
limit of the strong coupling (the right-hand side), however, the molecular states are no longer
a good approximation for describing transport of electrons. One should replace them by new
hybrid states taking into account partial delocalization of electrons between electrodes and the
molecule. Furthermore, spin exchange processes may in such a case result in formation of an
additional resonance in the density of states near the Fermi level of electrodes — the Kondo
resonance (for further details see Chapter 6). The idea adopted from Ref. [28].

electrodes, it would be interesting to go one step further, and ask what new effects could
arise owing to the replacement of nonmagnetic electrodes by magnetic ones.

The objective of this thesis is therefore to analyze theoretically spin-polarized trans-
port through individual SMMs. To be more precise, I am interested in investigating the
interplay between spin-polarized currents and the magnetic state of the molecule, be-
cause, similarly as for other magnetic systems of nanoscopic size, one can expect here
the current-induced magnetic switching to take place,? Fig. 1.1. In addition to this, I also
discuss the influence of spin-polarized reservoirs on the quantum tunneling of magneti-
zation mechanism (Chapter 3), which is a phenomenon typical of many SMMs.

Another important problem to be considered in the following thesis is related to the
complex nature of the binding of a SMM to a substrate or electrode surface (Section 2.2),
which may affect transport processes as well. By changing, for example, the type or length
of the linker molecule, the strength of the SMM-electrode coupling can be modified.
Consequently, one can generally identify two different transport regimes through a SMM,
depending on the coupling strength between the molecule and external leads, Fig. 1.2.
In the weak coupling regime, the Coulomb correlations and the discreteness of energy
spectrum lead to blockade phenomena, so that some external bias has to be applied to
electrodes in order to force conduction electrons to traverse the molecule. This regime
is analyzed in Chapters 4 and 5. On the other hand, in the strong coupling regime, i.e.
when resistance of the contact between the molecule and electrodes becomes smaller than
the quantum resistance, the electronic correlations may lead to formation of the Kondo
effect [50-54]. These correlations result in a screening of the SMM’s spin by conduction

2The general idea of the current-induced magnetic switching mechanism in the case of a single
ferromagnetic layer is presented at the beginning of Chapter 4.
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electrons of the leads, giving rise to a peak in the density of states and full transparency
through the molecule, Fig. 1.2. Problems related to transport processes in the strong
coupling regime are addressed in Chapters 6.

Moreover, it is worth mentioning that in the weak coupling regime one can distinguish
two regimes of electronic transport through the molecule with respect to bias voltage
applied to the system. For voltages lower than a certain threshold value, sequential tun-
neling processes through the molecule are exponentially suppressed as electrons lack
energy to overcome the energy barrier due to Coulomb correlations and/or size quan-
tization. However, once the bias voltage exceeds the threshold value, the electrons are
energetically allowed to tunnel one-by-one through the molecule. The latter regime is
known as the sequential tunneling regime, and it is discussed in Section 4.2, whereas the
former one is often referred to as the Coulomb blockade or cotunneling regime [55, 56|,
and it is the subject of Section 4.3. It should be noted, however, that although the se-
quential processes are suppressed in the Coulomb blockade regime, current still can flow
due to second- and higher-order tunneling processes, which involve correlated tunneling
through virtual states of the molecule. Additional spin-effects stemming from coexistence
of sequential tunneling and cotunneling processes are considered in Chapter 5.

Finally, as the mechanism of the SMM'’s current-induced magnetic switching relies on
the exchange of angular momentum between the molecule and tunneling current, thus
the general mechanism of the magnetic switching should also be valid for other sources of
angular momentum, e.g. a circularly polarized light. For this reason, in the last chapter
of this dissertation (Chapter 7) I investigate the possibility of using a pulse of circularly
polarized, monochromatic electromagnetic radiation for stimulating the current-induced
magnetic switching of a SMM in the Coulomb blockade regime.



CHAPTER 2

Preliminary concepts and description of
the system

Single—molecule magnets (SMMs) are systems in which permanent magnetization and
consequently also magnetic hysteresis have a pure molecular origin [37,38,57,58] —
some examples of most popular SMMs are presented in Fig. 2.1. The key feature which
allows one to distinguish a molecular magnet as a SMM is extremely slow relaxation
of the magnetization observed at low temperatures. The energy barrier AFE, which the
molecule has to overcome to reverse its spin, arises as the combined effect of a high spin
S ground state and a large Ising type magnetic anisotropy, described by the parameter
D. Molecular magnets form usually a crystal lattice of large molecules coupled via weak
interactions. Very often they appear in the powder form. However, recent achievements
of nanotechnology allow to manipulate and control a single molecule. This, in turn,
has opened a fascinating area of research — not only for experimentalists, but also for
theoreticians.

2.1 Single-molecule magnets — general properties

The studies of SMMs at low temperatures revealed that their behavior resembles much
that of superparamagnets [34,59], i.e. single-domain nanometric particles of bulk mag-
nets, whose magnetization can be flipped due to thermal activation [60,61|. Such particles
can be viewed as systems with extremely high spins of the order of 103 or even larger.
This, in turn, leads to the most fundamental difference between energy spectra of SMMs
and superparamagnetic nanoparticles, i.e. the energy levels of a superparamagnet form
a quasicontinuum, whereas in the case of SMMs a discrete spectrum is observed [62]. A
limited number of states to be considered together with a relatively large size are the
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Figure 2.1: Two example structures of the most intensively studied single-molecule magnets:
(a) [Mn;2012(RCO0)16(H20)4] (shortly called Mnjz) and (b) [FesO2(OH)p2(tacn)g)®" (shortly
Feg). Both the molecules are characterized by the ground state spin S = 10, and arrows denote
here corresponding spin orientations of relevant magnetic ions. In order to keep the illustration
clear, hydrogen atoms are omitted. Modified from Ref. [58].

main reason why SMMs are favored as systems suitable for testing quantum phenomena
at the mesoscopic scale, e.g. tunneling [63] or interference effects [57].

At higher temperatures the SMM’s spin can freely rotate, and the molecule behaves
like a paramagnet with a giant magnetic moment. On the other hand, when temperature
is lowered, the thermal energy is not sufficient to reverse spin orientation of the molecule.
As a consequence, below a certain blocking temperature T, which is related to AFE, the
spin gets trapped in one of two allowed orientations [37]. Thermostimulated processes of
magnetic relaxation are then extremely slow, so that a time delay between the change of
an external magnetic field and the system response occurs, leading to magnetic hysteresis.

As the property of magnetic bistability is of immense significance for future applica-
tions of SMMs in information storage, much scientific efforts are currently devoted to
synthesizing SMMs with higher and higher anisotropy barriers and consequently higher
blocking temperatures [58,64,65|, and thus to increasing functional temperatures of the
molecules. The immediate goal is to increase Ty at least above liquid helium tempera-
ture, which would allow to relax (to some extent) rigorous conditions of low temperature
experiments. Furthermore, in the most general case, apart from the longitudinal com-
ponent of magnetic anisotropy, a molecule can also possess a transversal one [37]. As
it will be discussed later, the presence of transverse magnetic anisotropy is responsible
for the phenomenon of quantum tunneling of magnetization in SMMs, which effectively
reduces the height of the anisotropy barrier [38,66|. Therefore, when designing new
SMMs, one should try to eliminate the transverse anisotropy from the system as far
as possible. The good example of molecules which can be approximately considered as
of uniaxial anisotropy are molecules belonging to the most studied family of the dode-
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canuclear manganese complexes of the general formula [Mn2012(RCOO)4(H20),] - Y
(usually called shortly Mnjs molecules) with = = 3,4, R = a chemical functional group,
and Y = solvent molecules [37,58,67|, Fig. 2.1(a). For a long time, molecules from this
group were also the SMMs with the highest known blocking temperatures Tp ~ 3.5 K
(currently the record is held by a hexamanganese(I1I) complex with T ~ 4.5 K [65]).
Since the energy barrier AE is proportional to D.S? (for integer spin) or D(S? —1/4) (for
half-integer spin), one could naturally think that its height should be easily enhanced
by increasing both D and S. However, it transpires that AF is almost independent of
S and it scales linearly with D, which basically depends on the number of metal centers
constituting a molecule [68].

Another issue important from the point of view of potential applications is related
to intrinsic spin relaxation and coherence loss due to interaction of SMMs with the en-
vironment. Even at low temperatures the dephasing effect of the environment cannot
be neglected, as nuclear spins of SMMs still remain in thermal contact with the lattice
vibrations [69]. Hence, a SMM in an excited molecular spin level can undergo transitions
to neighboring states of lower energy, which is accompanied by emission of a phonon. In
consequence, excited molecular spin states have a finite lifetime, which has been shown to
be of the order of 10791076 s [70-73]. Due to the lack of results for single molecules, the
results cited above concern either crystal or powder samples of SMM, which automat-
ically implies the presence of magnetic interactions with the environment. It has been
shown that the coupling with nuclear moments of protons and other magnetic nuclei
in the vicinity of the molecule can be considered as an important source of relaxation
[42,69, 74]. Hyperfine and dipolar interactions between neighboring molecules also can
have a notable dephasing effect on the magnetic state of molecules [37,75|. Furthermore,
it turns out that in a time-dependent magnetic field such interactions are responsible
for modification of local magnetic fields in the sample, leading to enhanced tunneling of
molecules’ spins [76-79]. More recently, the influence of intermolecular magnetic inter-
actions on phase coherence of single molecules has been studied in the [Mny]s dimmer
[80-82], where it has been proven that even weak interaction can have a significant effect
on the quantum behavior of SMMs.

2.2 Coupling of a single-molecule magnet to magnetic me-
tallic leads

A few different geometric schemes how to attached a SMM to metallic, or magnetic in
particular, electrodes have been proposed up to now [28]. Four alternative ways for real-
ization of the transport through a single molecule are shown in Fig. 2.2(a)-(d). The first
one, Fig. 2.2(a), assumes that a molecule deposited on a metallic substrate is pinned
from the top by a scanning tunneling microscope (STM) tip, which serves then as an
electrode [83|. The experimental system of such a geometry, where a functionalized gold
surface was used, has by now been proven to be suitable for investigating transport
properties of individual Mn;s molecules at room temperature [48,49]. Another possibil-
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Figure 2.2: Different geometric schemes proposed for realization of spin and charge transport
through a single-molecule magnet (SMM): (a) a molecule pinned by a STM tip, (b) a molecule
captured in a break-junction device, (c) a molecule grafted on a suspended metallic carbon
nanotube (CNT) [28], (d) an individual molecule attached chemically to metallic (ferromagnetic
in this case) electrodes.

ity, Fig. 2.2(b), which has already been employed to study electron transport through
a single Mnjs molecule below the blocking temperature [44, 46, 47|, involves a break-
junction geometry [84], whose main advantage is the presence of a gate electrode. The
serious problem that can be encountered when applying devices of this type concerns
the fact that they fail to provide a definitive evidence that transport really takes place
through an individual molecule. Moreover, the exact number of molecules interconnect-
ing the junction is still beyond control [9,22]. Recently, the idea has been put forward
that a molecule could be grafted on a metallic carbon nanotube (CNT) [16,17,85, 86|,
Fig. 2.2(c). The appealing feature of such a device would be the possibility of tuning the
coupling between the molecule and CNT. Conceptually the simplest way seems to be a
SMM connected chemically to two electrodes, Fig. 2.2(d).

It should be noted that even in the case of metallic electrodes attached to a SMM,
investigation of individual SMM’s transport properties requires a lot of technical efforts.
It becomes even more challenging if one wants to use magnetic electrodes. In general,
not only does one have to deal with low efficiency of spin injection from the electrode
to a molecule, but also the overall performance of the device is strongly sensitive to the
molecule-electrode contact geometry, the molecular end-groups, and intrinsic properties
of the molecule [25,26]. It’s worth emphasizing that experimental techniques available at
present offer only limited control of the relative orientation of the molecule’s easy axis
and leads’ magnetizations. Additionally, an external magnetic field applied to a molecule
is characterized by a finite directional resolution, i.e. it is virtually impossible to align
the filed ideally parallel to the easy axis of the molecule. As a result, the longitudinal
field usually gives also rise to a small transverse component.

In view of aforementioned technical obstacles to be surmounted in order to perform
spin-dependent transport measurements of SMMs, it seems that the first step towards
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Figure 2.3: Schematic representation of the system under consideration. The system consists of
a SMM weakly coupled to two ferromagnetic electrodes with the collinear configuration of their
magnetic moments, i.e. either parallel or antiparallel. Due to symmetrical application of a finite
bias voltage V' = (ur — pr)/e, where pr gy denotes the electrochemical potential of the left
(right) lead, the system is in a nonequilibrium state. Position of the LUMO level can be tuned
by the gate voltage V;. Note that the axis x (z’) is normal to the yz (y'2’) plane.

building a device with two magnetic electrodes could be the system involving the STM
with a magnetic tip suspended above a molecule resting on a metallic but nonmagnetic
substrate. One of the reasons is that by choosing an appropriate ligand shell for the
molecule one can in such a case obtain the specific orientation (e.g. perpendicular) of the
molecule’s easy axis with respect to the surface [87]. Furthermore, different experimental
approaches allowing for deposition of a film of well-dispersed SMMs on a substrate,
so that addressing individual molecules by means of a STM tip is possible, have been
developed [88-92].

In order to understand the influence of the interface between a SMM and electrodes or
the surface on the electronic and magnetic properties of the molecule density-functional
theory was also applied for studying the Mnjs molecule [93-97]. First of all, it has
been shown that the deposition on a surface leads to breaking the fourfold symmetry
of the molecule, and the broadening of molecular orbitals due to interaction with the
metallic electrodes strongly depends on the orientation of the molecule’s easy axis with
respect to the electronic transport direction. Since the Mnio molecule is characterized
by a planar shape with the anisotropy easy axis approximately perpendicular to the
plane, it means that for the perpendicular orientation molecular orbitals are only slightly
broadened as a result of large separation from electrodes. In the parallel configuration,
on the other hand, the distance is reduced due to the presence of shorter linker molecule,
whose consequence is the significant broadening of molecular orbitals so that individual
orbitals become indistinguishable. Additionally, it has been concluded that the spin-filter
effect stemming from the energy gap between the spin-majority and spin-minority lowest
unoccupied molecular orbitals can occur |95, 96].

In the following I consider the model tunnel junction, Fig. 2.3, consisting of a SMM
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embedded between two ferromagnetic metallic electrodes whose magnetizations are in
the collinear configuration, either parallel or antiparallel. Throughout this thesis a model
situation is assumed that electronic transport through the molecule takes place via the
lowest unoccupied molecular orbital (LUMO) of the SMM. Such an assumption may be
justified when the following conditions are obeyed. First, the higher unoccupied levels
are sufficiently far from the LUMO level, so they can be neglected for voltages of interest.
Second, the occupied orbitals, including those responsible for magnetic moment of SMMs
are sufficiently far below the Fermi level, so their influence can be taken into account
effectively via exchange coupling J between electrons in the LUMO level and internal
magnetic core. The latter assumption also means that the molecule charged with one
electron in the LUMO level corresponds to the total spin number equal either S + 1/2
or S —1/2. In a general case, however, the situation may be more complex and the total
spin number of the charged molecule in equilibrium can differ from S 4 1/2. Transport
through such states is suppressed due to the phenomenon of spin blockade. However,
they may have significant impact on transport characteristics and should be taken into
account. This problem is not addressed in this thesis. It is worth noting that the discussed
problem does not occur in the cotunneling regime, where electrons only virtually enter
the LUMO level and the charge state of the molecule remains unchanged.

A SMM coupled to external leads can be modelled by Hamiltonian of the general form

H = HSMM + /Hel + Htuna (21)

where the first term on the right hand side describes a SMM and will be described in
the following section of the present chapter. The next term describes ferromagnetic (in
general) electrodes, and the ¢th electrode is characterized by noninteracting itinerant
electrons with the dispersion relation zsii »» Where k denotes a wave vector and ¢ a spin
index of an electron. The Hamiltonian describing the electrodes therefore takes the form

He = Z Z 6iaafaaia, (2.2)
ko

q

where ai{[f and aﬁa are the relevant creation and annihilation operators for the gth
electrode, respectively. Since the problem under consideration requires application of
magnetic leads, it is convenient to describe each of them by the polarization parameter
P, = (D% —D%)/(D%+ D), where DY denotes the density of states (DOS) for majority
(upper sign) and minority (lower sign) electrons at the Fermi level in the lead g.

The last term, Hiyn, of Hamiltonian (2.1) corresponds to tunneling processes between
the electrodes and molecule. As it has been discussed above, from a technical point of
view, the problem of attaching a molecule to magnetic electrodes is highly nontrivial, as
the overall performance of such a device is sensitive to many factors. Since on the formal
level it is rather complicated to take into account separately all possible factors that
may influence the transport through the junction, I simplify the situation by introducing

one parameter Ty, i.e. the tunnel matrix element between the molecule and the gth

10



2. Preliminary concepts and description of the system
2.3. The model Hamiltonian of a single-molecule magnet

lead, which incorporates the combined effects of all processes that can affect tunneling
of electrons in the system. Furthermore, I assume that the molecule’s anisotropy easy
axis can be tilted away in the y'z’ plane, forming an arbitrary angle ¢ with the direction
collinear with spin moments of the electrodes, as shown in Fig. 2.3. Consequently, the
tunneling Hamiltonian is given by

Hiun = Z ZTqaﬂT [cos g Cy — Mg sing ¢s| + Hee., (2.3)
q ko

where gy = £1 and 6 = —o. In addition, due to tunneling processes, the LUMO
level acquires a finite spin-dependent width I'; = >° I'd, where I'} = 27|T,|?DZ. The
parameters I'Y can be presented as I, = T'j(1 & F,) for spin-majority (upper sign) and
spin-minority (lower sign) electrons. In the following these parameters will be used to
describe the strength of the coupling between the LUMO level and leads. Here, I', =
(P9 +T%)/2, and P, is the spin polarization of the gth lead. For simplicity the coupling
is assumed to be symmetric, I';, = I'g = I'/2. It should be noted that the form of I'f, and
I'r assumed here is the simplest one, which allows for capturing basic features of spin
dependent transport, and generally these parameters can be more complex.

2.3 The model Hamiltonian of a single-molecule magnet

The most general Hamiltonian, which captures all characteristic features of SMMs, such
as the Ising-type uniaxial magnetic anisotropy (including the influence of the molecule’s
oxidation state on the anisotropy [98-100]), transverse anisotropy, and intrinsic magnetic
relaxation, can be written as follows [37,101]

Henvivt = Ho + Hiel- (2.4)

Here, Hg describes the uniaxial magnetic anisotropy of a SMM, hence defining the easy
axis of the molecule, and also includes a term that describes the LUMO level and its
coupling to the SMM’s spin. In turn, H,e represents all terms responsible for magnetic
relaxation of the SMM’s spin (including the quantum tunneling of magnetization). I
point that relaxation due to coupling with electrons in the leads is not included in
Hyel, and is taken into account via other terms of the Hamiltonian (2.1). Finally, it
should be emphasized that the Hamiltonian (2.4), sometimes referred to as the giant
spin Hamiltonian, has also one serious drawback. As it will be seen below, it fails to
include the orbital degrees of freedom for the extra electrons in the LUMO level, while
it has been shown that the orbital effects arising as a result of excess charge on the
molecule can influence its symmetry and magnetic anisotropy [99,102].

For molecules with integer spin S, the first term, Hg, of the Hamiltonian (2.4) can be
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written explicitly as
Ho = — (D + Z D; CLCU + Doy C$CTCEC¢)SS
+ Zecg; + Uc$cTcic¢ —Js-S
ag
+guB(S: + 52)H., (2.5)

where S, is the zth component of the internal (core) molecule’s spin operator S, cI, (c,)
creates (annihilates) an electron in the LUMO level, and D is the uniaxial anisotropy
constant of a free-standing (uncharged) molecule. When, however, a bias voltage is ap-
plied between the leads, some additional charge (up to two electrons) can accumulate in
the LUMO level. This, in turn, can affect the magnitude of uniaxial anisotropy, and the
relevant corrections are taken into account by the terms including D and Ds.

The second line of Eq. (2.5) accounts for the LUMO level of energy e, with U denoting
the Coulomb energy of two electrons of opposite spins occupying this level. Although
the position of the LUMO level can be modified by the gate voltage V;, it remains
independent of the symmetrically applied bias voltage V. The most interesting term for
the effects being the subject of this dissertation is the last term, given explicitly by

J J J
Js-S = 54%5_ + EC]:CTSJ'_ +5 [c$c¢ — cici} S, (2.6)

which stands for exchange coupling between the magnetic core of a SMM, represented
by the spin S, and electrons in the LUMO level, described by the local spin operator
s = %ZUU, cj,-a'gg/cg/, where o = (0%,0Y,07) is the Pauli spin operator for conduction
electrons. This interaction can be either of ferromagnetic (J > 0) or antiferromagnetic
(J < 0) type. Finally, the last term of Hgn describes the Zeeman splitting associated
with the magnetic field applied along the easy axis of the molecule, where ¢ stands for
the Landé factor, and pp is the Bohr magneton.

When the molecule is detached from the external reservoirs, it is electrically neutral
and its charge state cannot change. Consequently, the Hamiltonian (2.5) becomes reduced
to a much simpler form,

Ho = —DS? + gugH.S.. (2.7)

To complete description of the model Hamiltonian (2.4), I need to specify the second
term, Hye. This term is usually written in the form

Hrel = E(S% - SZ) + C(Si + 54—) + guB[(Se + s0) Ha + (Sy + sy) Hy] +H'. (2.8)

Here S, and S, are the transverse (to the easy axis) components of the molecule’s spin
operator S, Sy = S, £1Sy, whereas I/ and C are the transverse magnetic anisotropy
constants (here any correction to the transverse anisotropy constant due to molecules
oxidation are neglected). The penultimate term of Eq. (2.8) contains the Zeeman en-

ergy associated with the transverse components of magnetic field, whreas the term H’
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takes into account all other interactions which lead to SMM’s spin relaxation (intrinsic

relaxation).

2.4 Energy states of a single-molecule magnet

For molecules with a negligible transverse anisotropy and weak transverse magnetic field,
the term H,, may be considered as a perturbation, while the energy spectrum of the
molecule is then determined mainly by the term Hg. The unperturbed part Hg of the
Hamiltonian Hgnv is then sufficient to model some physical processes, e.g. the current-
induced magnetic switching. It can be easily shown that Hy commutes with the zth
component S7 of the total spin operator S; = S + s [103, 104]. Consequently, one can
enumerate the eigenstates of Hp with the eigenvalues m of S7 and the corresponding
occupation number n of the LUMO level. Thus, the eigenstates of the SMM in the case
considered are given by the formulas,

|S; = S;0,m) = |0), b®|m>m01, (2.9
1S =S5—1/2;1,m) = Al D) orb ®@|m~+1/2)mol + B [ orb®@|m—1/2)mol, (2.10
|Se = S+1/2;1,m) = A [Dorb @ m+1/2)mol + By [ orb ©[m—1/2)mot, (2.11
1S; = S52,m) = [T orb @ M) mol, (2.12

for intermediate states m = —S7+1,—S7+2,...,57 —2, 57 — 1, with upper (lower) sign
referring to the case when 2(D + D;) — J is positive (negative), and

1St = 5;0,£S5) = |0)orb @ £ S)mol, (2.13)
Sy = 5=1/21,£8F1/2) = AT g jpDorb @ S+0(1))mol

+ B g joTord @ S —1(0))mol, (2.14)
1S = S+1/2;1,£5£1/2) = 1 (1))orb @ S)mol, (2.15)
5t = 5;2,£5) = [T orb O S)mol, (2.16)

for the fully polarized states. According to the used notation |e),mer) denotes the spin
state of the orbital (SMM). The coefficients A and B play here the role of effective
Clebsch-Gordan coefficients which depend on the system’s parameters and have the form

2Ae(m) £ (2DD) — J)m
A = V Ae( ) ) : (2.17)
Bt J\/S S+1)— m?+1/4 (2.18)
"2 /Ae(m)/28e(m) F (2DD — J)ym’ '
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Figure 2.4: (a) Spatial orientation of the system’s principle axes with respect to the longitudinal
H. and transversal H,, H, magnetic fields. The solid arrow represents the SMM’s spin in the
state |S; = S;0,5). In the bottom panel energy spectra of a hypothetical Mnjs-like molecule
in the absence of an external magnetic field (H, = H, = H, = 0) are shown for the following
parameters: D = 0.05 meV, D1 = —0.005 meV, Dy = 0.002 meV, |J| = 0.25 meV, e = 5 meV, and
U = 0 in the case of ferromagnetic (b) and antiferromagnetic (c) exchange coupling between the
electron spin in the LUMO level and the molecule’s core spin. Different parabolas correspond to
indicated values of the SMM’s total spin, S, and occupation states of the LUMO level: |10; 0, m)
(o), 119/2;1,m) (4), [21/2:1,m) (#), and [10;2,m) (m).

with Ae(m) = /DO (DM — J)ym?2 + (J/4)2(2S +1)2 and DY) = D 4 Dy. The corre-
sponding eigenenergies of the Hamiltonian H are

€(S; = S;0,m) = —Dm?* + gugmH.,, (2.19)
€Sy =5—-1/21,m) = —DW(m? +1/4) + e+ J/4
F Ae(m) + gupmH., (2.20)
€S =5+1/21,m) =—DV(m? +1/4) + e+ .J/4
+ Ae(m) + gupmH.,, (2.21)
€(S; = 5;2,m) = —(D + 2D, + Dy)m?
+2e+ U+ gupmH.,. (2.22)

The energy spectrum of the molecule corresponding to the Hamiltonian Hy, Eq. (2.5),
and defined by Egs. (2.19)-(2.22), has the form of four parabolas, Fig. 2.4(b)-(c), where

14



2. Preliminary concepts and description of the system
2.4. Energy states of a single-molecule magnet

_ (@E/D=0 _ (b)E/D=0.001

> - : S . ;

o 1F v 1}

§ 0 m= E’ 0

g -1 mf e -1E

S 2 e

S -8 —4 S 3t

55 o -5 3

LGCJ 6 fm=10~.m=9"~_ m=8> m=; =63 chlj 6F . . IM\agNneticlfield\
0 1 2 3 4 5 0 1 2 3 4 5

Magnetic field H (T) Magnetic field H (T)
(d)E/D=0.2

(c) E/D=0.1

Energy €(10;0,m) (meV)
o gk~ WOWNPFP O P
Energy €(10;0,m) (meV)
o a0k~ WONPFP O P

Magnetic field H (T) Magnetic field H (T)

Figure 2.5: Zeeman plots for a hypothetical free-standing SMM of S = 10 and D = 0.05 meV
in the case of different values of the second order transverse anisotropy constant E (the fourth
order anisotropy term is neglected, i.e. C' = 0), with the notation H, = —H (H > 0) used.
Moreover, a misalignment of the magnetic field and molecule’s easy axis is assumed so that the
transverse component of the magnetic field is present, H, = 0.1H and H, = 0. The inset in
(b) is the magnification of the avoiding level crossing, which arises in the system owing to the
presence of the transverse anisotropy and transverse magnetic field, and which is too small to
be resolved in the energy plot.

each state is labeled by the corresponding spin number Sy, the occupation number n
of the LUMO level, and the eigenvalue m of the z component of the molecule’s total
spin, Sf =5, + %(40T — cic i)’ with the second term representing the contribution from
electrons in the LUMO level. The two situations shown in Fig. 2.4(b) and Fig. 2.4(c)
correspond to 2(D + D;) — J negative and positive, respectively.

Let’s assume temporarily a free-standing hypothetical Mnjo-like molecule (empty
LUMO level) of spin S = 10. In such a case, the energy spectrum of the Hamiltonian H,,
corresponding to a molecule in zero magnetic field is described by the dotted parabola
in Fig. 2.4(b)-(c). Thus, in the absence of external longitudinal magnetic field H,, the
SMM has two equivalent energy minima for the states |S; = S;0,+S), which correspond
to either parallel (+) or antiparallel (—) alignment of the spin with respect to the axis
z (easy axis). The energy barrier AFE for switching the SMM'’s spin between these two
minima is thus, as expected, AE = DS?. It should be noted, however, that when the
magnitude of magnetic field along the easy axis increases (but e.g. H, = —H < 0), the
energies of molecular spin states |S; = S;0,m) for —S < m < 0 increase, while for
0 < m < S they decrease, Fig. 2.5. As a result, the field effectively reduces height of
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the energy barrier the SMM has to overcome to flip its spin orientation from m = —§
to m = S. Furthermore, for certain values of the field the energy levels on both sides of
the barrier become pairwise degenerate, Fig. 3.3. If wave functions describing such two
resonant states overlap, then one can expect tunneling processes between the states. The
mechanism of the SMM’s spin reversal based on quantum tunneling in a time dependent
magnetic field is one of alternative ways how to magnetically switch a SMM, and it will
be discussed in Chapter 3.

The uniaxial symmetry of the unperturbed Hamiltonian Hg can be broken by intro-
ducing the transverse anisotropy into the system (and the Zeeman energy associated
with the transverse magnetic field), which hence is an important part of the relaxation
term [105, 106]. As a consequence, Hye (assuming H' = 0) is responsible for coupling
between the states of the Hamiltonian Hg. The eigenstates of Hsyv contain then admix-
ture of the unperturbed states |S; = S;0,m) corresponding to different m. Since there
is no general analytic expression for the energy spectrum of the system in the general
case, thus when the transverse anisotropy cannot be neglected, the problem can only be
dealt with numerically by performing a unitary transformation U'HgyU = Hevm to
a new basis in which QSMM is diagonal. Consequently, one obtains the set of relevant
eigenvectors |y) and corresponding eigenvalues ¢, satisfying ﬁSMM‘X) = &,|x), where
|x) denotes a many-body state of SMM and ¢, its energy. Nonetheless, it is worth em-
phasizing at this point that, in general, numerical derivation of the energy spectrum,
as well as further computation of thermodynamical quantities, such as specific heat or
magnetization, in the case of many SMMs belong to highly nontrivial tasks [107-109].
The problem concerns especially molecules comprising of a large number of magnetic
centers, the interactions among which can sometimes take a quite complicated form.

Before proceeding further, I should comment on the influence of the transverse anisot-
ropy on the height of the energy barrier. It turns out that as the transverse anisotropy
gets stronger, i.e. 0 < |E/D| < 1/3 [37], the already introduced expression for the energy
barrier AE becomes inadequate [38,66], Fig. 2.5(d). In the present situation, S, = m is
no longer a good quantum number for all the states. When approaching the top of the
barrier, an extensive admixture of different states is encountered so that such a way of
labelling losses any physical significance. However, if |E| is appreciably smaller than |D|,
it is physically justifiable to assume the parabolic form of the energy barrier described
by Ho, Eq. (2.5), and still use S, = m for labelling the magnetic molecular states, such
as in Ref. [110].

Finally, it should be pointed out that although the transverse anisotropy is indispens-
able for quantum tunneling of the SMM’s spin to occur, it is not the only mechanism
which may lead to the magnetic switching. In general, all kinds of magnetic interactions
between the spin and its environment may possibly result in the reversal of the former,
and they can be formally included in the term H’. In this thesis, however, the main
emphasis is put on switching due to interaction of a SMM with spin-polarized currents.
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CHAPTER 3

Quantum tunneling of magnetization
(QTM) in single-molecule magnets

he principle of tunneling effect is conventionally formulated in terms of a particle

whose energy is insufficient to cross a potential barrier, and which instead of climbing
over the barrier can tunnel through it. Tunneling phenomenon is the most prominent
manifestation of quantum mechanics, and its source lies in the overlap of wave functions
corresponding to a particle on both sides of the barrier. This may be formulated in terms
of an effective interaction between the states corresponding to these two wave functions.
If the particle can tunnel back and forth between two states of the same energy, this
interaction may lift the degeneracy. As a consequence, an energy gap may arise between
the two levels [62].

Although tunneling processes are typically associated with single particles, e.g. elec-
trons, they can actually also occur for much larger systems, taking then a much more
complex form. An interesting example of such macroscopic quantum tunneling manifests
in some nanometer-sized magnets where due to quantum tunneling the magnetic poles
can suffer a sudden interchange [111-114]. The behavior of the particle’s magnetic mo-
ment is then characteristic to a quantum object, and the only difference between the pic-
ture presented above and the tunneling of a magnetic moment (or spin) is that the latter
takes place in angular momentum space between two potential energy minima [115-117],
and more than a single electron are involved in a single tunneling event. Therefore such
a tunneling is called macroscopic quantum tunneling of magnetization (QTM).

The first suggestion for the occurrence of the QTM was put forward by Bean and
Livingstone in 1959 [60], who in this way tried to explain why the magnetization of
superparamagnetic nickel particles appeared to stay unblocked even at very low temper-
atures. The problem of the QTM again received great attention at the end of the 1980s
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Normalized magnetization M/Mq

Magnetic field H (T)

Figure 3.1: One of the first experimental results obtained for a crystal sample of Mnjs molecules
exhibiting the magnetic hysteresis loop with a succession of flat regions and characteristic steps
due to the QTM. Modified from Ref. [63], where also further details about how the data was
obtained can be found.

after a series of rather fundamental theoretical papers had been published [118-123].
Within the next couple of years, the QTM was confirmed to be active in many magnetic
systems, to mention only a few, ferrofluids containing small particles of FeC, FesQOy;
magnetic grains of Fe and Dy; amorphous alloys based on rare-earth and transition met-
als; as well as a ferritin protein [113,124,125]. One of the main obstacles encountered
in experiments involving aforementioned materials concerns the fact that the number
of constituent spins and the magnetic anisotropy, the two factors that determine the
energy barrier and hance they affect the QTM, can widely differ from sample to sample.
As a result, because of the statistical nature of these experiments, one can compare their
results with theory only qualitatively [113]. In this context the discovery of the QTM in
SMMs was a real breakthrough [33,59,63|, as under the same conditions crystal samples
formed by molecules of a specific type with well-defined anisotropy and a spin number
yield reproducible results.

For a crystal sample of molecular magnets subject to a varying in time external
magnetic field, the under-barrier transitions due to QTM reveal themselves as char-
acteristic steps in magnetization hysteresis loops! [63,126], Fig. 3.1. It would be in-
structive to briefly analyze the origin of the tunneling mechanism at this point. From
the physical point of view, the QTM in SMMs arises due to the presence of trans-
verse anisotropy and/or a small transverse magnetic field (via the Zeeman term in
Eq. 2.8). The anisotropy is mainly induced by electrostatic crystal-field interaction
and the spin-orbit coupling [127,128], which consequently means the vital role of the
molecule’s symmetry [37,129], whereas the field can basically come from three inherent
sources [62,66,117,130]. First, it can be the dipolar field resulting from the neighbor-

Tt should be noted that all available experimental results indicating the presence of QTM concern
crystal samples, whereas in the present case I focus on QTM in single molecules.
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hood of other SMMs (if one considers a crystal or powder sample of SMMs), second, the
hyperfine field owing to the presence of magnetic nuclei, and finally, it can simply be
some external magnetic field. On the other hand, in the experimental setup aligning an
external longitudinal field exactly parallel to the sample’s easy axis poses a serious prob-
lem, and consequently one should expect the small transverse component to be usually
present. Nonetheless, this argument doesn’t apply once there is no external field.

The presence of an external transverse magnetic field in the case of SMMs has also
another very interesting implication, namely, the field can be used to tune the tunnel
splitting between two states on opposite sides of the energy barrier [57,131,132|. Fur-
thermore, it has been demonstrated that for small angles between the hard axis and the
direction of the field the tunnel splitting oscillates as a function of the field amplitude,
and the oscillations gradually decay with increasing the angle. Such a periodic behavior
is a consequence of the geometric-phase (or Berry-phase) oscillations attributed to topo-
logical quantum interference of two tunneling paths between the lowest-energy states
on the opposite sides of the anisotropy energy barrier [133,134]. Using the Stokes’ the-
orem, one can prove that the path integrals can be converted to an area integral, and
consequently that the tunnel splitting oscillations are suppressed owing to destructive
interference whenever the area delimited by the tunnel paths equates to kn/S, where
k is an odd integer and S denotes the value of the SMM’s spin. Thus one may notice
that the nature of the oscillations in the tunnel splitting is actually analogous to the
Aharonov-Bohm oscillations of the conductivity in mesoscopic rings 38, 135].

Since the QTM phenomenon has become one of the hallmark feature of SMMs, it
seems worth considering how the QTM processes are modified in the case when the
molecule is attached to spin-polarized electronic reservoirs. It should be expected that
interaction of the SMM’s spin with the spins of tunneling electrons will introduce an
additional relaxation path, and therefore it will enhance the effect of magnetic switching
due to the QTM. For this reason, first [ will analyze the QTM mechanism in the absence
of any further relaxation processes using the Landau-Zener model for this purpose, and
afterwards I will include the relaxation processes of interest to discuss their significance
for the QTM.

3.1 QTMin an isolated single-molecule magnet

At the beginning, let’s assume an isolated SMM whose interaction with the environment
can be neglected. Such a simplification allows me to switch off the relaxation process due
to coupling of the SMM to external electrodes and to study the spin reversal due to QTM
only. Moreover, I also omit here other spin relaxation (intrinsic) processes which may
occur in the molecule. The omitted relaxation processes will be taken under consideration
in Section 3.2.
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Energy

Magnetic field H

Figure 3.2: Energy diagram of the avoided level crossing region for the states |m) and |m’) with
Ay, denoting the tunnel splitting. The size of black arrows corresponds to the probability
of finding the system in a certain state, and P,,I;Zm, describes the Landau-Zener probability,
Eq. (3.3), that the SMM’s spin tunnels from |m) to |m/).

3.1.1 The Landau-Zener mechanism of QTM

As discussed in Chapter 2 and in the introduction above, the degeneracy of energy
levels on the opposite sides of the barrier is lifted due to the presence of the trans-
verse anisotropy terms and/or a small transverse magnetic field, Eq. (2.8) (for H' = 0).
Consequently, at the resonant magnetic fields one observes energy gaps instead of level
crossings, Fig. 2.5(b) and Fig. 3.2. The tunneling process appears when the system fol-
lows the same energy curve after leaving the region of the gap, whereas jump across
the gap corresponds to staying in the initial state. The key idea of a SMM tunneling
between molecular spin states on the opposite sides of the anisotropy energy barrier is
schematically illustrated in Fig. 3.3.

The time evolution of the system can be obtained by solving the time-dependent
Schrodinger equation (TDSE), where the time dependence enters the Hamiltonian Hgyi,
Eq. (2.4), through the Zeeman term (the magnetic field depends on time). It has been
shown, however, that in the vicinity of each avoided crossing the behavior of the system
can be described by the two-level Landau-Zener (LZ) model [70, 101, 136-144]. Instead
of solving TDSE to describe dynamics of the system, it is therefore sufficient to consider
a sequence of two-level tunneling problems.

In the following discussion I assume the abbreviation [S; = S;0,m) = |m). Let’s
consider what happens when the region of the avoided energy level crossing between
the two states |m) and |m’) is swept with an external magnetic field, H = ct, with ¢
being the speed at which H changes, Fig. 3.2. It is assumed that initially (¢ << 0) the
probability of finding the molecule in each of these two states is P, = 1 and P, = 0,
respectively. It turns out that the tunneling between the states |m) and |m') can be

successfully accounted for by an effective Hamiltonian [136,137]

Heff(t) = ( A‘f:;if}2 A-En:;;n(/t/)Q > ’ (31)
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Figure 3.3: Schematic depiction of the QTM mechanism in a SMM occurring in a time-dependent
magnetic field. The dot’s size represents probability of a particular spin state at the corresponding
stage of the reversal process.

with Ey(t) = —gupket (k = m,m’) and A,,,, denoting the tunnel splitting (bar-
rier) between the states |m) and |m'), Fig. 3.2. By solving the Schrodinger equation
ih|Waq(t)) = Hemr(t)|Waq(t)) for the wave function in the adiabatic approzimation [145)

0aa(8) = ) exp |~ [ Bt ) + a6y exp [~ [t Byt o,
(3.2)

where ag(t) (k = m,m’) is the probability amplitude, one finds that the system tunnels
from the state |m) to the state |m’) with the probability [136]
. 2
P = Jim [{m/[Wag (£)]” =1 — exp [ = 20 m], (3.3)
where A,y = A2 /(4h|m — m/|gupc).
The mechanism introduced above can be extended to the case when a series of suc-
cessive avoided level crossings is encountered. For this purpose, it is assumed that a
SMM of spin S is initially saturated in the state | — .S) with a magnetic field. More-

over, one makes also an assumption that H (H = —H,) grows linearly in time at a
constant speed ¢, H = ct. At relevant resonant fields for H > 0 (that is ¢ > 0), the
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SMM’s spin undergoes transitions from the state | — S) to states |S — n) (consecutively
for n = 0,1,2,...) on the opposite side of the energy barrier. The probabilities of all
other states | — S +1),...,|S —n — 1) for each n are then equal to zero. The repetitive
use of the two-level LZ model yields the formula for the probability with which the spin
tunnels between the states | — S) and |[S — n) 83,146,

n—1

PHign = (1—exp [~ 2mh] ) [T exp [~ 20, (34)
=0

where A\, = A_g g_,. Within such a simplified model, the average value of the SMM’s

spin, (S,(H)), changes stepwise and for the Mth resonant magnetic field H M) its value
can be found from the formula
M
(SL(HM)) = -5+ > (25 —n)PrE . (3.5)

n=0

To conclude the discussion of the LZ model, the question of its applicability for ex-
plaining the QTM should also be addressed. It has been proven experimentally that the
LZ model provides the correct description of the QTM relaxation mechanism in SMMs
within the range of the field sweeping speeds 0.001-1 T/s [70,142]. At the lower speeds,
there appear some deviations owing to so-called hole-digging mechanism [147,148|, which
effectively slows down the relaxation. The mechanism can be understood on the basis of
the theoretical concept put forward by Prokof’ev and Stamp [76,77,149|, according to
which the dipolar and hyperfine fields dynamically change the distribution of the local
field at each molecular site, so that the QTM processes are possible only when the exter-
nally applied field and the internal field satisfy the resonance conditions. In consequence,
a hole appears in the field distribution of the tunneling probability, and the approach
using the LZ model breaks down.

3.1.2 Application of the Landau-Zener QTM model to a Fe g molecule

Now I present numerical results obtained for the Feg molecule of S = 10. Although the Feg
molecule is characterized by a much smaller energy barrier than the Mnjy molecule (~ 25
K for Feg compared with ~ 67 K for Mnjo [57]), it seems more suitable for investigating
the switching due to QTM, because it posses reasonably large transverse anisotropy
terms. The anisotropy constants D = 0.292 K, £ = 0.046 K and C' = —2.9 x 107° K
together with the tunnel splittings A_g g, are adopted from Refs. [57,144]. Finally, it
is assumed that the temperature of the system is low enough so that thermally activated
QTM processes [150-152] are suppressed.

The average value of the zth component of the SMM’s spin, (S,), in an external
magnetic field increasing linearly in time is depicted in Fig. 3.4. The reversal of the
molecule’s spin due to the QTM can be observed as a characteristic sequence of steps
occurring at the resonant fields where the tunneling processes are allowed, Fig. 3.3. The
height of each step is determined by the field sweeping speed ¢, as well as by parameters
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Figure 3.4: The average value of the SMM'’s spin, (S.), as a function of an external magnetic
field H = —H, (for H > 0) for various field sweeping speeds ¢ in the absence of any other
relaxation processes. Here, H(™) = Dn/(gug) for n = 0,1,2,... denotes resonant magnetic fields
at which the QTM takes place. The parameters assumed for numerical calculations are typical
of the Feg molecule as described in the main text.

of Hrel, which influence the value of the tunnel splitting A,,, ;,,». For small values of ¢ the
reversal begins at lower magnetic fields, and the depletion of the initial state | —.S) takes
place already after passing the third avoided level crossing region, Fig. 3.4. However,
it should be noted that due to lack of any additional relaxation processes, deliberately
excluded from the present discussion, the complete reversal of the SMM’s spin is not
possible, Fig. 3.3(c). For the complete reversal one needs any relaxation processes, either
intrinsic ones or due to coupling to external leads, as wit will be discussed below.

3.2 QTM in a single-molecule magnet coupled to ferromag-
netic reservoirs

As mentioned already in Section 2.1, SMMs are susceptible to interaction with their
environment, which may result in additional spin relaxation effects. In the present section
I consider how relaxation processes in SMMs modify the picture of the SMM’s magnetic
switching due to the QTM introduced in the previous subsection. More specifically, I
focus primarily on the spin relaxation owing to coupling of a molecule with two reservoirs
of spin polarized electrons, whereas the overall effect of other relaxation mechanisms is
taken into account on a phenomenological level via an appropriate relaxation time.

3.2.1 Scattering of tunneling electrons on a single-molecu le magnet’s
spin

Considered now a SMM inserted in an unbiased magnetic tunnel junction, Fig. 3.5(a).
For simplicity, I restrict the considerations to the case of collinear (parallel or antipar-
allel) configurations of the leads’ magnetic moments, with the magnetic easy axis of the
molecule aligned with magnetic moments of the leads. Furthermore, it is assumed that an
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Figure 3.5: (a) Schema of a SMM embedded in a tunnel barrier for collinear (parallel or an-
tiparallel) magnetic configuration of the leads’ magnetizations. (b) Possible scattering paths
due to exchange interaction of an electron with the SMM’s spin with corresponding interaction
constants indicated.

external time-dependent magnetic field is oriented in such a way that it provides a large
longitudinal component along the magnetic easy axis of the molecule, and a significantly
weaker transverse one. Finally, two additional assumption are made. First, the molecule
stays electrically neutral, with the LUMO level unoccupied during the entire switching
process. Second, the field does not affect the magnetic configuration of the leads.

Exchange interaction between electrons of both leads and the SMM can be conveniently
described by means of the Appelbaum Hamiltonian [83,146,153,154],

ZZ O'ag Sa akBJrHC

qq’ kk'ap
— qt aq
- ZZ akTaMS + akiakTSJr + akTakT akiaki} SZ} +H.c. (3.6)
qq’ kk/ V N N {

As within the scope of interest is only the unbiased situation, the direct tunneling between
the electrodes (without interaction with the SMM) has been omitted. The exchange
interaction is characterized by the parameters K, , which are assumed to be independent
of energy and polarization of the leads. Although in a general case it is possible that
Krp # Krr # Krr = Kgrr, Fig. 3.5(b), in the following only the symmetrical situation
(K1 = Krr = Kpp = Kgrr = K) is taken under consideration. Finally, owing to proper
normalization with respect to the number of elementary cells N, in the gth electrode, K
is also independent of the electrodes’ size.

According to the Hamiltonian (3.6), tunneling electrons can flip their spins and hence
add /subtract some amount of angular momentum to/from the molecule. As a conse-
quence, transitions between neighboring molecular magnetic states become allowed. The

= > 4 (3.7)

q¢'=L,R

total transition rate,

at which the molecule’s spin is changed from the state |m) to the nearest adjacent upper
(lower) state [m + 1), is the sum of all possible rates 72/ = that correspond to transition
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of electrons between the leads ¢ and ¢’. Such transition rates can be obtained from the
Fermi golden rule [146],

) ka, '
ME=> W/Iqu’k?ﬁ?:?zil)fm(gﬁa) 1= fFD(gi’ﬂ)]’ (38)
kaecq k/'Beq’

where frp(x) is the Fermi-Dirac distribution function. The probability of transition from
the initial state |gka, m) = |i) of the whole system to the final one |¢'’k’'3,m £+ 1) = |j)
is given by
iy _ 27
WIJ’> TR |
with E; = el + €y and €, = €(S7 = S;0,m) [see Eq. (2.19)]. Energy E; of the final
state has a similar form.

(GIHali) |8 (B; — Ex), (3.9)

The final expression for the transition rates 77% takes the following form
2 ’
NE = ny\QAi(m)AEifBE(AEi) > DiD. (3.10)

qq’

Here, D& is the DOS at the Fermi level in the gth electrode for spin o, and Ay =
S(S+1) —m(m £ 1). Moreover, AEL = €41 — €y, = (F2m — 1)D F gupH, whereas
fr(x) denotes the Bose-Einstein distribution function.

One should note that Eq. (3.10) is generally applicable to systems with electrodes made
out of different ferromagnetic materials. For simplicity reasons, I assume that both the
leads have the same average density of states per spin, (DX +D~)/2 = (DE+D)/2 = D,
although they may differ in spin polarizations. This allows us to rewrite Eq. (3.10) into
a more compact form,

vE = %\K]QDQCP(AP)Ai(m)AEi Fan(AEL). (3.11)
The parameter Cpapy = 4 — (P £ Pr)? represents the influence of the magnetic config-
uration of the leads, either parallel (P) or antiparallel (AP).

In addition to the relaxation processes stemming from coupling of the molecule to
metallic leads, there are also intrinsic spin-relaxation processes that influence QTM as
well. It is assumed that the resultant effect of all intrinsic processes is fully described
by a single phenomenological relaxation time 7.¢. Furthermore, allowing only transitions
from a given state |m) to its nearest neighbor states |m=£1) to occur, the relaxation rate
7B+ can be written as follows

1 _
e L TP [3(en —enan)8] (3.12)
Trel 2 cosh |:%(€m — emil)ﬁ}

where 3 = (kgT)~!, kg is the Boltzmann constant and T denotes the temperature of the
system. The Boltzmann factor in Eq. (3.12) assures that the additional spin relaxation
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processes drive the molecule’s spin to a state of lower energy.

The presence of additional relaxation processes in the system means that now all
molecular spin states |m) can be involved in the reversal of the SMM’s spin, in contrast
to the pure-QTM switching where only the states between which tunneling takes place
can be realized. Moreover, transitions between neighboring molecular spin states due
to the exchange interaction with the leads depend on an external magnetic field H,
Eq. (3.10). As a result, the average value of the zth component of the SMM’s spin (S.)
changes not only at the resonant magnetic fields, where the QTM is observed, Fig. 3.4,
but also for intermediate values of the field. To calculate the average

=> mPy, (3.13)

one has to determine the probabilities P, of finding the SMM in all possible spin states
|m). These probabilities can be found from the relevant set of rate equations, solved
separately for each range of magnetic fields between two consecutive resonant fields
HM) and HM+Y (M =0,1,2,...),

( M - - M
Pl = 7 s +’7R+}P( ) [V—SH +71—%5+1]P£53r1a
PP = = |y + 7+ AR+ | B
R (M) (M) (8.14)
+ Vm 17T Vm +}P 1+[7m+1+7m+1]Pm+1’
M - 1 p(M M
P = — |7z +48| P8 + [7§_1 + ) PEYY,
for =S +1<m < S—1, and P defined as P = dP/dH. The superscript ‘(M)’ means

that the probablhtles P, are calculated for the field range H (M) < H < HMAD),

Equations (3.14) can be substantially simplified for kT < D, when the molecule spin
is trapped in the spin state of the lowest energy and no thermal excitations to higher
energy states are allowed. Furthermore, there are several different time scales present in
the system. These are set by the speed ¢ at which the magnetic field is increased, the
relaxation rates due to interaction with the electrodes, and the transition rates due to
intrinsic-spin relaxation, with the first scale being significantly longer than the other two.
One should also bear in mind that the transition rates 7= depend on magnetic field and
for the left branch of the parabolic energy spectrum, Fig. 3.3, 7, ~ 0, whereas for the
right one ~,, ~ 0. In consequence, if initially only the state | — S) is populated, the only
possible way the molecule can escape from it is by means of the QTM, and Eqs. (3.14)
can be therefore effectively reduced to

M M
By = — [V ne + V] PED,
cP,%M) =— [’y + ”yR*} P(M) {7;:_1 + 'yﬁfl] Pr(n]\i[)l, (3.15)

S(M M
PP = |y ol PEYY,
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Figure 3.6: The average value of the SMM’s spin, (S.), as a function of an external magnetic
field H in the case of the SMM coupled to electrodes (dashed lines), as well as for the SMM
decoupled from the leads (solid lines). In both cases the intrinsic spin relaxation is neglected.
The magnetic moments of the electrodes are in the parallel configuration and P, = Pr = 0.5,
whereas the other parameters are K = 1 meV, D = 0.5 V! per elementary unit, and 7.c] = o0.
The parameters assumed are typical for the Feg molecule.

forme(S—M+1,5—1).
The boundary conditions for the probabilities given in Eqgs. (3.15) at the resonant
magnetic field HM) are

M
POI(HM) =1 =% P,
n=0

P(M) (H(M)) = PE%‘,SfM7
r(nM)(H(M)) = pM-1) (H(M))7

(3.16)

for m € (S — M + 1,5), and probabilities of finding the molecule in other states are
equal to zero. By solving Eqs. (3.15) for the above boundary conditions, the mean value
of the SMM'’s spin as a function of a magnetic field H is given by the formula

M

(890 (H)) = —5 (1 -y Pl n) + Z n)PSY) (H), (3.17)

n=0

where the first term does not depend on the field and its value is determined only by the
Landau-Zener probability PZ S S Eq. (3.4), at the resonant magnetic field H (M),

3.2.2 QTMin a Feg molecule attached to ferromagnetic electrodes

Numerical results shown below have been obtained for the Feg molecule, similarly as in
the previous section. It has been assumed that the exchange interaction parameter is
K =1 meV, whereas the total DOS at the Fermi level in the leads is D = 0.5 eV ! (per
elementary unit). The temperature of the system is assumed to be T'= 0.01 K, which is
below the blocking temperature Ty = 0.36 K of the Feg molecule.
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Figure 3.7: Dynamics of the relaxation process due to exchange coupling between the SMM and
electrons in the leads, which the system undergoes after tunneling between the states | — 10) and
|6) at the resonant field H (4) = 0.858 T, calculated in the parallel magnetic configuration for
various values of the polarization parameters. The parameters assumed are typical for the Feg
molecule.

The average value of the z component of the SMM’s spin in increasing external mag-
netic field with additional relaxation processes following from interaction of the SMM
with ferromagnetic reservoirs is shown in Fig. 3.6 and compared with the case of QTM
in the molecule detached from the leads (intrinsic spin relaxation is neglected in both
cases, i.e. Tl = 00). It is clear that the relaxation processes are indispensable to observe
the full magnetic switching of a SMM. The dominating time scale, which also establishes
the duration of the molecule’s spin reversal, is set by the rate ¢ at which the field H is
augmented. Since for the parameters used in numerical calculations typical values of the
transition times 1/+,5 are in the range of 107 to 1070 s, the steps in Fig. 3.6 are very
sharp.

To analyze details of the relaxation process, the time-evolution of the SMM’s spin
induced by the interaction of the molecule with electrodes after passing the resonant
field H® = 0.858 T [the third step in Fig. 3.6(b)] is presented in Fig. 3.7. It can be
seen that in the parallel magnetic configuration of the electrodes, the larger polarization
parameters of the leads, the longer is the time after which the state of the SMM’s spin
is stabilized. I call this characteristic time scale, the stabilization time tg.> According to
Eq. (3.4), in the limiting case of P, = Pr = 1, no relaxation should be visible because
7 = 0 and consequently g = oo.

The stabilization time tg is mainly determined by the magnetic configuration of the
system. The dependence of tg on the polarization parameters of the electrodes in the
parallel and antiparallel configuration of the electrodes’ magnetic moments is depicted
in Fig. 3.8. The relaxation is most effective when both the electrodes are nonmagnetic,
whereas in the case of magnetic leads the efficiency of the stabilization process relies
on the relation between polarizations of the left and the right electrodes. In the parallel

configuration the relaxation is fast only for small values of the parameters P, and Pg,

2From a computational point of view, I define the stabilization time ¢ as a time after which the
average value of zth component of the molecule’s spin reaches 99.999% of its stable value.
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Figure 3.8: The dependence of the stabilization time tg at the resonant field H® =0.858 T on
the polarization parameters of the electrodes for the parallel (a) and antiparallel (c¢) magnetic
configuration. The bottom panel shows cross sections of the plots above along the dashed lines.
The other parameters as in Fig. 3.6.
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Figure 3.9: The effect of intrinsic-spin relaxation processes on the relaxation of the SMM’s spin
after the QTM at the resonant field H*) = 0.858 T. The electrodes are in the parallel magnetic
configuration and P;, = Pgr = 0.5. The inset presents how the stabilization time ¢ty depends on
the intrinsic relaxation time 7 for different values of the leads’ polarization parameters. The
other parameters as in Fig. 3.6.
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while for the larger values the process becomes significantly decelerated, Fig. 3.8(a)-(b).
On the other hand, in the antiparallel configuration the SMM'’s spin gets stabilized as
fast as in the nonmagnetic case providing that P, ~ Pg, and the process slows down
only if P, > Pg (or P, < Pg), Fig. 3.8(c)-(d).

Inclusion of additional intrinsic spin relaxation processes does not modify the results
qualitatively, Fig. 3.9. Intrinsic spin relaxation can be neglected for 7. > 1 /’y,fl, as the
relaxation due to the exchange interaction between the molecule’s spin and spin-polarized
reservoirs is then the dominating relaxation mechanism. In the opposite case, however,
it must be taken into account.

30



CHAPTER 4

Dynamical aspects of transport through
single-molecule magnets:
current-induced magnetic switching

An external magnetic field is only one of possible means of manipulating the SMM’s
spin. However, if one intends to make use of a SMM as a part of a larger electronic
circuit, the presence of the field may lead to undesired effects. To avoid any unnecessary
complications that could occur in such a case, it would be an ideal solution if one could
control the state of the SMM’s spin using some generic properties of the system. It
transpires that one of the most promising ways to fulfill such a requirement is to employ
a spin-polarized current.

With establishing the physical origin of the GMR phenomenon it became clear that
effects stemming from interaction between the electron spin and the magnetic moment
of a medium through which an electron propagates bear a true potential for various
applications in electronic (or spintronic, as I shall call them) circuits. Since the mecha-
nism underlying the GMR is generally the current spin-filtering due to spin-dependent
scattering of conduction electrons [155,156], it is interesting to ask what the result of the
reverse process could be, or in other words, how a spin-polarized current would affect the
magnetic state of a medium. It has been predicted theoretically [157-161] that when a
spin-polarized electric current passes through a nanometer-scale magnetic medium, the
magnetic moment of the medium is effectively subjected to a torque resulting from the
transfer of angular momentum from current to the magnetic medium. In consequence, for
sufficiently large currents the spin-transfer torque can lead to the reversal and precession
of the magnetization. In the case of the magnetization reversal due to flow of a spin-
polarized current a term ‘current-induced magnetic switching’ (CIMS) has been coined.
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Figure 4.1: Schematic depiction of the behavior of a single electron travelling through a magnetic
layer. It is assumed that the electron spin approaching the layer is polarized at the angle 6
with respect to the magnetic moment of the layer, and 6 lies in the xz plane. Moving in the
layer the electrons spin precesses owing to the exchange field of the magnet. The idea adopted
from Ref. [175].

The ingenious idea of applying a spin-polarized current to manipulate the magnetic
state of a system has found experimental conformation in a number of different systems
including point-contact junctions [162,163|, nanowires [164], nanopillars [165-167], or in-
dividual superparamagnetic islands [168|. Furthermore, it turned out that a spin-transfer
torque exerted on a domain wall results in displacement of the wall [169-172]. Recently,
a group at IBM research division has developed a novel concept of nonvolatile memory
device, so called the magnetic domain-wall racetrack memory, which utilizes as a key in-
gredient the possibility of controlling motion of a series of domain walls along a magnetic
nanowire by pulses of a spin-polarized current [173,174].

The fundamental mechanism behind the spin-transfer phenomenon can be easily un-
derstood within a simplified semiclassical model of a single electron traversing a non-
magnetic metal towards a ferromagnetic layer! [175-178]. For this purpose let’s assume
that the spin of an electron moving along the z axis forms an angle 6 with the z axis
parallel to the magnetic moment of the layer, Fig. 4.1. When the electron encounters
the interface between the nonmagnetic material and the magnet this will behave as a
spin-filter, because due to a mismatch of density of states for spin-up and spin-down
electrons on both sides of the interface the transmission probability is expected to be
higher for majority (here spin-up) electrons. In consequence, after crossing the interface
the electron spin should be tilted at smaller angle 6.

Next, travelling further through the magnet the electron experiences a strong exchange
interaction with the magnet’s moment, and it also starts precessing around the direction
of the exchange field, which is parallel to the z axis. One should note there is no external
magnetic field applied. Since angular momentum in the system need to be conserved,
the moment of the magnet in principle should also precess around the electron spin.
Nevertheless, taking into account the fact that the magnetic moment of the layer is much
larger than that of an individual electron, the precessional motion of the former one can

!The following discussion is largely based on the picture presented in Ref. [175], where in a similarly
intuitive way the case of spin-polarized transport through two magnetic layers, like in a spin-valve, is
also considered.
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be omitted for the sake of the present discussion. Such precession of the electron spin
in general can be extremely rapid, so that the electron may undergo several precessions
before it leaves the layer. Now, contrary to the zth component of the electron spin which
should not be changed due to the precessional motion, final values of the zth and yth
spin components will depend on the phase of the spin precession with which an electron
leaves the magnetic layer.

Apparently, in a real system one deals not only with many electrons simultaneously
moving through the layer, but also it has to be considered that they travel with various
energies and arrive at the interface with slightly different angles 6. As a result, as long
as the thickness of the magnetic layer significantly exceeds the precession length, for
electrons exiting the layer one can anticipate a uniform directional distribution of spin
components in the xy plane, i.e. there should be no perpendicular component of the total
angular momentum originating from summing spins of all the electrons. It means that
only the zth component (parallel to the magnetic moment of the layer) will not be equal
to zero.

The question remains where the transverse component of electrons’ angular momentum
has disappeared. The key to the riddle lies in the conservation of angular momentum by
the system. The missing transverse component of incoming spin angular momentum must
have been transferred from the electrical current to the magnetic layer. Moreover, if the
magnet responds as a single domain, then the entire magnetic moment of the layer can
be expected to rotate towards the direction of the incident electrons’ spin polarization.
Thus the mechanism discussed above can be effectively viewed as if the spin-polarized
current was exerting a torque on the moment of the magnetic layer. One should bear
in mind, however, that the actual nature of the mechanism is far more complicated, as
various additional scattering processes can occur as well.

With regard to possible applications of spin-transfer torques due to the flow of a spin-
polarized current an important issue is the dynamics of the magnetization reversal pro-
cess. The standard classical procedure allowing one to study time evolution of a magneti-
zation M in the presence of real and fictitious fields is the macroscopic Landau-Lifshitz-
Gilbert equation (LLG) [127,128]. It has been shown by Slonczewski [157] that without
considering the detailed microscopic mechanism governing the spin-transfer torque, the
effect of the spin angular momentum transfer can be captured by introducing an addi-
tional term into the LLG equation [178,179],

dm = —|y/m x Heg + am X d—m+|'y|ajm>< (m X ng). (4.1)
dt dt
Here, m = M/Mj is the magnetization vector normalized to its saturation value, whereas
« stands for the gyromagnetic ratio. The first term of Eq. (4.1) corresponds to the torque
induced by the effective magnetic field Heg, which generally can include the external
field, the exchange field, the anisotropy field, the demagnetization field, and the random
thermal field. The second term is the Gilbert damping term with o denoting the relevant
damping coefficient. Finally, the last term proportional to an effective parameter a;
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represents the transverse component of the spin-transfer torque, where ng is an unit
vector pointing the direction of spin polarization of the incoming current. Although
originally only the transverse (or in-plane) component of the torque has been deduced,
there can also be present the out-of-plane component [161]. It is worth noting that a;
depends mainly on the spin-polarization factor of a transport current and the current
density J, but it also takes into account the angular dependence of the efficiency of the
spin-angular momentum transfer between the current and the magnetization of the layer.
Returning to the main topic, since electronic transport through a single SMM is fea-
sible, it seems just a matter of time before further advances in nanotechnology allow for
changing magnetic state of the molecule by a spin-polarized current. In this context it
seems legitimate to ask how the physical mechanism underlying CIMS would work in the
case of a SMM, and, even more important, what theoretical tool could be used to study
the dynamics of the SMM’s spin reversal. As discussed in Chapter 2, SMMs with the
approximately uniaxial type anisotropy are described in this thesis by a fully quantized
model, i.e. the state of the molecule is completely described by there quantum numbers:
the total spin Sy, the occupation number of the LUMO level n, and the zth component
of the total spin S7. It is thus quite obvious that one cannot apply here a semiclassi-
cal macrospin model employing the LLG equation, but a model considering the typical
features of SMMs, such as a well defined spin value and a discrete magnetic spectrum,
must be developed. Finally, although it seems a compelling idea to switch the magnetic
state of a SMM with a spin-polarized current, experiments investigating the spin-transfer
torque carried out so far indicate that rather high current density is required to exert a
measurable effect on the magnetization [176]. It means that due to small cross-sectional
dimensions of a device involving a SMM, performing a successful experiment with the
SMM’s spin reversal may turn out to be extremely challenging, if possible at all.

4.1 The mechanism of current-induced magnetic switching
in single-molecule magnets

To address the issue of the CIMS of the SMM’s spin, I consider the model of a molecule
weakly coupled to metallic ferromagnetic leads, as discussed in Section 2.2. For simplicity
the collinear configuration of the leads’ spin moments is assumed, whereas the easy axis
of the molecule can now be tilted away in the plane z’z’, forming an arbitrary angle ¢,
Fig. 2.3. Furthermore, contrary to the model considered in the preceding chapter, the
assumption is made that a finite bias voltage and no external magnetic field are applied
to the system.

Depending on the bias voltage V' applied between electrodes one can distinguish two
regimes of electronic transport through the molecule, Fig. 4.2(a). Let’s analyze first the
situation of sufficiently large voltages, when the transport takes place owing to tunneling
between the electrodes and the LUMO level of the SMM. The CIMS can then appear as a
consequence of exchange coupling between the spin of an electron occupying the LUMO
level and the SMM’s spin. The essential mechanism of the CIMS in SMMs rely on the
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Figure 4.2: (a) The change of energy scales when moving from the sequential tunneling regime to
the cotunneling regime. Schematics below represent the mechanism of the CIMS in the sequential
tunneling regime leading to increasing (b) and decreasing (c) of the zth component of SMM’s
spin.

-

idea that electrons tunneling through the LUMO level can flip their spin orientations due
to exchange interaction with the molecule’s spin, which in turn corresponds to angular
momentum transfer between conduction electrons and the molecule, Fig. 4.2(b)-(c). The
change in the magnetic state of the molecule is thus stimulated by inelastic tunneling
processes, as it will be discussed in further part of the present chapter as well as in the
next chapter.

Such a voltage range within which electrons are energetically allowed to enter the
LUMO level is referred to as a sequential tunneling (ST) regime. In the opposite limit of
small voltages, on the other hand, electrons don’t possess enough energy to overcome the
tunneling barrier, and hence to occupy the LUMO level. In this case, known also as the
Coulomb blockade (CB) region, the sequential tunneling processes are suppressed. Nev-
ertheless, current still can flow due to higher order processes [so-called cotunneling (CT)
regime| and the reversal of the SMM’s spin can be observed, for the electrons virtually
entering the LUMO can couple via exchange coupling to the molecule’s spin. It should be
noted that although higher order processes play a leading role only in the CB regime, they
are active for all range of transport voltages. Furthermore, one should be careful when
investigating the intermediate region where both sequential and cotunneling currents are
comparable. Since the aim of the current chapter is to capture main dynamical features
of the CIMS of SMMs, I use the simplest available theoretical tools, which are the stan-
dard perturbation approach and the master equation. Consequently, the approach allows
me only to study separately either the cotunneling or sequential tunneling regime. More
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universal theoretical approach employing the real-time diagrammatic technique, which
permits considering both the regimes at the same time and therefore to study spin effects
that can arise owing to the interplay of sequential tunneling and cotunneling of electrons,
will be used in the next chapter.

In the following sections I will analyze the CIMS of the SMM’s spin separately in
the sequential tunneling (Section 4.2) and cotunneling (Section 4.3) regimes. In order to
study quantitatively the switching process, the average value of the zth component of
the total molecule’s spin is considered,

<Stz> = Z Zmast;n,m>) (42)

n,m St

and also current flowing through the system. For the sake of simplicity, from this moment
I adhere to the convention that the positive bias corresponds to electrons flowing from
left to right (e > 0). Furthermore, to calculate the quantities in question, one has to first

. |Sym.m)|Shn/,
determine the rates ~

q(aq’)
states |S;;m,m) and |S;;n/,m’) for sequential tunneling (cotunneling) processes. The

™) describing transitions between the molecular spin

probabilities Pg ., my of finding the SMM in all accessible molecular states |S;;n, m) are
in turn obtained from the set of relevant master equations [103, 180, 181].

4.2 Current-induced magnetic switching in the sequential t un-
neling regime

In this section I consider the case when electrons possess enough energy to tunnel freely

between electrodes and the LUMO level. The main idea is to develop an analytical scheme

allowing to analyze the time evolution of the molecule’s spin, and to be more precise the
zth component of the spin, when a constant bias voltage is applied to the system.

4.2.1 The tunneling current and the average spin

The total current I flowing through the molecule in the sequential transport regime can
be calculated as I = (I, — Ir)/2, where I; (¢ = L, R) is the current flowing from the
qth lead to the molecule,

S,:m, S'n! m!
Iy=ed 30 3 o = B, (4.3)

n,mn/m’'S, S}

In order to keep the notation transparent, in the present section I assume |Sf; ng, mq) =
|a), which also implies that 32, =37, >7, > ga-

In the second order (Fermi golden rule), the general formula for transition rates m'f”ﬁ )
between the states |«) and |5) takes the form [103,104]

A = 3 LW el + W 11— fenlel)] ). (4.4)
k,o€q
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In the above equation, the first term represents the charge transfer from the gth lead to
the molecule, whereas the second term stands for tunneling of electrons in the opposite
direction. Furthermore, W} = (27T/h)|<f|’Htun|i>|25(Ef — E;) is the rate of transitions
from an initial state |i) to the final one |f), with Ej s denoting the relevant energies.
Replacing the summation with respect to a wave vector k by integration in Eq. (4.4),

one obtains

[

Pg o . o . o o *
'ylf‘>|ﬁ> = Z ?{[COSQ g ‘ aﬁ‘Q + sin? g |C'a/3|2 — smnge[CaﬁCaﬁHfFD(ega — ,uq)

+ {cos2 g ‘C’gof + sin? g |C‘Ea|2 —sinp Re[CgaCE’;H
X [1 - fFD (6046 - ,uq)}}) (45)

where €5o = €5y — €|q) [see Eqgs. (2.19)-(2.22)], and p, describes the electrochemical
potential of the ¢th electrode. Using the results of Section 2.4, the nonzero coefficients
o5 = (Blco|ar) can be stated explicitly as follows

0%71/2;1,m>|5;0,m’) = Afn(saiém’,m+l/2 + BiédTém’,mfl/Za
+ +

C|C.TS'+1/2;1,m>|S;O,m’) = Améo'i(;m’,m+l/2 + BméaTém’,mfl/%

Clo2,my|S—1/2:1,m) = AT 0610mr41/2,m + B 06 0m —1/2,m

+ +
Cloi2,my5+1/2,m7) = BO0t O 11/2.m + By 00 0 —1/2,m-

Now, taking into account the formulae above one can arrive at the conclusion that,
owing to presence of the delta functions with respect to a spin ¢ and the spin number
m, terms in Eq. (4.5) such as Re [Cgﬁ g/’g] are equal to zero. Noting additionally that
1 — fep(x) = fep(—x), the ultimate expression for the transition rates is given as

a Fg 2 o : ¥ a
,y(|] N8y — Z F{{cos2 5 ‘C’ag‘Q + sin? 5 |C'a5‘2] fFD(6/3a - Hq)

g

+ [cos2 g ‘Cgaf + sin? g |Cga‘2] fep (€80 + ,uq)}. (4.7)

The coefficients C75 = (Blcy|a) constitute therefore basic selection rules that govern
transitions between molecular states, and hence they define the physical processes behind
the CIMS of the SMM’s spin. These selection rules state that tunneling of an individual
electron between the molecule and leads is associated with the change of the SMM’s
oxidation state by one and |AS7| = 1/2. As a result, it means that the switching of
the SMM'’s spin corresponds to a series of transitions between neighboring molecular
states. An example of the formula for a transition rate between two states |S;0,m) and

37



4. Dynamical aspects of transport through SMMs: current-in duced magnetic switching
4.2. Current-induced magnetic switching in the sequential tunneling regime

S +1/2;1,m’), satisfying the selection rules, is given below
| ying g

/ rf
,y(|15';0,m>|5+1/2;1,m> — {% |:COSQ§ |A;L/| 5mm +1 + Sln2 v |Bm | 5 %]

q
I3

+E{cm2§|&wfamm,;+sm?§|AWF@mw+ﬂ}

X frp (€|S+1/2;1,m/>|s;0,m) - Hq)' (4.8)

As described in Sections 2.1 and 3.2, the magnetic state of a SMM can also be affected
by intrinsic relaxation processes. Unlike relaxation stimulated by current flow through
a molecule, the characteristic feature of intrinsic relaxation of the SMM’s spin is that
such processes do not change the oxidation state of the molecule. In addition, both the
types of relaxation processes occur independently. Consequently, the transitions due to
intrinsic relaxation take place between neighboring molecular states corresponding to
the same occupation number of the LUMO level, which in the case of n = 0 |dots in
Fig. 2.4(b,c)| and n = 2 [squares in Fig. 2.4(b,c)| means transitions within the same spin
multiplet. For n = 1 [triangles and slanted squares in Fig. 2.4(b,c)|, however, additional
transitions between neighboring states of different spin multiplets become possible. In

the situation under consideration, I assume that the spin relaxation within multiplets

SU—)St

is fully described by phenomenological relaxation times 7. Treln

, which in general can be
different for different spin multiplets. The corresponding relaxation rates take the form

[180,181],

ex m, mi1:|
|St,n m)|Sy;m,mtl) 1 y p |: 2kpT (4 9)
TStHSt m ,m=+1 ’ '
reln 2 cosh SEnT

With Apmi1 = €5,m,m) — €/S,mm+1) [see Eqs. (2.19)-(2.22)]. The relaxation processes
associated with transitions between two different spin multiplets for the case of a singly

S s—1
occupied LUMO level are characterized by re1+n Hl 2,
Ai
|S+4;1,m)|SF5;1,m") O/ m—1 =+ Om/ m+1 % Xp [ QkBT} (4.10)
R o s+ ~s5-1 N ‘
reln 1 2COSh|:2k T]

+
where An, /= €jsa1/21,m) — €lsF1/21m)-
Taking into account the relaxation processes discussed above, the master equations for
the probabilities Pg ., ) take the form,

-y ¥ {[ St S S S B

q S;n',m!

d}ﬂg

_[%fﬁmm”ﬂ"“m”-%vf“mmﬂgﬂﬂmﬂ}ﬂsﬁmm>}' (4.11)
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Figure 4.3: Energy spectra of the Mnjs molecule in the absence of an external magnetic field
(H, = H, = H, = 0) shown for the following parameters: D = 0.05 meV, D; = —0.008 meV,
Dy =0.0014 meV [98], J = 0.25 meV, e = 5 meV, and U = 0. Different parabolas correspond to
indicated values of the SMM’s total spin, S, and occupation states of the LUMO level: |10; 0, m)
(o), 119/2;1,m) (), [21/2:1,m) (#), and [10;2,m) (m).

As a result, the analytical method allowing to study the dynamics of the SMM’s CIMS
has been devised. Assuming that initially the molecule is saturated for instance in the
and Pig,.n,m)(to = 0) = 0 for all |Sy;n,m) # |SY;ng, mg), at time t > tq one can apply

state |SP; ng, mg), which corresponds to the boundary condition P|ngo’m0
a finite bias voltage V', and then study the dynamical response of the molecule’s spin.
It means that for a molecule of the spin S, one has to solve the set of 25 + 1 coupled
differential equations for the situation of high LUMO level and 4(2S + 1) equations in
the general case — for the molecule Mni5 or Feg with S = 10 one has to deal then with

84 equations.

4.2.2 Dynamical response of the Mn 1, molecule’s spin due to application
of a constant voltage

Numerical results shown below have been obtained for the Mnjs molecule, whose energy
spectrum is shown in Fig. 4.3. Since the results are going to be presented for an existing
molecule, it seems suitable to comment on the choice of parameters used in calculations.
When it comes to the parameters D, D; and Ds describing the uniaxial anisotropy of the
molecule, they can be deduced from the results of physicochemical experiments [67,98,
100]. A more complicated situation is in the case of the coupling J between the LUMO
level and the SMM'’s spin, which is the free parameter in the model under discussion.
Because the exchange coupling can generally depend on the specific type of ligands used
to stabilize the inner part of the molecule responsible form its magnetic properties, as
well as on the structural geometry of the molecule, which can be additionally distorted
due to the adsorption to a surface or electrodes (see Section 2.2), the parameter J can
significantly vary even among different molecules belonging to the Mnjs family. One
should therefore consider first whether J is positive or negative, for the sign of the
coupling constant determines which of the spin multiplets S+ 1/2 or S — 1/2 has lower
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Figure 4.4: The average spin (S7) and current I flowing through a Mn5 molecule in a stationary
state as a function of bias voltage V for parallel (a) and antiparallel (b) magnetic configuration.
Intrinsic relaxation processes are not taken into account. The other parameters are: ¢ = 0,
T =0.01 Kand I' =20 peV.

energy, and second, what is the value of J. Concerning the former point, there is a
disagreement between the theory (S + 1/2) [99] and experiments (S — 1/2) [67,98,100].
More recent studies show that in fact both cases can take place [96]. Here, I have chosen
J > 0 (the ferromagnetic coupling), however in Chapter 5 I will consider both the cases.
Also the value of J can be hardly extracted from experimental results, so that the value
assumed in Fig. 4.3 is chosen together with U, which in reality can be much larger,
in order to get such a separation of spin multiplets that one can easily analyze their
participation in transport processes. The larger Coulomb interaction U would mean that
the states with a doubly occupied LUMO didn’t take an active part in the CIMS process,
whereas larger J would result in smaller energy gaps between states of the two lowest
multiplets in Fig. 4.3.

In the following it is assumed that initially the molecule is saturated in the state
|10; 0, —10), and then at time ¢t = 0 a constant bias voltage V' is applied. Figure 4.4 illus-
trates how the average spin (S7) and current I flowing through the SMM in a stationary
state depend on the bias voltage V. In the ST regime, the magnetic state of the molecule
remains intact until the voltage reaches V' & 9.1 mV, which corresponds to the energy
gap between the states [10;0,—10) and |21/2;1, —21/2), Fig. 4.3. Since according to the
selection rules the molecule can escape this state only wia the state |10;2, —10), whose
energy is relatively large, the molecule becomes trapped in the state |21/2;1,—21/2).
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Figure 4.5: Dynamics of the SMM’s switching in the parallel (a) and antiparallel (b) magnetic
configuration for the bias voltage V' = 15 mV. Other parameters as in Fig. 4.4.

The switching process begins when the next accessible level |21/2;1, —19/2) enters the
energy window set by the voltage V. For the case of both the electrodes characterized
by the same polarization parameter, the switching of the SMM’s spin is observed only
in the antiparallel configuration of the leads’ magnetic moments, whereas in the parallel
configuration all molecular spin states gradually become equally probable. Such a behav-
ior results from the left /right symmetry of the SMM’s coupling to electrodes, resembling
the absence of the spin accumulation in tunneling through a metallic nanoparticle [182].
On the other hand, the antiparallel configuration lacks such a symmetry, so that the
molecular spin states become unequally occupied leading to the spin reversal.

Figure 4.5 presents the time evolution of the zth component of the molecule’s total
spin for a given value of a bias voltage. One of the most notable features of the CIMS
is that the reversal of the SMM’s spin is accompanied by an additional signal in the
current flowing through the system, Fig. 4.5(b). The occurrence of this additional signal
can be explained by considering transport channels through which electrons traverse the
junction. As already mentioned in Section 4.1, during tunneling through the LUMO level
the electron spin can flip its direction owing to exchange interaction with the molecule’s
spin, so that the transfer of spin angular momentum between the current and the molecule
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Figure 4.6: Schematic illustration of the concept of the switching (SWC) and stabilizing (STC)
transport channels in the parallel (a) and antiparallel (b) configuration of the leads’ spin mo-
ments.
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Figure 4.7: Dynamics of the SMM’s switching in the antiparallel configuration of electrodes’
magnetic moments for various bias voltages V: the average value of the zth component of the
molecule’s total spin, and the current flowing through the molecule via SWC channel Iswc (b)
and STC channel Igpc (¢). Other parameters as in Fig. 4.4.

can take place, Fig. 4.2(b)-(c). When electrons change their spin orientation in such a way
that the momentum transferred to the molecule tends to switch its magnetic moment,
the corresponding transport channel is referred to as the ‘switching channel’ (SWC).
Accordingly, the transport channel in which electrons tunneling between the leads and
the molecule tend to restore the initial state of the SMM’s spin is called the ‘stabilizing
channel’ (STC), Fig. 4.6. Assuming that

ISWC(STC) e Z Z (n — n),yl;‘?t;mmISé;n’,miDPlstmm> (4.12)

S,,S! n,n’m

describes the current flowing in the SWC (STC) from the gth lead to the molecule, the
total resulting electronic current flowing through each of so defined channels is given by

1
JSWC(STC) _ : [FWOBTC) _ [SWOSTO) (4.13)

Analysis of Fig. 4.4 leads to a straightforward conclusion that for P;, = Pr the re-
versal of the SMM’s spin can be observed only for the antiparallel configuration of the
electrodes’ magnetic moments. Therefore it would be informative to take a look how the
dynamics of the spin’s switching in such a case depends on a bias voltage, Fig. 4.7(a).
One can notice that for larger voltages the reversal occurs rather fast at the time of
order of 12.5 ns, Fig. 4.8. However, before this range of voltages is reached one observes
the transition through a bias region in which significant slowing down of the reversal
process takes place. The stabilization time can then increase up to even 90 ns. On the
other hand, in the parallel magnetic configuration typical time at which the molecule’s
become demagnetized is of order of 200 ns, but for the transitional region it can also be
as long as 100 us.
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Figure 4.8: The dependence of the stabilization time ¢y, which in this example can be understood
as the switching time, plotted as a function of a bias voltage V for the antiparallel magnetic
configuration of electrodes, see Fig. 4.4(b).

Let’s now discuss in more detail the transport processes occurring during the SMM’s
spin reversal. Since in the antiparallel configuration spin directions of majority (and also
minority) electrons in different leads are opposite, Fig. 4.6(b), tunneling probabilities
through SWC and STC are not equal. There dominates transport through SWC, as this
channel involves majority spins in both the electrodes. Consequently, the current adds
more angular momentum to the molecule than it subtracts, Fig. 4.7(b)-(c), and the re-
versal of the SMM’s spin takes place. The situation changes in the parallel configuration,
where the channels become symmetric (at least for P, = Pr), and both SWC and STC
contribute equally to transport, so that no switching is observed. However, the symmetry
of SWC/STC can be broken by allowing the polarization parameters of both the leads
to differ (P, # Pr), Fig. 4.9(a)-(d). Furthermore, it can be seen that in the antiparallel
configuration the magnetic switching of a SMM can be observed for all the range of
electrodes’ polarization parameters, Fig. 4.9(e)-(h), whereas in the parallel configura-
tion the spin of the molecule can be reversed only if P;, > Pg, Fig. 4.9(a)-(d). It should
be thus emphasized that the pulse in current is a consequence of competition between
SWC and STC transport channels which drive the molecule’s spin to a stable state. Once
the molecule reaches such a state the competition ceases, and both the channels start
contributing equally to transport, Figs. 4.7(b)-(c).

Misalignment between the SMM'’s easy axis and the magnetic moments of the leads
also affects the reversal process, Fig. 4.10. The effective spin orientation of electrons
tunneling through the LUMO level perceived by the molecule varies with rotation of the
molecule’s anisotropy axis [183]. As a result, both the channels exchange their roles, i.e.
the SWC (STC) gradually converts into STC (SWC).

Another important aspect of the SMM’s spin reversal to be considered is intrinsic-spin

. . o 1010 _ 19/2<19/2 _ _21/2¢:21/2 10410 —
relaxation. In the following it is assumed 7,477 = Trel.1 = Trel1 = Trela =

Trel, and Ti11/12<—>19/ @ /- Figure 4.11 shows the case of relaxation processes occurring
only within the individual spin multiplets. Apparently, intrinsic-spin relaxation processes

lead to attenuation of the magnetic switching, increasing thus the time at which the spin
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Figure 4.9: The influence of leads’ polarization parameters on the final average spin state (Sf)
of the molecule and the time ¢y after which this state is reached in the parallel (a)-(d) and

antiparallel (e)-(h) magnetic configuration of the system. Other parameters as in Fig. 4.4.
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Figure 4.10: Variation of the average value (S7) of the SMM’s spin that can be reached for
V = 15 mV and the stabilization time ts due to rotation of the molecule’s easy axis in the
parallel (a)-(b) and antiparallel (c) magnetic configuration. The other parameters as in Fig. 4.4.

stabilizes. The appearance of such behavior results from significant contribution of the
relaxation processes to competition between the SWC and the STC.

Further inclusion of the intrinsic relaxation between the two different spin multiplets
corresponding to the singly occupied LUMO level shows that such processes only slightly
modify the reversal of the molecule’s spin, Fig. 4.12. The relaxation between different
spin multiplets violates the selection rules in the sense that the processes under discussion
allow the molecule for transitions satisfying |[AS7| = 1, whose rate can be comparable
or even higher than the rate of transitions induced by tunneling of electrons to/out of
a LUMO level. Consequently, it turns out that the relaxation between different spin
multiplets can facilitate spin switching and shorten the corresponding switching time.
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Figure 4.11: The effect of intrinsic relaxation processes on dynamics of the SMM’s magnetic
switching in the antiparallel magnetic configuration (h/I' = 0.2 ns, ¢ = 0 and 7/, = c0). The
other parameters as in Fig. 4.4.
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Figure 4.12: The reversal of the SMM’s spin for different values of intrinsic-spin relaxation
between the spin multiplets 21/2 and 19/2 that correspond to a singly occupied LUMO level.
The other parameters as in Fig. 4.4.

4.3 Current-induced magnetic switching in the cotunneling
regime

Cotunneling processes can in general be divided into two groups with respect to whether
or not the molecule remains in its initial state after a cotunneling process, Fig. 4.13(a)-
(b). Although the cotunneling events do not change the charge state of the molecule,
they can, however, modify its spin state (inelastic cotunneling). Moreover, it turns out
that inelastic cotunneling processes can lead to magnetic switching of the molecule’s spin
between two lowest energy states. This is because such processes involve angular momen-
tum transfer between the molecule and tunneling electrons, as shown schematically in
Fig. 4.13(b). It should be noted that in addition to double-barrier cotunneling processes
which transfer charge between two different electrodes, there are also single-barrier co-
tunneling processes, where an electron involved in the cotunneling process returns back
to the same electrode. Although the latter processes do not contribute directly to the
current flowing through the system, they can affect all the transport properties in an
indirect way, by altering spin state of the molecule.

Because in the Coulomb blockade regime electrons are not allowed to tunnel to the
molecule, only the states with unoccupied LUMO level |S;0,m) can be realized. Conse-
quently, the CIMS mechanism is active only if an electron being virtually in the LUMO
level flips its spin orientation. Note, however, that by applying a gate voltage one can
shift energy levels of a molecule, so that the molecule can instead be trapped in the
states with a singly occupied LUMO level. This new situation permits that in the virtual
state not only can the molecule accommodate an additional, second electron, but it is
also allowed to release one electron, which effectively corresponds to tunneling a hole
to the LUMO. Since my aim is to consider the dynamical aspects of the CIMS’s basic
mechanism in the CT regime, I focus in this section only on the conceptually easiest case
of the unoccupied LUMO level in equilibrium. More detailed discussion on spin effects
related to transport in the CT regime will be presented in the next chapter.

For the sake of notational clarity, similarly as in Chapter 3, I assume |S;0,m) = |m).
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(a) Elastic cotunneling (b) Inelastic cotunneling
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Figure 4.13: (a)-(b) Schematic representation of the elastic and inelastic electron cotunneling
processes. The two bottom panels show examples of inelastic cotunneling processes leading to
increase of the zth component of the SMM’s spin in the situation when the LUMO level is:
(c¢) empty and (d) doubly occupied. Note that in the present chapter I consider cotunneling
processes only in the Coulomb blockade regime. For simplicity, in (¢)-(d) I assume thus V' — 0,
i.e. pr, = ur+07. If in the ground state the molecule was occupied by a single electron, inelastic
processes could generally occur via two virtual states associated with empty and doubly occupied
LUMO level.

In general, within the frame of the standard higher-order perturbation approach, the
[m)[m”)

transition rate -, for inelastic cotunneling processes can be written in the following
manner [184,185]

) = STOST W (el ) [1 - fro(el)]. (4149

koeqk/o’eq’

There are several theoretical methods which allow me to calculate the cotunneling
rate [186-188|. Here, the T-matrix approach that enables one to generalize Fermi’s golden
rule to higher-order processes is used. Accordingly, the probability amplitude that the
system undergoes a transition from some initial eigenstate |i ] > of Ho = Hsvmm + Hel at Lo
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to another eigenstate |f) at time ¢ > t( reads?

et >
i(t) = ——— TIi), 4.15
16D = 5=y M1 (115)
where 7 is called the T-matrix,
T =Hiwm+H ! H
- tun tun Ez — ,HO i iT} tun
1 1

+ Heun —Hun + h.0. (4.16)

—Hiun
E;—Ho+in "B, — Ho +in

In consequence, the rate at which the system transfers from the initial state |i) to the
final one |f) is given by

L2
wi= 2T 3 UTHwnlo) M ewld | 50 g (4.17)

Ei_EU

In Eq. (4.17), the initial and final states are defined as |i) = |ko), ® |m) and |f) =
|k'c")q @|m’), where the first ket corresponds to the state of electrodes. From a physical
point of view, the above equation represents the process during which one electron is
moved from the lead ¢ to the lead ¢’ via a virtual state |v) = |0)|S £ 1/2;1,m"). One
should also note that summation in Eq. (4.17) runs over all molecular spin states be-
longing to multiplets S + 1/2 and S — 1/2, which correspond to a molecule with one
extra electron. The electron virtually entering the LUMO level may then flip its spin
orientation, altering via exchange interaction the state of the molecule’s spin. Moreover,
E;, Ey and E, in Eq. (4.17) denote the energies of the initial, final, and virtual states,
respectively. To complete the present discussion, it is worth emphasizing that in the
most general case for a finite Coulomb interaction U, one can also expect tunneling of
electron pairs [189]. Nonetheless, it transpires that the contribution of such processes to
the transport can be dominating only for some specific situations, e.g. for negative U,
and one can neglect this contribution otherwise, as it has been done here.

As a result, the expression for the cotunneling transition rate takes the from

2
Im)m'y _ h apd A
Yo T op Z FUFU,/de Z €+ €my + Hq

oo’ Sy ,my

X fro(€) [1 — fro(€ + €mm: + f1g — ,uq’)]v (4.18)

With €, = €y — €1y, and €.,y being the energy of the SMM with an unoccupied (a

2To avoid further complications due to action of transient processes during switching on the pertur-
bation (tunneling of electrons), it is assumed that the process occurs slowly. On the other hand, since the
tunneling processes take place between the moments ¢y and ¢, the time of turning on the perturbation

n~" should be significantly shorter than the duration ¢ — to of the perturbation, i.e. t —to > n~" [187].
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singly occupied) LUMO level [see Egs. (2.19)-(2.22)]. The coefficient A? , is defined as

AV =%, C* cos? % + nqnq/C(}, C%* sin’ %

m'v~mv m'v~mv
1 . ’ G s %
~3 51n¢<nqC,ilyCﬁly +nyCoy, f,w>, (4.19)
with C7, = (S4;0,m/|c,/|SY;1,m,), and the remaining coefficients formulated in a

similar way — for exact expressions see two first lines of Eq. (4.6).

When tackling Eq. (4.18), one encounters divergence owing to the presence of the
denominator. Several regularization procedures have been developed to deal with this
problem [56, 190-193|. Here, I use the method described in Refs. [192,193]. By noting
that frp(e) [1 — frp(e + a)] = fee(—a) [fFD(e +a)— fFD(e)], where fgg(€) is the Bose-
Einstein distribution function, the integral in Eq. (4.18) can be split up into a sum of
integrals of two types (with n = 0 and n = 1), which in the next step can be evaluated
using contour integration, yielding

2 " "ok

. (4.20)

(c—b ~ nld

fFD(€ + a) 1 dn 1 Ca—+ b W
de < ) N kg T

In the above equation, ¥(z) denotes the digamma function, and W is the cutoff param-
eter (the largest energy scale in the system). Ultimately, applying all aforementioned
intermediate steps to Eq. (4.18), one derives the final expression for the tunneling rate
between two neighboring spin states of a SMM,

) , )
m)|m=1 ) 4 S;O,m:l:l
")/l ,>| ) = 7( ( fBE (AGIS;O,m) ) + Mq/ — /,Lq)

_ . 2= |S4+1/2;1,m+1/2) i~ |S+1/2;1,m+1/2)
X {lAm:tl/Q Bm:ﬁ:l/?‘ [‘I’/ <A€|S;O,m:|:1) - NQ’) - ‘I’/<A€|S;0,m> - “q)}

+ +x 25 |S—1/2;1,m=£1/2) T [S—1/2;1,m=£1/2)
+ |Amil/2 Bmil/Zl [\Ij/ (A€|S;0,mi1> - “fﬂ) - <A€|S;O,m) - MQ)]

— —% * (%)
2Re (Am:l:l/Q A;ﬂ/g B, B;ﬁm )
[S+1/2;1,m=£1/2)
A6|571/2;1,mi1/2>

X [\T; <A€|S+1/2;1,m:|:1/2) _ Hq/) _ \I,(A6|S+1/2;1,m:tl/2> B uq)

_l’_

|S;0,m=+1) |S;0,m)
= |S—1/2;1,m+1/2) ~ |S—1/2;1,m+1/2)
+ \IJ<A€|S;0,m) - ,uq) - \IJ(A€|S;0,mi1) - Hq/)] }, (4.21)

where the following auxiliary notation has been introduced: (z) = W(1/2+iz/(2rksT)),

U'(z) = d¥(z)/dz and Ae}{; = €|y — €);)- Furthermore, Eq. (4.21) as stated is valid only
for 2(D+ Dy)J < 0 [see Section 2.4], in the opposite case for 2(D + D;)J > 0 one should
substitute Arinil/Q (B;tnil/Q) with A;Fnil/Q (B;Fn:l:l/Q)'

Similarly as in the case of the ST regime, Eq. (4.11), one can put down the set of
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Figure 4.14: Dynamics of the average spin (S7) in the antiparallel magnetic configuration for
various polarization parameters P, = Pgr (a) and different bias voltages V' (b). The other
parameters as in Fig. 4.4.

master equations describing the time evolution of the probability distribution,

d By

_ [m=1)jm) | _ |m—=1)|m) [m41)jm) | Im+1)|m)
TR Z { [’qu/ TR ]P|m71> + {qu/ +r }P|m+1)
a9

i)y glmiimt) ity |l p )}' (4.22)

The main difference when compared to the analogous equation presented in Section 4.2
is that in the CT regime a SMM can occupy only the magnetic molecular states corre-
sponding to an unoccupied LUMO level. For this reason, the probabilities of finding the
molecule in other states can be assumed to be equal to zero, and hence there is no need
to include them in the master equation. This significantly simplifies the considerations,
as one have to deal now only with 25 + 1 differential equations.

At the beginning it has to be emphasized that the basic ideas underling the CIMS
in the CT regime do not differ qualitatively from those presented for the ST regime,
compare Fig. 4.14 with Fig. 4.5(b). To start with, the reversal is also observed only when
the voltage achieves a certain threshold value, which corresponds to the energy gap
between the initial state | — 10) and the nearest neighboring state | — 9). Furthermore,
since the transition rates, Eq. (4.21), are determined by the coupling parameters of the
molecule to the electrodes ¢ and ¢/, described by I'Z and Fgl,, switching of the SMM'’s spin
strongly depends on magnetic configuration of the leads’ magnetic moments, as shown
in Figs. 4.14 and 4.15. In the antiparallel configuration the reversal occurs for the whole
range of polarization parameters, whereas in the parallel case the switching is observed
only for Pr, > Pr. Such a behavior stems from the fact that for ¢ = 0 the probability of
transfer through the SWC (STC) is proportional to X T'# (PLTH) in the parallel case,
and to TAT (TETE) in the antiparallel one.

It has to be pointed out, however, that the numerical results shown in Fig. 4.14 and
Fig. 4.15 have been obtained in the absence of intrinsic spin relaxation in the molecule.
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Figure 4.15: The average value of the SMM’s spin (S7) and the stabilization time tg after which
the state is reached as functions of polarization parameters of the leads for the parallel (a)-(b)
and antiparallel (c)-(d) magnetic configuration of the system. (V' = 6 mV) The other parameters
as in Fig. 4.4.

In real system switching may be observed when the spin relaxation time is longer than
the switching time found in the absence of spin relaxation. Comparison of numerical
data with experimentally determined spin relaxation times indicates that current-induced
switching in the cotunneling regime may be observed in some molecules and for favorable
system parameters. The switching times obtained for the parameters assumed, however,
seem to be too long for practical applications, contrary to transport in the sequential

tunneling regime, where they are significantly shorter.
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CHAPTER D

Spin effects in stationary transport
through single-molecule magnets in the
sequential and cotunneling regimes

n the previous chapter I focused on analyzing the dynamics of the current-induced

magnetic switching of SMMs separately in the sequential tunneling and cotunneling
regimes. However, it should be noted that although higher-order processes play a sub-
stantial role mainly in the cotunneling regime, they remain active in the whole range of
transport voltages, especially on resonance, leading to renormalization of the molecule
levels and smearing of the Coulomb steps [194]. Therefore a suitable theoretical method
should be used to properly investigate transport through molecules in the regime where
both the sequential and cotunneling processes determine transport properties.

The existing analytical studies of electronic transport through SMMs in the weak
coupling regime were based on the standard perturbation approach [103,104, 110, 181,
185,195-197|, and they dealt separately either with the sequential or cotunneling regime,
with one attempt of combining them [184]|. Nevertheless, to properly take into account
the nonequilibrium many-body effects such as on-resonance level renormalization or level
splitting due to an effective exchange field, simple rate equation arguments are rather
not sufficient.

Among different available methods, only a few enable one to analyze spin-dependent
transport of the considered system in both the sequential and Coulomb blockade regimes
within one fully consistent theoretical approach [198]. The aim of the present chapter is
therefore to systematically study the electronic and spin stationary transport through
a SMM, together with effects that can accompany such transport, in different orders
with respect to tunneling processes between the molecule and external ferromagnetic
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Figure 5.1: An example of a Keldysh contour, which is a graphical representation for the time
evolution of the reduced density matrix. The top and bottom horizontal lines correspond to
the forward and backward propagator, respectively. On the other hand, dashed lines connecting
vertices in pairs depict tunneling of an electron between an electrode and the molecule, whereas
arrows indicate whether the electron leaves or enters the molecule. Finally, the dark regions
distinguish the irreducible diagrams.

leads. This is achieved by means of the real-time diagrammatic technique [194,199-203,
which has already proven its reliability and versatility in studying transport properties
of various nanoscopic systems.

5.1 The real-time diagrammatic technique

The real-time diagrammatic technique relies on a systematic perturbation expansion of
the reduced density matrix of the system under discussion and the operators of interest
with respect to the coupling strength I' between the LUMO level and the leads. All
quantities, such as the current I, differential conductance G' and the (zero-frequency)
current noise S are essentially determined by the nonequilibrium time evolution of the
reduced density matrix for the molecule’s degrees of freedom. In the case considered in
this thesis, the density matrix has only diagonal matrix elements, p, (), which correspond
to probability of finding the molecule in state |x) at time ¢. Following the matrix notation
introduced by Thielmann et al. [201], the vector p(t) of the probabilities is given by the
relation

p(t) = IL(t, to)p(to) , (5.1)

where II(t,1) is the propagator matrix whose elements, IL,/, (t,to), describe the time
evolution of the system that propagates from a state |y) at time ¢y to a state |x') at
time ¢, and p(tp) is a vector representing the distribution of initial probabilities. In
principle, the whole dynamics of the system is governed by the time evolution of the
reduced density matrix. Furthermore, this time evolution can be schematically depicted
as a sequence of irreducible diagrams on the Keldysh contour [194], Fig. 5.1, which after
summing up correspond to irreducible self-energy blocks Wy, (t',t) [201]. Each vertex on
the Keldysh contour represents the product of the Fermi operators of an electrode and the
molecule’s LUMO level. The vertex is then referred to as an internal or external vertex
depending on whether it stems from the expansion of the tunneling Hamiltonian Hr or
any other operator of interest, respectively. Pairs of vertices are in turn connected by
tunneling lines, which delineate contractions between pairs of electron operators. Within
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such a picture, an irreducible diagram should be understand as a diagram for which it is
impossible to draw a vertical line between two neighboring vertices without crossing at
least one tunneling line.

The self-energy matrix W(t',¢) is therefore the central quantity of the real-time dia-
grammatic technique, as its elements W,/ (t',t) can be interpreted as generalized tran-
sition rates between two arbitrary molecular states: |x) at time ¢ and |x’) at time ¢
Consequently, the Dyson equation for the propagator is obtained in the form [194,201]

t to
H(t, to) =1+ / dtg / dt1W(t2, tl)H(tl, to) . (52)
to to

By multiplying Eq. (5.2) from the right hand side with p(¢y), and differentiating it with
respect to time ¢, one gets the general kinetic equation for the probability vector p(t),

d t

Sp) = [ anWenp(o). (53
t to

In the limit of stationary transport the aforementioned formula reduces to the steady

state master-like equation [199,201]

(Wp| =Tdy,, (5.4)
X

where p*' = lim;_, oo p(t) = limy, oo p(0) is the stationary probability vector, indepen-
dent of initial distribution. On the other hand, W denotes the Laplace transform of the
self-energy matrix W (#', t), whose one arbitrary row x, has been replaced with (T',...,T")
to include the normalization condition for the probabilities Zx p;t =1

5.1.1 The tunneling current and crossover perturbation sch eme

Knowing the probabilities, the electric current flowing through the system can be calcu-
lated from the formula [201]

_i I_ st
=T (Wip*], (5.5)

where the matrix W' denotes the self-energy matrix in which one internal vertex has
been substituted with an external vertex for the current operator.

In order to calculate the transport quantities in both the deep Coulomb blockade
and the sequential tunneling regime in each order in tunneling processes (the coupling
strength I' oc |17 R) 2), the perturbation expansion in I adopting the so-called crossover
perturbation scheme is performed [203]. This scheme allows a smooth transition through
the threshold voltage range where sequential tunneling processes start dominating over
higher order tunneling processes, which are playing a leading role in the Coulomb block-
ade regime. The general idea of the crossover scheme relies on solving the master equation
with first- and second-order self-energies, without expanding the probabilities, i.e. one
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only expands the self-energy matrices,

W= W and W' =) W/, (5.6)
n=1 n=1

Here, the first-order of expansion (n = 1) corresponds to sequential tunneling processes,
while the second-order contribution (n = 2) is associated with cotunneling processes.
In the present calculations both the first- and second-order diagrams are taken into
account, which allows me to resolve the transport properties in the full weak coupling
regime, i.e. in the cotunneling as well as in the sequential tunneling regimes. Furthermore,
by considering the n = 1 and n = 2 terms of the expansion, the effects of LUMO level
renormalization, cotunneling-assisted sequential tunneling, as well as effects associated
with an exchange field exerted by ferromagnetic leads on the molecule are systematically
included [203-205]. For n < 2, the stationary probabilities can be found from Eq. (5.4),

(W + W) p] =Ty, (5.7)

On the other hand, the current is explicitly given by the sum of two terms representing
the current Iy, due to sequential tunneling processes and the current I.. resulting from
cotunneling of electrons,

I =T+ Ieot = %Tr [WI (1>pﬂ + %Tr [WI (2>pﬂ . (5.8)

The key problem is now the somewhat lengthy but straightforward calculation of the
respective self-energy matrices, which can be done using the corresponding diagrammatic
rules [194,201,203]. An example of explicit formula for a second-order self-energy between
arbitrary states |y) and |x’) can be found in Ref. [206].

5.1.2 The low frequency current noise

With recent progress in detection of ultra-small signals, it has become clear that the
information about the system transport properties can also be extracted from the mea-
surement of current noise [207]. In fact, the shot noise contains information about various
correlations, coupling strengths, effective charges, etc., which is sometimes unaccessible
just from measurements of electric current. Therefore, to make the analysis more self-
contained, the zero-frequency shot noise is also calculated and discussed.

The shot noise is usually defined as the correlation function of the current operators,
and its Fourier transform in the limit of low frequencies is given by [207]

S =2 /0 dt[(I(#)1(0) + I(0)I(t)) — 2(I)?]. (5.9)

—00

For |eV| > kgT, the current noise is dominated by fluctuations associated with the
discrete nature of charge (shot noise), while for low bias voltages, the thermal noise
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dominates [207].

Before putting down the general formula for the current noise within the language
of real-time diagrammatic technique, it’s instructive to note that the expression for the
shot noise, Eq. (5.9), involves products of two current operators at different times. It
means that such two current operators can appear either in one block W, where two
internal vertices have been replaced by external vertices for the current operator, or in
two blocks W, As a result, the current noise can be written as [201,208]

2
S = %Tr (W™ + WPW/p] (5.10)

with the matrix P given by

0
p— %/ A¢[TI(0, 1) — TI(0, —o0)]. (5.11)

—0o0

Here, the constant propagator IT(0, —oc) results from the term (I)? in Eq. (5.9), and it
ensures the convergence of the integral. Furthermore, applying the crossover perturbation
scheme in an analogous manner as in the preceding section, one can decompose the total
current noise, Eq. (5.10), into a sum of two terms representing different order of tunneling
processes, S = Ssq + Scot,

2
Seq = %Tr [W” Wpst + w/pw! (1)p‘°‘t} : (5.12)

2
Scot = %TI" |:VVH(2)I)St + WI(Q)PWI(Q)pst
+W/OPpWI@pst 4 WI(Q)PW[(l)pSt] ' (5.13)

The outline of the derivation, and also the most general expression for the noise S, can
be found in Refs. [202,208].

5.2 Basic transport characteristics: differential conduc tance
and TMR

In order to discuss transport properties of a SMM, numerical results on charge current,
differential conductance, shot noise and tunnel magnetoresistance (TMR) in the linear
and nonlinear response regimes are presented in the remaining part of this chapter.
Moreover, I should note that instead of current shot noise, I will rather consider the
Fano factor,

S

F=— .14
il (5.14)

which describes deviation of the current noise from its Poissonian value, Sp = 2el||,
characteristic of uncorrelated in time tunneling processes. On the other hand, the TMR
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represents a change of transport properties when magnetic configuration of the device
varies from antiparallel to parallel alignment — the conductance is usually larger in the

parallel configuration and smaller in the antiparallel one, although opposite situation is
also possible. The TMR is defined usually as 182,203,209

Ip—1
TMR = & AP (5.15)

Iap
where Ip (Iap) is the current flowing through the system in the parallel (antiparallel)
magnetic configuration at a constant bias voltage V.

Contrary to the previous chapter, where I presented the results for the case of a
Mnjo molecule (S = 10), here, numerical results have been obtained for a hypotheti-
cal SMM characterized by the spin number S = 2.! However, it should be emphasized
that although in the following I assume S = 2, the considerations are still quite gen-
eral and qualitatively valid for molecules with larger spin numbers. In fact, the choice
of low molecule’s spin allows performing a detailed analysis of various molecular states
mediating the first and second-order tunneling processes that determine the transport
properties. In the case of a greater spin number S, a much larger number of molecu-
lar states would make the discussion rather obscure. Apart from this, a symmetrical
coupling of the molecule to the two external leads (P, = Pr = P) and ferromagnetic
exchange coupling between the molecule’s magnetic core and electrons in the LUMO
level is assumed. Later on, however, these restrictions will be relaxed and I will consider
the situation where the exchange coupling is antiferromagnetic and also the case when
one electrode is nonmagnetic while the other one is ferromagnetic. For clarity reasons, I
neglect the role of the electron charge sign, i.e. assume that charge current and particle
(electron) current flow in the same direction (e > 0).

To start the discussion, I first present some basic transport characteristics of the
system under consideration. In Fig. 5.2 the differential conductance in the parallel and
antiparallel configurations as a function of the bias voltage and position of the LUMO
level is shown. The latter can be experimentally changed by sweeping the gate voltage.
The density plot of the conductance displays the well-known Coulomb diamond pattern.
The average charge accumulated in the LUMO level is

Q= Zn(X)p‘;‘(t (in the units of e), (5.16)
X

where n(x) = 0,1,2 denotes the number of additional electrons on the molecule in the
state |x). With lowering energy of the LUMO level, the level becomes consecutively
occupied with electrons. This leads in turn to forming two peaks in the linear conduc-
tance, separated approximately by U, which correspond to single and double occupancy,
respectively, see Fig. 5.2 for V = 0.

Furthermore, in the nonlinear response regime, and outside the Coulomb blockade re-
gion, the differential conductance shows additional lines due to tunneling through excited

!Note that the assumption concerning the strong uniaxial magnetic anisotropy still holds.
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Figure 5.2: The total (first plus second order) differential conductance in the parallel (a) and
antiparallel (b) configurations for the parameters: S = 2, J = 0.2 meV, D = 0.05 meV, Dy =
—0.005 meV, Dy = 0.002 meV, U = 1 meV, kgT = 0.04 meV, P, = Pgp = 0.5, and I' = 0.002
meV.

states of the molecule. These features are visible in both magnetic configurations. On
the other hand, the hallmark of spin-depended tunneling is the difference in magnitude
of the conductance in parallel and antiparallel configurations — the conductance in the
parallel configuration is generally larger than in the antiparallel one, see Fig. 5.2. This
difference is due to spin asymmetry of tunneling processes, which leads to suppression of
the conductance when configuration changes from parallel to antiparallel one. Moreover,
the difference between these two configurations strongly depends on spin polarization of
the leads. For example, in the case of half-metallic ferromagnetic leads, the conductance
in antiparallel alignment may be totally suppressed leading to a huge TMR.
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Bias voltage V (mV) Bias voltage V (mV)

Figure 5.3: Density plot of the total (first plus second order) TMR (a) and TMR calculated in
the sequential tunneling approzimation (b) plotted in the same scale and for the same parameters
as in Fig. 5.2. The sequential TMR is smaller than the total TMR. The dashed lines are only a
guide for eyes, and they represent positions of the main conductance peaks, Fig. 5.2, separating
thus regions corresponding to different occupation states of the LUMO level.
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Figure 5.4: The average value of the zth component of the molecules’s total spin (S7) for the
parallel (a) and antiparallel (b) magnetic configurations. All parameters as in Fig. 5.2.

Another aforementioned quantity characterizing transport through a SMM to be con-
sidered here is the TMR, whose density plot corresponding to Fig. 5.2 is shown in
Fig. 5.3(a). The first notable feature of TMR is that its magnitude strongly depends
on the transport regime. More precisely, TMR can range from approximately TMR =~
P?/(1 — P?) =1/3 (for P = 0.5), which is characteristic of sequential tunneling regime
where all states of the LUMO level are active in transport [203], to roughly twice the
value resulting from the Julliere model [209], TMR ~ TMR" = 4P?/(1 — P?) = 4/3,
which can be observed in the nonlinear response regime of the Coulomb blockade dia-
mond (@) = 1), see Fig. 5.3(a). For comparison, in Fig. 5.3(b) the TMR calculated using
only the sequential tunneling processes is displayed. One can see that the first-order TMR
is generally smaller than the total (first plus second order) TMR. Furthermore, it is also
clear that the second-order tunneling processes modify TMR mainly in the Coulomb
blockade regime (@) = 1) as well as in the cotunneling regimes where the LUMO level is
either empty (@ = 0) or doubly (@ = 2) occupied. On the other hand, out of the cotun-
neling regime, the sequential processes dominate transport and the role of second-order
tunneling is relatively small. As a consequence, the two results become then comparable,
see Fig. 5.3(a) and Fig. 5.3(b).

As already shown in Chapter 4, spin-dependent transport through a SMM has a sig-
nificant impact on its magnetic state. In Fig. 5.4 the average value of the molecule’s spin
zth component in the stationary state, (S7), calculated as a function of the bias voltage
V and energy of the LUMO level ¢, is shown. In the antiparallel magnetic configuration,
Fig. 5.4(b), the orientation of the molecule’s spin is straightforwardly related to the bias
voltage, and for V' > 0 the spin is aligned along the easy axis +z, whereas for V' < 0
it is aligned along the —z axis. Note that in the regions corresponding to (¢ = 0 and
@ = 2 the spin is equal to that of magnetic core, while for Q = 1 it also includes the
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Figure 5.5: Energy spectrum of the molecule under consideration (relevant parameters given
in the caption of Fig. 5.2) for ¢ = —0.5 meV (a,c) and ¢ = 0.75 meV (b,d) in the case of
ferromagnetic (a)-(b) and antiferromagnetic (c)-(d) coupling between the SMM’s core spin and
the spin of electrons in the LUMO level. The dashed line symbolizes the Fermi level of the leads
when no external voltage bias is applied (V' = 0). Different sets of molecular states correspond
to different values of the SMM’s total spin S;, and/or the occupation number of the LUMO
level: [2;0,m) (@), ]5/2;1,m) (#), [3/2;1,m) (A), and |2;2,m) (m). Note that in (a) and (c) the
degeneracy between states |2;0,m) and |2;2,m) takes place only for m = 0.

contribution from an electron in the LUMO level. By contrast, in the parallel configu-
ration, Fig. 5.4(a), the value of (Sf) in the stationary state can be both positive and
negative for each sign of the bias voltage, and it varies in a rather limited range close
to zero. Moreover, (S7) in the parallel (antiparallel) magnetic configuration is an even
(odd) function of the bias voltage V.

In order to account for the transport properties in different regimes, especially of TMR
and shot noise, in the following two sections I will present and discuss the gate and bias
voltage dependence corresponding to various cross-sections of the relevant density plots
mentioned above. More specifically, I will first consider transport properties in the linear
response regime (Section 5.3), and then transport in the nonlinear regime (Section 5.4).
In addition, whenever advisable and possible, I will also compare and relate my findings to
existing results on quantum dot systems. At this point, it is however worth emphasizing
that the problem of electron transport through a SMM is much more complex and
physically richer than in the case of single quantum dots [210]. This is because now
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the transfer of electrons occurs through many different many-body states of the coupled
LUMO level and molecule’s magnetic core, see Eq. (2.5).

Because transport properties of a system are determined by its energy spectrum, it
may be instructive to recall here some basic ideas from Chapter 2. For molecules with
only uniaxial anisotropy considered in this thesis, the molecule’s Hamiltonian Hgym
can be diagonalized analytically, Section 2.4. Energy spectrum of the molecule under
consideration is presented in Fig. 5.5 for two different values of the LUMO level energy
e and two values of the coupling parameter J. Each molecular state |Si;n, m) is then
labelled by the total spin number S, the occupation number n of the LUMO level, and the
eigenvalue m of the zth component of the molecule’s total spin, S7 = S, + %(c$c¢ — cIc 1)
where the second term stands for the contribution coming form electrons in the LUMO
level. The change of the LUMO level energy leads to the change in the energetic position
of the spin-multiplets |5/2;1,m), |3/2;1,m) and |2;2,m) with respect to |2;0,m). The
latter multiplet corresponds to uncharged molecule and therefore is independent of e,
see Fig. 5.5.

5.3 Transport in the linear response regime

As it has already been mentioned above, conductance in the linear response regime (see

Fig. 5.2 for V' = 0), displays two resonance peaks separated approximately by U. For

J > 0and D(2S — 1) > kT, one can assume that the molecule is in the spin states of

lowest energy. The position of the conductance peaks (resonances) corresponds then to

€ = ¢€o1,

gpB|H|
5

for the transition from zero to single occupancy of the LUMO level, and to ¢ = €19,

JS
€01 = 7 + D152 + (5.17)

JS H
f12=——% ~ U+ (Dy + D9)S* — LLB; Z|, (5.18)
for the transition from single to double occupancy. It is worth noting that the above
expressions may be useful for estimating the coupling constant J from transport mea-
surements. Moreover, from the above formulas one can conclude that the middle of the

Coulomb blockade (@ =1 in Fig. 5.2) regime corresponds to £ = &,,, with

U 2D+ D
e = -2y 1t P2 g2 (5.19)
2 2
which for the parameters assumed in calculations gives €, = —0.516 meV. Interestingly,

€m 18 independent of the exchange coupling J, anisotropy constant D, and external
magnetic field H,, but it depends on the Coulomb interaction U, corrections D and
Dy to the anisotropy due to finite occupation of the molecule, and the molecule’s spin
number S. In fact, owing to finite constants Dy and Ds, the particle-hole symmetry is
broken, which manifests itself in an asymmetric behavior of transport properties, as will
be shown below.
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Figure 5.6: (a) TMR in the linear response regime for the parameters as in Fig. 5.2 (solid line).
The dot-dashed line shows the TMR calculated in the first-order approximation. (b) Average
value of the zth component of the molecule’s total spin in the (P) parallel (solid line) and (AP)
antiparallel (dashed line) magnetic configurations. The dotted lines in (a) and (b) correspond to
the case of D; = Dy = 0.

The total TMR in the linear response regime is shown in Fig. 5.6(a), where for compar-
ison TMR in the sequential transport regime is also displayed (dash-dotted line). Clearly,
the results obtained within the sequential tunneling approximation, which yields a con-
stant TMR equal to P?/(1 — P?), are not sufficient as the total (first plus second order)
linear TMR displays a nontrivial dependence on the gate voltage (LUMO level position).
This behavior in fact stems from the dependence of the amount and type of second-order
processes on the occupation number of the LUMO level.

5.3.1 Cotunneling regime with empty and doubly occupied LUM O level

Let’s start from considering the situation when the LUMO level is either empty (Q = 0)
or fully occupied (@ = 2). In such a case, the TMR in the corresponding cotunnel-
ing regions is slightly larger than the Julliere value, [209] TMR' = 2pP2/(1 — P?)
(TMRU = 2/3 for P = 0.5), see Fig. 5.6(a). Electron transport in these two regions
is primarily due to elastic cotunneling processes which change neither the electron spin
in the LUMO level nor the spin of molecule’s core, and thus are fully coherent. An ex-
ample of such process is sketched in Fig. 4.13(a). The enhancement of TMR above the
Julliere value is then associated with the exchange coupling of the LUMO level to the
molecule’s core spin, which additionally admits inelastic cotunneling processes in these
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regions. In addition, the enhanced TMR may also result from the fact that by using the
crossover perturbation scheme [203], I also include some effects associated with third-
order processes, which may further increase the TMR. Moreover, unlike the case of a
single quantum dot [203,210], the maximal values of TMR reached for @ = 0 and @ = 2
do not necessarily have to be equal, see Fig. 5.6(a). To account for this asymmetry and
the enhanced TMR, let’s have a closer look at various elastic and inelastic cotunneling
processes which affect the spin state of the molecule.

At low temperatures, a free-standing SMM (decoupled from electrodes, Q = 0) is with
equal probabilities in one of the two states |2;0,+2) of the lowest energy, Fig. 5.5(b).
As the molecule becomes coupled to the electron reservoirs, the initial spin state of
the molecule can be changed as a result of inelastic cotunneling, see Fig. 4.13(c). In
the parallel magnetic configuration, inelastic transitions increasing (decreasing) the zth
component of the SMM'’s spin are associated with transfer of electrons from spin majority
(minority) to spin minority (majority) bands of the leads, and thus are of comparable
probabilities for both spin orientations. However, due to exchange coupling between the
LUMO level and molecules’s core, there is a small difference in energy of virtual states
with one spin-up or spin-down electron in the LUMO level. In consequence, the processes
increasing zth component of the SMM'’s spin are initially slightly more probable, which
in turn implies that the probability of finding the molecule in the state [2;0,2) is a
little larger than in the state |2;0, —2). Thus, the average value of molecule’s spin (S7)
is positive, see Fig. 5.6(b), although rather small. In the antiparallel configuration, on
the other hand, the situation is significantly different. As follows from Fig. 5.4(b), the
limit of V' = 0 corresponds to the border between regions in which the molecule is fully
magnetized in opposite directions. Thus, one can expect that the zth component of the
molecule’s spin vanishes in the linear response limit. Indeed this is the case, as shown in
Fig. 5.6(b), and can be explained by taking into account spin asymmetries of cotunneling
processes, similarly as for the parallel configuration.

The above discussion on the influence of inelastic cotunneling processes on the mag-
netic state of a SMM can now be useful to account for the enhanced TMR. From the
energy spectrum displayed in Fig. 5.5(b) it follows that the dominant elastic transfer of
electrons between the leads for () = 0 takes place wvia the following virtual transitions:
12;0,—2) <> [5/2;1,—5/2) and |2;0,2) <> |5/2;1,5/2) [indicated with black arrows in
Fig. 5.5(b)|. In the parallel configuration, the former transitions establish the transport
channel for minority electrons, whereas the latter ones for majority electrons. The asym-
metry between the occupation probabilities of the states |2;0,—2) and |2;0,2), where
12;0,2) is favored (as discussed above) gives rise to increased transport of majority elec-
trons. On the other hand, there is no such asymmetry in the antiparallel configuration.
This, in turn, leads to an enhancement of the TMR above the Julliere value, Fig. 5.6(a).

Similar analysis can be performed for the case of Q = 2, where the molecular states
|2;2,m) correspond to double occupancy of the molecule’s LUMO level. The funda-
mental difference compared to the situation discussed above (@ = 0) is that now an
electron leaves the molecule in the virtual state, Fig. 4.13(d). Analysis similar to that
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for Q = 0 shows that in the parallel configuration the inelastic cotunneling processes
result in lowering of the zth component of the SMM'’s spin, see Fig. 5.6(b). Moreover,
the asymmetry between the occupation probabilities of the states |2;2, —2) and [2;2,2),
where now [2;2,—2) is favored, leads to increased elastic cotunneling of spin majority
electrons and therefore gives rise to enhanced TMR for Q = 2.

Further analysis of Fig. 5.6(a) reveals another interesting feature of TMR in the linear
response regime, i.e. the difference in its magnitude in the cotunneling regions corre-
sponding to @ = 0 and Q = 2. This is contrary to the case of Anderson model, where
the linear TMR was found to be symmetric with respect to the particle-hole symmetry
point, e = —U/2, seeRef. [203]. In the case considered here, the situation is different due
to coupling of the LUMO level to the molecule’s spin, and also due to occupation depen-
dent corrections to the anisotropy constant, see Eq. (2.5). These corrections reduce the
uniaxial anisotropy of the molecule with increasing number of electrons in the LUMO
level. As a result, the height of the energy barrier between the two lowest molecular
spin states is also diminished for Q = 1 and ) = 2, and so are the energy gaps be-
tween neighboring molecular states within the relevant spin multiplets. For this reason,
the probability distribution of the molecular states for @ = 2 (and also for Q = 1) is
more uniform than for @ = 0, see the solid line in Fig. 5.6(b). Consequently, the value
of TMR for Q = 2 is smaller than for ¢ = 0. Thus, the observed asymmetry with re-
spect to € = g, is due to the lack of particle-hole symmetry in the system when D;
and Ds are nonzero. However, if the influence of the LUMO level’s occupation on the
anisotropy were negligible, D1 ~ Dy &~ 0 (the states |2;0,m) and |2;2,m) in Fig. 5.5(a)
were then degenerate for every m), the symmetry with respect to ¢ = €, = —U/2 would
be restored. This situation is presented by the dotted curves in Fig. 5.6, which clearly
show that the asymmetric behavior of TMR and (S7) is related to the corrections to
anisotropy constants and the lack of particle-hole symmetry.

5.3.2 Cotunneling regime with singly occupied LUMO level

Even more interesting behavior of the TMR is observed in the Coulomb blockade regime
with one electron in the LUMO level, @Q = 1, the TMR reaches local maxima close to
the center of the Coulomb gap, and a local minimum just in the middle, i.e. for € = &,,.
This behavior is opposite to that observed in single-level quantum dots, where linear
TMR in the Coulomb blockade regime becomes suppressed and reaches a minimum when
e = —U/2, as shown in Ref. [203]. As in the case of Q = 0 and @ = 2 discussed above,
the origin of increased TMR for () = 1 can be generally assigned to the modification of
the probability distribution of molecular states due to inelastic cotunneling processes,
Fig. 4.13(b). In turn, the appearance of the local minimum in the center of the Q = 1
region is related to the fact that when € = ¢,,, the virtual states for leading inelastic
cotunneling processes, which belong to spin multiplets |2;0,m) and |2;2,m), become
pairwise degenerate (in the present situation, |2;0, £2) with |2;2,42)). This means that
in the parallel configuration cotunneling processes involving empty and doubly occupied
virtual states occur at equal rates. As a consequence, the average spin on the molecule
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tends to zero, see Fig. 5.6(b), and TMR displays a local minimum for € = &,.

It turns out that in the situation under consideration the sequential tunneling processes
play a dominant role only for resonant energies, Egs. (5.17)-(5.18), where the occupancy
Q@ of the molecule changes. This results in the reduction of TMR to approximately half
of the Julliere value [209], see the boundaries between the hatched and non-hatched
areas in Fig. 5.6. The rate of first-order tunneling processes increases whenever the
two neighboring charge states of the molecule become degenerate, provided that the
conditions |An| = 1 and |AS7| = 1/2 are simultaneously satisfied, where |An| and
|AS?| describe change in the occupation and spin of the molecule. This means that for
€ = €01 ~ 0.18 meV the degeneration between the empty and singly occupied states,
|2;0; £2) and |5/2;1,£5/2), is observed, whereas for ¢ = €13 & —1.21 meV the states
with a single and two electrons on the LUMO level, |5/2;1,£5/2) and |2;2;+£2), are
degenerate. Moreover, note also that for I' ~ kgT', TMR can be reduced further due to
increased role of second-order processes giving rise to the renormalization of the LUMO
level [203].

5.4 Transport in the nonlinear response regime

As the bias voltage increases and one goes beyond the Coulomb blockade regime, the
influence of sequential tunneling on transport characteristics, as well as on magnetic
state of the SMM, becomes more evident. Figure 5.7 shows the bias dependence of
current, differential conductance, TMR and Fano factor, calculated for € = —0.5 meV
and e = 0.75 meV. The former case corresponds to the situation where the LUMO level in
equilibrium is singly occupied, Fig. 5.5(a), while in the latter case it is empty, Fig. 5.5(b).
The sequential tunneling is exponentially suppressed in the blockade regions, and the
current flows then mainly due to the second-order cotunneling events. The inclusion
of the latter processes is crucial for a proper description of transport behavior in the
blockade regime, where the cotunneling processes significantly modify the first-order
results, as one can see in Fig. 5.7, and this modification is most pronounced for TMR
and shot noise.

5.4.1 Transport characteristics in the case of a singly occu pied
LUMO level in equilibrium

Let’s consider first the case when in equilibrium the LUMO level is singly occupied,
ie. g9 > € > e12 (left panel of Fig. 5.7). At low temperatures and low voltages, the
molecule with almost equal probabilities is in one of the two ground states |5/2;1,£5/2),
Fig. 5.5(a). When a small bias voltage is applied, some current flows due to cotunneling
processes through virtual states of the system. If the bias voltage exceeds threshold for
sequential tunneling, the current significantly increases and becomes dominated by first-
order processes, when electrons tunnel one-by-one through the molecule. As discussed
in Section 4.1, the spin state of the molecule can be changed by current due to a direct
angular momentum transfer between the tunneling electrons and the molecule’s spin
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Figure 5.7: Bias dependence of the current (a,e), differential conductance (b,f), Fano factor
(d,h) in the parallel (solid lines) and antiparallel (dashed lines) configurations and TMR (c,g)
for e = —0.5 meV (a)-(d) and & = 0.75 meV (e)-(h). The parameters are the same as in Fig. 5.2,
and Ip = el'/hi = 0.5 nA. The dotted lines show the results obtained taking into account only
first-order tunneling processes. The effect of cotunneling is most pronounced in the TMR and
Fano factor.

(owing to the exchange interaction). In turn, transport of electrons through the system
depends in a nontrivial way on its magnetic state. The general behavior of the molecule’s
spin is shown in Fig. 5.4. In the parallel magnetic configuration and for ¢ = —0.5 meV, the
spin state of the molecule remains unchanged until V' & 0.34 mV, where the Fermi level
of the right electrode shifts below the states |2;2,+2), Fig. 5.4(a) (note that the voltage
is applied symmetrically). Electrons can then tunnel sequentially via the LUMO level.
Since spin-flip sequential tunneling processes with an electron from spin-majority band of
the left electrode entering the LUMO level are slightly more probable than the other ones,
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the molecule will be more often in the state |5/2;1,5/2). This results in a finite average
spin of the molecule in the parallel configuration, although its value is relatively small,
see Fig. 5.4(a). On the other hand, no such competition is observed in the antiparallel
configuration, as transfer of electrons between the majority-spin bands of both electrodes
implies that the molecule should be predominantly in the state |5/2;1,5/2). Therefore,
for positive bias voltages the molecule’s spin (including the contribution from electron
in the LUMO level) becomes polarized along the +2z axis, see Fig. 5.4(b).

Since elastic cotunneling in the antiparallel configuration occurs essentially through
the minority-majority and majority-minority channels, whereas for parallel alignment
through the majority-majority and minority-minority ones, one observes growth of TMR
with increasing bias voltage, which reaches a local maximum just before the threshold
for sequential tunneling. This is associated with nonequilibrium spin accumulation in
the LUMO level for the antiparallel configuration, which leads to suppression of charge
transport and thus to enhanced TMR. Further increase of transport voltage results in
a decrease of TMR to approximately 1/3 (for P, = Pr = 0.5), which is typical of
the sequential tunneling regime, when all molecular states actively participate in trans-
port [203,210]. In the parallel magnetic configuration each state is then equally popu-
lated, so that average magnetic moment of the molecule vanishes, (Sf)=0. This differs
from the antiparallel case, in which only the states with large positive zth component
of the SMM'’s spin have finite probabilities. Finally, it is worth noting that the slight
shift between the peaks in differential conductance corresponding to different magnetic
configurations, see Fig. 5.7(b), is a consequence of nonequilibrium spin accumulation in
the LUMO level in the antiparallel configuration. Similar behavior has been observed in
the case of transport through ferromagnetic single-electron transistors [211].

In the end, to complete the current discussion, I consider also the Fano factor in the
parallel (Fp) and antiparallel (Fap) configurations, which is presented in Fig. 5.7(d). For
low bias voltages, the shot noise is determined by thermal Johnson-Nyquist noise, which
results in a divergency of the Fano factor for V' — 0 (current tends to zero). When a
finite bias voltage is applied to the system, the Fano factor in both magnetic configura-
tions drops to the value close to unity, which indicates that transport occurs mainly due
to elastic cotunneling processes. Such processes are stochastic and uncorrelated in time,
so the shot noise is Poissonian. When bias voltage increases further, the shot noise is
enhanced due to bunching of inelastic cotunneling processes and reaches maximum just
before threshold for sequential tunneling. At the threshold voltage, sequential tunneling
processes start dominating transport and the noise becomes sub-Poissonian. This indi-
cates that in the sequential tunneling regime, tunneling processes are correlated due to
Coulomb correlation and Pauli principle, which generally gives rise to suppressed shot
noise as compared to the Poissonian value. Furthermore, another feature clearly visi-
ble in the Coulomb blockade regime is the difference in Fano factors for parallel and
antiparallel magnetic configurations. More specifically, shot noise in the parallel con-
figuration is larger than in the antiparallel one. This is associated with the fact that
in the parallel configuration transport occurs mainly through two competing channels
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involving majority-majority and minority-minority spin bands, which in turn increases

fluctuations, thus Fp > Fap.

5.4.2 Transport characteristics for an empty LUMO level in e quilibrium

Let’s turn now to the situation corresponding to the empty LUMO level of the molecule
in equilibrium (¢ > £g1),? which is shown in the right panel of Fig. 5.7. The initial large
value of TMR, whose origin was discussed in the previous section, drops sharply as the
bias voltage approaches the threshold value for sequential transport. The first pronounced
peak in differential conductance appears when the following transitions become allowed:
12;0,£2) <> |5/2;1,£5/2) [denoted by arrows is Fig. 5.5(b)]. It is important to note
that, when a spin-multiplet enters the transport energy window, the first states that
take part in transport are those with the largest |(S7)| (lowest energy). Consequently,
in the parallel magnetic configuration the system can be temporarily trapped in some
molecular spin states of lower energy. This leads to (S!) # 0, see Fig. 5.4(a), and when
(Sf) > 0, it may result in an enhanced transport. Furthermore, as soon as all states
within a certain spin-multiplet become energetically accessible, the probability of finding
the molecule in each of these states becomes roughly equal. On the other hand, in the
antiparallel configuration the system tends towards maximum value (for V' > 0) of the
zth component of SMM’s spin. For these reasons, some regions of the increased TMR
are present in Fig. 5.7(g).

One can also notice another interesting feature in differential conductance, Fig. 5.7(f),
which in the sequential tunneling regime displays small peaks that can be observed in the
parallel configuration, and some of them also in the antiparallel configuration. In gen-
eral, these peaks are related to transitions involving states from the multiplet |3/2;1,m):
12;0,4+1) « [3/2;1,£3/2) (A), [2;0,4+2) < [3/2;1,£3/2) (B) and |3/2;1,£3/2) <«
12;2,42) (C), respectively, see Fig. 5.7(f). It should be noted that the energy gap corre-
sponding to the transitions A /B is the smallest/largest gap between the spin-multiplets
|2;0,m) and |3/2;1,m). In the parallel configuration all three peaks are visible, whereas
for antiparallel alignment only the peak B can be clearly distinguished, which is a direct
consequence of the probability distribution established in this configuration. Since in
the antiparallel configuration tunneling processes tend to increase the zth component of
the SMM’s total spin, the probability of finding the molecule in any of the spin states
|2;0,m) differs significantly from zero only for m = 2. As a consequence, in the antipar-
allel configuration most favorable transitions are those having the initial state |2;0,2),
and thus the peaks A and C are suppressed, see Fig. 5.7(f).

Finally, the corresponding Fano factor is shown in Fig. 5.7(h). At low bias, the Fano
factor drops with increasing voltage. However, its bias dependence is distinctively differ-
ent in both magnetic configurations. In the antiparallel configuration, the Fano factor
tends to unity, indicating that transport is due to uncorrelated tunneling events. In the
parallel configuration, on the other hand, one observes large super-Poissonian shot noise.
The increased current fluctuations result mainly from the interplay between different

2The relevant energy spectrum is presented in Fig. 5.5(b).
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cotunneling processes and bunching of inelastic cotunneling. In addition, as mentioned
previously, in the parallel configuration the molecule can be temporarily trapped in some
molecular spin states of lower energy, which also gives rise to super-Poissonian shot noise.
When the bias voltage is increased above the threshold for sequential tunneling, the Fano
factor becomes suppressed and the shot noise is generally sub-Poissonian. Additionally,
it is also worth noting that super-Poissonian shot noise in the cotunneling regime has
already been observed in quantum dots and carbon nanotubes [210,212-214]|, where the
increased noise was associated with bunching of inelastic spin-flip cotunneling events.

5.5 Transport in the presence of a longitudinal external mag -
netic field

Up to this moment, all discussed effects have been considered under the assumption
that no external magnetic field was present in the system. Now, I will analyze how the
application of a finite magnetic field influences the already developed picture. When the
field is along the easy axis of the molecule, its only effect is the modification of the energy
of molecular spin states via the Zeeman term in Eq. (2.5). On the other hand, when the
field possesses also a transversal component, the penultimate term on the right-hand
side of Eq. (2.8), it leads to symmetry-breaking effects and the zth component of the
SMM’s total spin is no more a good quantum number [188|. If the magnetic field is
additionally time-dependent, one can expect the phenomenon of quantum tunneling of
magnetization to occur, as discussed in Chapter 3. Since the primary focus of the thesis
is on transport through SMMs with only uniaxial anisotropy, in the following only a
longitudinal magnetic field is considered.

The density plot of TMR for a magnetic field applied along the easy axis of a SMM
is shown in Fig. 5.8(a). Despite rather modest value of the field (for comparison, in the
experiment on the Mnjs molecule attached to nonmagnetic metallic electrodes by Jo et
al., the field of 8 T was used, Ref. [46]), a drastic change in transport properties of the
system is observed [contrast Fig. 5.8(a) with Fig. 5.3(a)]. Not only does the field break
the symmetry with respect to the bias reversal, but it allows for the situation when
transport in the antiparallel magnetic configuration can be more effective than in the
parallel one (black regions corresponding to negative TMR). Furthermore, the average
spin (S7) in the Coulomb blockade region can take large negative values, while in the
absence of magnetic field the SMM’s spin in the parallel configuration prefers orientation
in the plane normal to the easy axis. This implies that the molecule’s spin has tendency
to orient almost antiparallel to the z-axis, Fig. 5.9(a). However, when the sequential
tunneling processes are allowed, this tendency is generally reduced. In the antiparallel
configuration, on the other hand, the behavior of the average molecule’s spin is similar
to that for H, = 0, see Figs. 5.9(b) and 5.4(b).

In the linear response regime, a large change of TMR is observed when ¢ is comparable
to €, i.e. in the middle of the Coulomb blockade regime, see Fig. 5.8(b). This stems
from the fact that at this point the dominating spin-dependent channel for transport
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Figure 5.8: (a) Density plot of TMR in the case when an external magnetic field H, = 0.216
T (gusH. = 0.025 meV) is applied along the easy axis of the molecule. (b) TMR in the linear
response regime (solid line). For comparison, TMR in the absence of external magnetic field
(dotted line in (b)) is also shown. The other parameters are the same as in Fig. 5.2.

due to cotunneling processes in the parallel magnetic configuration switches from the
minority-minority one (for € > &,,) to majority-majority channel (for ¢ < &,,). In the
antiparallel configuration, on the other hand, the dominant channel is rather associated
with majority-minority spin bands, irrespective of the position of the LUMO level. As
a consequence, for € > &, the current in the parallel configuration is smaller than that
in the antiparallel one, leading to negative TMR, whereas for ¢ < &,, the situation is

Average spin (S?) Average spin (S?)
-25 -2 -15 -1 05 O -2 -1 0 1 2

-2 -1 0 1 2 -2 -1 0 1 2
Bias voltage V (mV) Bias voltage V (mV)

Figure 5.9: Average value of the zth component of the total molecule’s spin in the parallel (a)
and antiparallel (b) magnetic configurations, when an external field H, = 0.216 T is applied
along the z-axis. The other parameters are the same as in Fig. 5.2.
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Figure 5.10: The current (a,e), differential conductance (b,f), Fano factor (d,h) in the parallel
(solid lines) and antiparallel (dashed lines) configurations, and the TMR (c,g) for ¢ = —0.5 meV
(a)-(d) and € = 0.75 meV (e)-(h) as a function of the bias voltage. An external magnetic field
H, =0.216 T is applied along the z-axis, while the other parameters are the same as in Fig. 5.2.

opposite and one finds a large positive TMR effect, see Fig. 5.8(b).

Figure 5.10 shows the transport characteristics in the nonlinear response regime, and
in the presence of external magnetic field. The left (right) panel corresponds there to
the situation where in the ground state the molecule is singly occupied (empty). The
asymmetry with respect to the bias reversal is clearly visible, especially in the tunnel
magnetoresistance, see Fig. 5.10(c) and (g). Interestingly, this asymmetric behavior is
mainly observed in the cotunneling regime, as can be also seen in Fig. 5.8(a). This results
from the fact that for H, # 0 the degeneracy of the molecule’s ground state is removed
and SMM becomes polarized. In the cotunneling regime, transport depends mainly on
the system’s ground state, which is the initial state for the cotunneling processes. In ad-

71



5. Spin effects in stationary transport through SMMs in the s equential and cotunneling regimes
5.6. Antiferromagnetic coupling between the LUMO level and SMM'’s core spin

dition, due to the Zeeman splitting, at low voltages only the elastic processes contribute,
which gives rise to Poissonian shot noise, see Fig. 5.10(d). As a consequence, in the par-
allel configuration the current is always mediated by electrons belonging to the same
spin bands of the leads, whereas in the antiparallel configuration, the dominant trans-
port channel is associated either with majority or minority electrons, depending on the
direction of the current flow. Thus, the current in the antiparallel configuration becomes
in general asymmetric with respect to the bias reversal, which gives rise to associated
asymmetric behavior of the TMR.

As voltages start exceeding the splitting due to the Zeeman term (gupH, = 0.025
meV), the inelastic cotunneling processes start taking part in transport. The competi-
tion between the elastic and inelastic cotunneling leads in turn to large super-Poissonian
shot noise, which in the parallel configuration is enhanced due to additional fluctuations
associated with cotunneling through majority-majority and minority-minority spin chan-
nels, see Fig. 5.10(d) and (h). On the other hand, when the voltage exceeds threshold for
sequential tunneling, more states take part in transport and the asymmetry with respect
to the bias reversal is suppressed. The same tendency is observed in the shot noise, which
in the sequential tunneling regime becomes generally sub-Poissonian.

5.6 Antiferromagnetic coupling between the LUMO level and
SMM’s core spin

Until now, I have focused on discussing numerical results only for the case of ferromag-
netic coupling (J > 0) between the LUMO level and the SMM’s core spin. However, since
the type of such an interaction generally depends on the SMM’s internal structure, the
coupling can also be of antiferromagnetic type (J < 0). In this section I thus consider
how the main transport properties of the system change when the exchange coupling
parameter becomes antiferromagnetic.

Analyzing Fig. 5.11(a), it becomes clear that the most apparent new feature of TMR for
J < 0 is its negative value in the Coulomb blockade regime (@ = 1). The negative TMR
occurs in transport regimes where the maximum of TMR was observed for J > 0, i.e. close
to the threshold for sequential tunneling, see Fig. 5.3(a). Such behavior of TMR originates
from the fact that now spin-multiplets |5/2; 1,m) and |3/2; 1, m) exchange their positions,
Fig. 5.5(c)-(d), so that the multiplet corresponding to smaller total spin of the molecule
for antiferromagnetic coupling is characterized by lower energy. Consequently, in the
Coulomb blockade the current flowing in the antiparallel configuration is larger than
that in the parallel configuration, which gives rise to negative TMR effect.

Furthermore, the linear response TMR, is shown in Fig. 5.12(a). Unlike the case of
ferromagnetic coupling, the values of TMR for @) = 0 and @ = 2 are smaller as compared
to those in the case of transport through single-level quantum dots [203,210]. On the
other hand, for @ = 1 the TMR can take values exceeding those found in the case of
ferromagnetic exchange coupling. For € > g¢1, the equilibrium probability distribution of
different molecular spin states |2;0,m) becomes changed owing to inelastic cotunneling
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Figure 5.11: (a) The total tunnel magnetoresistance in the case of antiferromagnetic coupling
between the SMM’s core spin and the spin in the LUMO level, calculated for J = —0.2 meV and
other parameters as in Fig. 5.2. (b) Representative cross-sections of the density plot in (a) for

several values of the LUMO level energy e.
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Figure 5.12: Tunnel magnetoresistance (a) and the zth component of the molecule’s total spin
(b) calculated in the linear response regime for the antiferromagnetic coupling of the SMM’s
core spin with the spin of the LUMO level (J = —0.2 meV and other parameters as in Fig. 5.2).
Dotted lines show the results obtained for the case of ferromagnetic exchange coupling, see
Fig. 5.6 —in (b) the dotted line corresponds to the parallel configuration.
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processes, similarly as described in Section 5.3. The key difference with respect to J > 0
is that now dominating elastic cotunneling transitions for @) = 0 are those with initial
states |2; 0, £2) and virtual states |3/2; 1, £3/2) |indicated by black arrows in Fig. 5.5(d)].

Finally, it should be noted that in the case of antiferromagnetic coupling between the
LUMO level and molecule’s core spin the formulas estimating the position of conductance
resonances need some modification. Equations (5.17)-(5.18) were derived assuming the
degeneracy between the states |2;0,+2) (|5/2;1,£5/2)) and [5/2;1,+5/2) (|2;2,42)).
For J < 0, however, the condition has to be modified by changing |5/2;1,£5/2) into
13/2;1,£3/2), where the upper signs apply for H, < 0, and the lower ones for H, > 0.
The relevant equations take now the following form:

/]

€1 = I + D152 — Ae (5.20)

for the transition from empty to singly occupied states, and

€12 = —|Ti| - U+ (D1 + DQ)SZ + Ae (5.21)

for the transition between singly and doubly occupied states, where

0251 guplH.| (2517  J

— Dl () (D) w2 2
Ae=DW = — 4 == \/D (DO +J) =+ 25+ 1% (5.22)

with DU = D + D;.

5.7 Spin diode behavior in transport through single-mole-
cule magnets

An interesting situation arises when a SMM is coupled to ferromagnetic leads with un-
equal spin polarizations. As already predicted in the case of quantum dots [215-217],
transport properties of such systems exhibit a significant asymmetry with respect to the
bias reversal — for one bias polarization the current is suppressed, which is a key feature
of diodes. In addition, due to coupling to ferromagnetic leads and the spin dependence of
tunneling processes, the current flowing through a diode device becomes spin polarized
and, interestingly, the spin polarization may change with reversing the bias voltage. In
other words, the system behaves like a spin diode, as well. In fact, very recently spin
diode behavior was predicted and observed experimentally in another class of molecular
structures, namely in single-wall carbon nanotubes [218,219].

Consequently, in this section I consider transport properties of a SMM coupled to a
nonmagnetic lead on the left and a ferromagnetic lead of high spin polarization on the
right. Due to large spin asymmetry in coupling of the SMM to the ferromagnetic lead, the
tunneling probability for spin-majority (spin-up) electrons is much larger than that for
spin-minority (spin-down) electrons. On the other hand, the rate of tunneling processes
between the molecule and the nonmagnetic lead is the same for both spin orientations.
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Figure 5.13: (a,c) The absolute value of the current I in units of Iy = 2eI'/h ~ 0.5 nA, and
(b,d) differential conductance G as a function of the bias voltage V' and the LUMO level position
¢ for (a)-(b) ferromagnetic (J > 0) and (c)-(d) antiferromagnetic (J < 0) exchange coupling,
|J| = 0.2 meV. @ in (a,c) represents the average charge accumulated in the LUMO level. Except
Pr, =0 and Pr = 0.9, the other parameters are as in Fig. 5.2.

This generally leads to some asymmetry of tunneling current with respect to the bias
reversal.

Let’s first discuss the current and differential conductance as a function of the LUMO
level position and bias voltage for ferromagnetic (J > 0) interaction between the LUMO
level and the SMM’s spin, Fig. 5.13(a)-(b). Close to the first resonance, £ ~ e, see
Fig. 5.13(b), current can flow easily from the ferromagnetic lead to the nonmagnetic
one (V' < 0), while it is suppressed for the opposite direction (V' > 0); see solid line
in Fig. 5.14(a). To understand this behavior one should take into account the following
facts. First, the molecule’s states with one extra electron in the LUMO level correspond
to the total spin number S = 5/2 and S = 3/2, with the former being of lower energy.
Second, orientation of the molecule’s spin depends significantly on the current direction,
and for V' > 0 the SMM’s spin tends towards antiparallel orientation with respect to the
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electrode’s magnetic moment, whereas for V' < 0 the spin prefers the parallel alignment.
Thus, for low bias transport can occur mainly wvia the state corresponding to S = 5/2,
and this requires spin-down electrons for V' > 0 and spin-up electrons for V' < 0. Un-
fortunately, tunneling rate for spin-down electrons is significantly reduced due to fewer
available states in the minority spin band of the ferromagnetic lead, which effectively
leads to the suppression of current for V' > 0. When bias voltage increases, then the
state corresponding to S = 3/2 becomes active in transport as well, leading only to a
small increase of the current due to the spin blockade. However, the blockade for positive
bias is removed when double occupancy of the LUMO level is admitted, which takes
place for bias voltages exceeding some threshold value. Furthermore, the electron flow
from ferromagnetic lead to the nonmagnetic one is spin polarized and degree of this po-
larization depends mainly on the spin polarization of the lead. In fact, in the case of a
perfect halfmetallic ferromagnet (Pr — 1), the current flowing towards halfmetallic lead
would be totally blocked. Moreover, different time scales associated with spin-majority
and spin-minority electrons lead in turn to considerable current fluctuations and super-
Poissonian shot noise, see Fig. 5.14(c) for € = 0.2 meV.

The situation becomes significantly different when the LUMO level is doubly occupied
in equilibrium; ¢ = —1.5 meV in Fig. 5.14(a). Now, the behavior of the current is reversed
as compared to the case of @ = 0, since the current is suppressed for V' < 0, i.e. for
electrons tunneling from the magnetic lead. This is associated with the fact that an
electron first has to tunnel out of the LUMO level and then another electron can enter
the molecule. Thus, for positive bias a spin-up electron can easily tunnel out to the
ferromagnetic lead. On the other hand, when the bias is reversed and the spin-down
electron tunnels out of the molecule leaving it in the state corresponding to S = 5/2, the
current becomes suppressed, as the rate for tunneling of spin-down electrons from the
ferromagnetic lead to the molecule is relatively small. This also leads to super-Poissonian
shot noise, as shown in Fig. 5.14(c).

More complex transport characteristics are observed when the exchange interaction is
antiferromagnetic (J < 0); Fig. 5.13(c)-(d). The most striking difference is the appear-
ance of additional peaks in the current when the LUMO level is initially either empty
or doubly occupied, Figs. 5.13(c) and 5.14(d), which are accompanied by negative dif-
ferential conductance (NDC); Figs. 5.13(d) and 5.14(e). Consider first the case of empty
LUMO level in equilibrium, £ = 0.2 meV in Fig. 5.14(d). The key difference is that now
the molecule’s state corresponding to the total spin number S = 3/2 has lower energy
and determines transport properties at low voltages. Thus spin-up electrons are involved
in charge transport for V' > 0 and spin-down electrons for V' < 0. Consequently, the cur-
rent is suppressed for negative bias and can easily flow for positive one. When the bias
voltage reaches values admitting transport through the S = 5/2 state, the current for
positive bias becomes suppressed by a spin down electron tunneling to the LUMO level,
while suppression for negative voltage becomes then lifted. In turn, when bias increases
further admitting doubly occupation of the LUMO level, the blockade for positive bias
becomes removed as well. Transport characteristics for doubly occupied LUMO level in
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Figure 5.14: Selected cross-sections of density plots in Fig. 5.13 for specific values of the LUMO
level position e, which depict the current I flowing through the system (a,d), differential conduc-
tance G (b,e), and Fano factor F' (c,f) as a function of the bias voltage V for the ferromagnetic
(left panel) and antiferromagnetic (right panel) exchange couplings. The other parameters are
the same as in Fig. 5.2.

equilibrium can be explained in a similar way.

On the other hand, when the LUMO level is singly occupied and its position cor-
responds approximately to the middle of the Coulomb blockade region [dashed line in
Figs. 5.14(a,d)|, the diode behavior disappears and the current recovers symmetry with
respect to the bias reversal regardless of the type of the exchange interaction J. This is
due to the fact that now with increasing the bias voltage all charge states of the molecule
start taking part in transport at the same time, i.e. once the bias voltage reaches the
threshold. The transport characteristics become then symmetric with respect to the
bias reversal and the noise is rather sub-Poissonian, indicating the role of single-electron
charging effects in transport. Note, however, that in the Coulomb blockade regime bunch-
ing of inelastic cotunneling processes may still result in enhancement of the shot noise;
see dashed lines in Figs. 5.14(c,f). Furthermore, it is visible that the enhancement is

much more pronounced in the case of the antiferromagnetic coupling, Fig. 5.14(f). Such

77



5. Spin effects in stationary transport through SMMs in the s equential and cotunneling regimes
5.7. Spin diode behavior in transport through single-molecule magnets

a behavior stems from the fact that for J < 0 both energetically lowest lying molecu-
lar magnetic states Sf = £3/2 allow the possibility of occupying the LUMO level by
an electron either with the spin up or down, whereas for J > 0 the state S = +5/2
(S7 = —5/2) can only accommodate an electron with spin up (down). For this reason,
in the former case both majority and minority electrons of the ferromagnetic lead can
participate in the transport, thus increasing the fluctuations.

Finally, it is worth emphasizing that operation of the SMM spin diode strongly de-
pends on the number of electrons occupying the LUMO level. Thus, when assuming a
specific bias polarization, one can tune the functionality of such device by changing the
occupation number of the LUMO level, e.g. by shifting the position of the LUMO level
with a gate voltage. It should also be emphasized that the key requirement for observing
the spin diode behavior of a SMM is the presence of considerable spin asymmetry in the
couplings to the left and right electrodes, and well-defined spin states in the molecule,
ie. J;D > T  where T is the experimental temperature.
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CHAPTER O

Equilibrium transport in the Kondo regime
— the numerical renormalization group
approach

p to this moment I have been considering transport properties of a SMM assuming
Uthat the molecule is only weakly coupled to reservoirs of spin-polarized electrons.
However, in real experiments such assumption not necessarily has to be satisfied, so that
it seems reasonable to address also the limit of strong coupling, which will be the subject
of the present and the next chapter.

To begin with, one shall ask what consequences of the coupling strength to electrodes
for transport through nanoscopic objects, such as molecules or quantum dots, are. It is
important to notice that the energy spectrum of these objects is characterized by a set of
discrete energy levels, and the spectrum becomes modified upon introducing the coupling
to electrodes [28]. Due to the interaction between localized electron states of the molecule
and extended electron states in the electrodes, the possibility of electron tunneling arises.
When the mixing of the states is rather weak (the weak coupling regime), the original
molecular states undergo broadening, but a structure of well-defined energy levels can
still be distinguished. As a result, in such a case one can consider tunneling of electrons
via molecular levels, as it was done in Chapters 4 and 5.

However, if the overlapping is significant (the strong coupling regime), the molecular
states can no longer serve as an appropriate approximation for describing transport
of electrons. Therefore one has to replace them by new hybrid states, which take into
account the fact that now electrons are to some extent delocalized between electrodes
and the molecule. Since electrons can easily tunnel back and forth between electrodes and
the molecule, when the latter is occupied by an odd number of electrons, such processes
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may lead to reversing the spin of the unpaired electron. This in turn can result in an
additional resonance in the density of states near the Fermi level of electrodes, known
as the Kondo (sometimes also Abrikosov-Suhl) resonance. For this reason, the strong
coupling regime is often referred to as the Kondo regime.

The Kondo effect is a well-studied phenomenon in condensed-matter physics [220-226],
and it occurs for metallic systems containing magnetic impurities, manifesting as the in-
crease of resistance below some characteristic temperature Ti, called the Kondo temper-
ature. The effect originates from the interaction of a magnetic impurity with surrounding
conduction electrons of a non-magnetic host metal, and it can be qualitatively under-
stood on the ground of the simplest Anderson magnetic impurity model [227|. If the
impurity accommodates one electron, for instance with the spin ‘up’, as in Fig. 6.1(a),
the electron can tunnel out providing it possesses enough energy, otherwise it remains
trapped. Nevertheless, within the time scale allowed by the Heisenberg uncertainty prin-
ciple a virtual state can be formed, in which the electron can either temporarily escape
the impurity or another electron of the opposite spin can additionally arrive.! When the
system reaches the final state, it may turn out that due to virtual exchange processes
the direction of the impurity spin becomes effectively flipped to the opposite one. In the
present case this means the change from the ‘up’ to ‘down’ direction. In consequence,
such spin exchange processes between a localized electron and free-electron states quali-
tatively modify the energy spectrum of the system, leading to generation of a new state
at the Fermi level, the Kondo resonance, Fig. 6.1(b). Now, since transport properties of
a system are determined by the behavior of electrons with energies in the vicinity of the
Fermi level, the additional resonance can drastically change these properties.

At the end of the 1990s, it was shown that the Kondo effect can occur not only
in bulk systems, but also it is observed in transport through nanoscopic objects like
quantum dots [228-230], nanotubes [231], and different types of molecules: coordination
complexes in which a Co(II) ion is bonded within an approximately octahedral envi-
ronment to two terpyridinyl linker molecules with thiol end groups [232]; divanadium
molecules [(N, N’ N”-trimethyl-1,4,7-triazacyclononane )a-Vo (CN)4(m-C4Ny)] [233]; and
Cgo molecules attached to gold [234] or ferromagnetic nickel electrodes [235]. Further-
more, it should be noted that although the physical processes governing the formation of
the Kondo effect are always the same, regardless of whether one considers bulk metal sys-
tems or nanoscopic magnetic objects, there is the fundamental difference in the behavior
of measured transport quantities between such two cases. Whereas for metals, scattering
of electrons on the impurities causes the increase of resistance below T, in the case of
quantum dots and molecules, one observes the increase of conductance instead. Because
electrons, in order to get from one electrode to the opposite one, have to travel through
the central region of the device, the Kondo resonance becomes a kind of a ‘bridge’, allow-
ing for easier mixing of electron states belonging to two different electrodes, and hence
it enhances tunneling of electrons across the device [226].

'Note that I assume here symmetrical position of singly and doubly occupied states of the impurity
with respect to the Fermi level of electrodes.
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Figure 6.1: Tllustration of spin exchange processes (a) that can lead to formation of the Kondo
resonance at the Fermi level of electrodes (b), shown schematically in the case of the Anderson
magnetic impurity model. The general idea adopted from Ref. [226].

More recently, it has been demonstrated that for systems characterized by larger spins
(S > 1/2), e.g. a Co atom of S = 3/2, the role of the magnetic anisotropy in the
physics of the Kondo effect cannot be neglected [236,237]. Moreover, the key conclusion
is that the Kondo effect can be tuned by changing the magnitude and orientation of
the magnetic anisotropy, which sets the ground for a novel class of Kondo systems in
which the effect could be handled directly by controlling the local environment [236].
In this context, SMMs seem to be a very promising material for research. Although few
theoretical works focused on studying transport related issues in SMMs in the Kondo
regime have hitherto been published [50-54,238|, no experimental evidence of the Kondo
effect in transport through SMMs have been found yet. Let’s therefore briefly discuss the
current state of knowledge concerning transport through SMMs in the Kondo regime.

In the Coulomb blockade regime, where the charge of a molecule doesn’t alter, for linear
transport through a half-integer spin SMM, whose spin is weakly exchange-coupled to
conduction electrons, it has been shown that due to presence of the transverse anisotropy
the interaction can result in spin fluctuations [50]|. Thus the pseudo-spin 1/2 Kondo effect
is there a consequence of a joint action between the quantum tunneling of the molecule’s
spin and spin exchange processes between the SMM and tunneling electrons. Moreover,
the effect should arise only for particular values of the SMM’s spin, determined by the
symmetry of the transverse anisotropy. The situation becomes even more intriguing for
the strong interaction, because then the Kondo temperature can be substantially larger
than the tunnel splittings A, see Chapter 3. It means that excited SMM’s magnetic
states which belong to topologically different sectors, with respect to rotations around
the easy axis, can also contribute to the Kondo effect [51], so that the effect can occur

for full-integer spin molecules as well.
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It was soon realized that qualitative differences between mechanisms of the Kondo ef-
fect in the case of molecules with half- and full-integer spins disappear with application of
even a moderate transverse magnetic field |[52|. Furthermore, it has been demonstrated
how, with the use of the Schrieffer-Wolff transformation, the Anderson-type Hamilto-
nian describing the SMM can be mapped onto a spin-1/2 anisotropic Kondo Hamilto-
nian [53]. It turned out that, depending on whether due to tunneling of an electron the
total molecule’s spin is either reduced or augmented in the charged state, the Kondo
Hamiltonian is characterized by an antiferromagnetic and ferromagnetic coupling, re-
spectively. In the former case the Kondo effect manifests itself, whereas in the latter
one, owing to renormalization of the transverse coupling to zero, no resonance at the
Fermi level is present. Finally, the oscillatory behavior of the Kondo effect as a function
of the transverse field amplitude has been demonstrated to stem from the Berry-phase
periodical modulation of the tunnel splitting.

To complete the present review, it should be mentioned that also the nonequilibrium
spin dynamics of a SMM, triggered by a sudden change in the magnetic field ampli-
tude, with the main emphasis on the time evolution of the Kondo screening, has been
studied [54]. Interestingly enough, the manner in which the molecule’s spin relaxes in
the presence of the transverse anisotropy is related to its parity. For a half-integer spin,
because of the combined effect of the QTM and spin screening by conduction electrons,
the pseudospin-1/2 Kondo effect arises and on a long-time scale the reduction of the
SMM’s average spin is seen. On the other hand, for a full-integer spin, the QTM occurs
directly between two ground states, so that no screening takes place, and consequently
one observes only damped Rabi oscillations.?

In view of the above discussion, it is clear that in the case of the strong coupling one
cannot any longer anticipate that only the states in the vicinity of the Fermi level of
electrodes will significantly contribute to transport. In fact, any state belonging to the
conduction band cannot arbitrarily be excluded from participating in tunneling processes,
and therefore one should in principle consider a wide range of energies corresponding to
the whole width of the conduction band. Consequently, at this point I need to abandon
perturbation schemes used so far, and apply a method that allows me to describe an
interacting many-body quantum-mechanical system characterized by a broad continuous
spectrum of excitation energies. The problem of electron transport through a SMM
strongly coupled to two ferromagnetic metallic electrodes can be efficiently treated with
the renormalization group approach. In particular, I employ here Wilson’s numerical
renormalization group method [225,240,241], referred to as NRG in the following, whose
great advantage is being non-perturbative in all system parameters.

The general NRG strategy applied by Wilson to analyze the behavior of a magnetic
impurity coupled to non-interacting electrons of a conduction band can be briefly sum-
marized as a sequence of three substantial steps. First, he discretized the conduction
band logarithmically, using a discretization parameter A > 1, and dividing the band into

2The term ‘Rabi oscillations’ is generally used to call oscillations that arise in an effective two-level
system due to the occurrence of a momentary or periodic change in an external field [239].
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intervals [A="*Dw,, A~"w.] and [-A""w,, —A~ "D, ] with n = 0,1,2,3,... Then he
mapped the discretized model onto a semi-infinite chain with the impurity representing
the first node of the chain. Finally, the model in the form of the semi-infinite chain was
diagonalized iteratively, starting from the impurity site and adding degrees of freedom
to the chain in each successive step. Since moving along the chain effectively means ac-
cessing smaller and smaller energy scales in the calculations, the method developed by
Wilson provides a non-perturbative description of the crossover from a free magnetic
impurity at high temperatures to a screened spin at low temperatures [241].

Since the mathematical formulation of NRG method has been broadly discussed in
the literature [225,240,242-251], I omit in the following all redundant derivations, and I

recall only formulae indispensable for keeping the current discussion logically consistent.

6.1 The numerical renormalization group (NRG) method —
basic ideas

The NRG method is in general applicable to all systems which can be reduce to the model
of a quantum-mechanical impurity coupled to a bath of fermions or bosons. Whereas
there are in principle no constraints concerning the form of the impurity term of the
Hamiltonian, it is required that the bath consists of non-interacting fermions of bosons.
For this reason, in order to use the NRG method efficiently, I have to first transform
the previously studied model of a SMM coupled to two metallic ferromagnetic electrodes
into a model where the molecule interacts effectively only with a single spin-polarized
electron reservoir.

It has been shown that this can be achieved by means of a canonical transforma-
tion [187,252,253] of the tunneling Hamiltonian,® Eq. (2.3),

% ) JrgErmEe \ e Te )\ ae )0
with the label e(0) denoting the odd (even) combination of leads operators. Such a rota-
tion in the space of left-right electron operators results in separation of the total Hamilto-
nian, Eq. (2.1), into two independent parts, among which one involves the LUMO level
coupled to a single electron reservoir described by the even combination of the leads’
electron operators, while the other one describes merely a non-interacting electron gas
described by the odd combination of the leads’ electron operators. The tunnling Hamil-

tonian in the collinear configuration of the leads’ magnetic moments and the molecule’s
easy axis (¢ = 0) reads as

Hiun = Z Vka [ai];ca + Clalia] ’ (6'2)
ko

3Note that although the tunneling matrix element Ti!  can formally depend on a wave vector k and
a spin o, which is assumed for the purpose of the present discussion, in the further part of this section
I will relax the assumption, requiring only the spin-dependence.
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where Vi, = /|TiL |2 + [T} ]? is a renormalized, effective LUMO level-lead coupling.

For convenience of further discussion, I leave out the superscript ‘e’.
Consequently, the model under discussion can be reformulated so that it resembles
now a quantum impurity model, described by the total Hamiltonian

H= HSMM + Hres + HSMM—res- (63)

Here, Hsnu plays a role of the impurity, and is given by Eq. (2.5), Hres = 2 1o akga};aak -
describes the reservoir (bath), and Hgym.res = Hiun represents the interaction between
the molecule and the reservoir, Eq. (6.2). As it can be seen in the equations above, at this
stage I explicitly keep spin-dependance for the reservoir’s energy dispersion relation ey,
as well as for the tunneling matrix element Vy,. However, I would like to point out that
ferromagnetism of the bath can formally be included either by a spin-dependent DOS
po(w) or Vi, without no need of assuming simultaneously spin-dependency of both of
these parameters. Since, as long as transport properties of the system are concerned,
both these pictures are equivalent [251,254], I lump all spin and energy dependence into
Vko- Furthermore, for simplicity I assume a flat conduction band stretching within the
interval [—©,®], with ©® > 0 and ® = 1 being the the largest (cutoff) energy scale
of the system, so that p(w) = >, ps(w) = p = 55. Finally, I also neglect the energy
dependence of the tunneling matrix Vi, = V, [242|. As a result, the overall effect of
the reservoir on the SMM is then completely determined by the coupling (hybridization)
function?

I, = 7p|Vs|2. (6.4)

The model established in the previous two paragraphs constitutes conceptually the
easiest system to be treated with the NRG method. The general strategy of the approach
under discussion can be divided into following steps [241]:

e Division of a continuous spectrum of a reservoir into a discrete set of states, and
subsequent discretization of the model, Fig. 6.2(a)-(b).

e Mapping of the discretized model onto a semi-infinite chain, Fig. 6.2(c).
e [terative diagonalization of this chain.
e Analysis of data obtained due to the iterative diagonalization procedure.

Starting with the first point, Wilson has shown that the most suitable choice for
discretization of the conduction band is the logarithmic discretization, which introduces
a set of energy points at z,, = A (A > 1, n = 1,2,3,...) in place of a continuous
spectrum. The advantage of the logarithmic distribution of points is that the low-energy
resolution depends exponentially on the number of sites into which the model is divided.
Then, within each logarithmic interval, characterized by the width d,, = A="(1 — A™"),

Tt should be noted that the definition of the coupling function used in this chapter differs slightly
form that introduced in Section 2.2, i.e. here the factor 2 is missing. The present form of I, is according
to the Flexible DM-NRG code to be applied in this chapter [255,256].
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Figure 6.2: A schematic representation of the major steps in the NRG method. (a) The con-
tinuous density of states (DOS) of a reservoir is separated into a set of logarithmic intervals,
whose lengths are determined by the discretization parameter A. (b) Within each of such de-
fined intervals, the continuous spectrum is replaced by a single state. (c) The discretized model
is then mapped onto a semi-infinite chain, whose first node corresponds to the molecule. The
idea adopted from Ref. [241].

one expands the continuous conduction band operators a., in a Fourier series in an
orthonormal basis spanned by functions [225, 240, 241|

(6.5)

¢i (6) = d,;lmeﬂ“"p6 for 41 < e < xy,
" 0 if € lies outside the above interval
b

with w, = 27/d,, denoting the fundamental frequency in the nth interval. The discretiza-
tion procedure applied to the Hamiltonian (6.3) yields [225,240, 241]

[e.9]

1 + A1 t
H=Houm + Y ——[ailal) — allfal) | + > Volch foo + fipcs],  (6.6)
o,n=0 o
res;rrVoir SMM—reserv:)irr interaction

where an auxiliary fermionic operator fy,, defined as

1
R T I B IR C CE
—1

has been introduced.

In the next step, the discretized Hamiltonian is mapped onto a semi-infinite chain.
Analyzing the structure of the Hamiltonian (6.6), one can notice that the LUMO level
couples directly only to one conduction electron degree of freedom via operators f, ( fg )
[see the third term of Eq. (6.6)]. Thus these operators correspond to the first node of the
conduction electron part of the chain. Because the operators f;, ( fgg) are not orthogonal

to the operators alf) (aﬁfg”) therefore it is convenient to construct a new set of mutually
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orthogonal operators f, . ( f,ig) from f, ( fgg) and a) (aﬁoﬁ), which corresponds to

mapping of the second (reservoir) term of Eq. (6.6) onto a semi-infinite chain, Fig. 6.2(c).
Consequently, one obtains the sought expression for the chain Hamiltonian in the form

H = /HSMM + Z tn [f:LUfTL+10' + frJEJrlcrfna] + Z Vo [CI'fOO' + fgaco} : (68)

o,n=0 o

The operators f,,, ( f,ig) represent the nth node of the conduction electron part of the
chain, Fig. 6.2(c), which is also described by the hopping matrix element ¢, [241],

(1 + Ail)(l — Ain*l)Ain/Z for large n b

" 91— A2m1,/] _\-2n3

(14 A"HA/2, (6.9)

DO | —

The fact that the value of the hopping matrix element falls off exponentially with distance
from the impurity is the key feature of the NRG method, as it essentially means that
adding each consecutive node to the chain corresponds to diminishing the relevant energy
scale by a factor of v/A.

It should be noted that up to this moment none of performed transformations have
revealed the ‘renormalization group’ character of the discussed approach. The chain
Hamiltonian, Eq. (6.8), can actually be seen as a series of Hamiltonians Hy (N =
1,2,3,...), from which the initial Hamiltonian, Eq. (6.3), is recovered in the limit of the
infinitely long chain [225,240,241],

H = lim A-WN=D2qy (6.10)

where the Hamiltonian Hy contains the first N nodes of the Wilson chain,

N-1

Hy = A(N_l)/Q{HSMM + Z tnlfioFusio + I 10 fuo)

o,n=0

+> Vo [eh foo + Fhres] } (6.11)

Here, the factors AT(V=1/2 have been inserted into the last two equations to cancel the
N-dependence of the hopping matrix element ty_1 between the two final nodes of Hy.
The starting Hamiltonian Hg, which corresponds to a two-site cluster formed by the
SMM coupled to the first conduction electron node, is therefore given by

Ho = Al/Z{’HSMM + 3 Vol for + o] } (6.12)
o
whereas two successive Hamiltonians H 1 and Hy are recursively related as follows

Hyi1 = VAHN + AN ZtN [ijvaNHa + f}vHUng]- (6.13)

86



6. Equilibrium transport in the Kondo regime — the numerical renormalization group approach
6.2. Calculation of equilibrium transport with NRG

The last expression is then the point where the renormalization scheme comes into play,
as Eq. (6.13) defines a mapping Hy41 = R[’HN] which transforms the Hamiltonian in
question into another Hamiltonian of the same form, but characterized by lower energy
scales. As a result, to solve the chain Hamiltonian, Eq. (6.8), one has to diagonalize
iteratively Hp, i.e. diaginalize the chain Hamiltonian afer adding each consecutive node
to the chain.

Let’s assume that, for a given N, the Hamiltonian Hy has been diagonalized and
it can be described by the many-body energies En (i), so that Hy|vi)n = En(i)|¢i) N
(1t =1,2,...,Ny), where |[¢;)y are the eigenstates and N is the dimension of Hy. To
proceed with diagonalization of H 41, one first constructs a new basis |¢;; ps)N+1 =
|i)N @ |ds)N+1, Whose states are product states of the eigenbasis of H and a proper
basis for the added degrees of freedom. The matrix of H 1 has then the form

Hn11(is,7's") = Nv1(Vis ds|Hns1|0i; dsr) N1 (6.14)

Diagonalization of the matrix above yields the new set of eigenenergies En1(j) and
corresponding eigenstates [¢;) y41. Since the number of states taking part in calcula-
tion increases with adding each next node to the chain, a truncation procedure need to
be devised so that for large N numerical diagonalization can be still performed. The
standard solution of this problem is, first, to employ the symmetries of the system, and,
second, to keep after each diagonalization step only Nj,.x eigenstates with the lowest
energies [241,256]. In consequence, one fixes the dimension of the Hilbert space to Npax
along the chain. The iterative diagonalization procedure should be continued until the
system reaches its low-temperature fixed point.

To complete the present section, I would like to briefly comment on the effect of a
finite temperature of the system on the NRG procedure. Since in the Nth iteration step
one gains access to energy scales wy ~ A~WN=D/29 at T = 0 one can then increase
N to get insight into lower and lower energy properties of the system. On the other
hand, in the case of a finite temperature (7" # 0), the energy resolution granted by the
method is limited by the thermal energy. It means that the NRG calculations have to be
ceased once wy approaches the scale kgT = (1 + A~H)A-N1=D/2D Eq. (6.9), where
Np corresponds to the number of iterations necessary to reach the energy scale kgT'.

6.2 Calculation of equilibrium transport with NRG

Diagonalizing the Hamiltonian (6.11) for a given chain site N, one obtains the set of
eigenenergies En (1), with i = 1,2,..., Nyax, and corresponding eigenstates |1);) n, the
knowledge of which allows for calculating the physical properties of the system at the
energy (or temperature) scale wy ~ A~N=D/29 (kgTy ~ A-N-D/29),

A central quantity of interest when describing the transport properties of the system
under consideration is the spin-dependent LUMO level spectral function Ay (w,T) [241,
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257], which is defined as
1
As(w,T) = —=Im G (w,T). (6.15)
™
In the above equation, G5 (w,T) denotes the Fourier transform of the retarded Green
function G, = —iH(t)<{cU(t),c§(O)}>p [258], and p(T') is the density matrix of the full

system at temperature 7' (kg7 = B~'). In the Nth iteration the expression for the
spectral function AY (w, T takes the following form [241]

v

x |N(@Wjlch v v |28 (w — [En(j) — En(i)]), (6.16)

where Zn(T) = >, Exp[—BEN(i)] is the partition function. At this point, it should
be emphasized that because the method under discussion is a fully numerical approach,
Eq. (6.16) requires replacing the delta function by some smooth distribution. As the NRG
method is not the main subject of this thesis, but rather one of theoretical tools used
for analysis of the problem, I omit here further technical details concerning application
of the method. They have been broadly described for instance in Refs. [248,250, 255].

Knowing the spectral function, I can make use of the Landauer- Wingreen-Meir formula
for the linear-response regime conductance [187,259-263|,

8fFD w) 2LWrfw) 1 .
T Z/ TL(w) + Thw) 7 9@ T, (6.17)

with frp(w) denoting the Fermi-Dirac distribution function. Noting that I focus only
—af%id(w) = 0(w), and that I have assumed only the spin-

dependance of the coupling functions, Fg(R) = WngL(R) ‘2/(233), the equation above, after

on the case for T' = 0, where

employing Eq. (6.15), takes much simpler form

2rirk
= ZFL+FR +(0,T =0). (6.18)

In the next step, I can express the coupling functions in terms of the electrodes’ polar-
ization parameters in a similar way as in Section 2.2, obtaining:
e for the parallel magnetic configuration

r r
rﬁu)ZE(h_LPL) and T} = 5 (1% Pp), (6.19)

e for the antiparallel magnetic configuration
L F F

In consequence, for the system with electrodes characterized by the same polarization
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parameters, P;, = Pr = P, the linear conductance G (in units of €2/h) in the parallel
and antiparallel magnetic configurations of the leads reads as

Gp = g[(l + P)AY(0) + (1 = P)AT(0)],
B 2 (6.21)
Gap=5(1- P?)AAE(0).

Here, for the sake of brevity, I skipped the temperature argument of the spectral func-
tion. Finally, in calculating A?(AP)(W), the magnetic configuration of the electrodes’
spin moments is taken into account through the effective coupling between the molecule

and the reservoir: Vﬁp = fP = ,/WLP = V for the antiparallel configuration, and
VTP(U = V1 £ P for the parallel one.

6.3 Transport through a single-molecule magnet in the lin-
ear response regime

Numerical results presented below have been obtained with the use of the Flexible DM-
NRG code [255,256|. Similarly as in the previous chapter I have considered a hypothetical
SMM characterized by S = 2 and strong uniaxial anisotropy. The parameters of the
NRG procedure are assumed to be: A = 2, N = 60 (the number of iterative steps) and
Nmax = 2000 (the number of states kept after each diagonalization step). Furthermore,
in order to facilitate numerical calculations, the Ucarge(1) X Uspin(1) symmetry of the
model was used, so that the zth component of the total spin S7 and the charge ) were
employed as quantum numbers according to which the multiplets of the Hamiltonian were
classified during computation. Finally, it should be emphasized that all energies cited in
this section are given in units of ®, and the height of spectral functions is normalized to
Ag = A(0)° for J = 0 in the antiparallel configuration of the leads’ magnetic moments.’

Since the Kondo regime is defined by the presence of the Kondo resonance in the
spectral function, I should first derive the Kondo temperature Tk of the system. At
T = 0, the Kondo temperature can be estimated from the half-width at half-maximum
of the Kondo resonance [225,237]. As a result, considering the total spectral function for
J =0, [ obtain Tk ~ 0.00066 — I note here that for simplicity, throughout the remaining
part of this chapter I assume kg = 1, i.e. temperatures are also given in units of ®. Now,
turning on slowly the interaction between the electron spin in the LUMO level and the
SMM’s core spin, I can analyze how this interaction affects the shape of the spectral
function in the Kondo regime, Figs. 6.3 and 6.4.

As it should be expected, for small values of J, where the behavior of the system
should resemble that of a quantum dot, one observes a well pronounced Kondo peak in
the antiparallel configuration of the electrodes’ magnetic moments, Fig. 6.3, whereas in

SNumerically, the value of the spectral function A(w) at w = 0 has been obtained by averaging values
of A(w) within the range (107%,107%), in which the spectral function is already constant.

5Tt’s worth noting that in the situation under discussion there is neither quantitative nor qualitative
difference between the antiparallel case and the case of nonmagnetic electrodes.
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Figure 6.3: The total LUMO level spectral function A(w) = Y _ A,(w) as a function of the
coupling J between the electron spin occupying the LUMO level and the SMM'’s core spin for
the antiparallel magnetic configuration of electrodes. Results for both types of the coupling
are presented: (a)-(b) ferromagnetic (J > 0), and (c)-(d) antiferromagnetic (J < 0). Panels
(b) and (d) represent cross-sections of the density plots (a) and (c), respectively, for selected
values of J. Note that all spectral functions are normalized to Ay = A(0) for J = 0. The
parameters describing the molecule are as follows: D =5-107%, D; = —5-1076, Dy, =2-1076,
¢ = —0.1 and U = 0.3 (all given in units of D). Other parameters are: P = 0.5, I' = 0.0225

(VAP = VPP =0.12).

the parallel case a strong suppression of the peak is visible, Fig. 6.4. Such a behavior is
related to the fact that for identical electrodes in the parallel magnetic configuration, the
density of states for majority (minority) electrons are the same in both electrodes. Since
spin exchange processes leading to creation of the Kondo resonance require transfer of
electrons between majority (minority) and minority (majority) conduction bands, the
overall effect is much weaker than in the antiparallel case. In particular, the asymmetry
between the densities of states in the opposite electrodes in the antiparallel magnetic
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Figure 6.4: The total LUMO level spectral function A(w) = > _ A,(w) shown for selected values
of the coupling J in the case of the parallel magnetic configuration of electrodes for both types
of the coupling between the LUMO level and the SMM’s core spin: (a) ferromagnetic (J > 0),
and (b) antiferromagnetic (J < 0). Bottom panels present the dependance of the height of the
total spectral function at w ~ 0 on the coupling parameter J for antiparalel (¢) and antiparallel
(d) magnetic configurations of the leads. Except VTP =0.147 and Vf = 0.085, all parameters are
the same as in Fig. 6.3.

configuration means that the processes in question occur through the majority-majority
(and also through the minority-minority) channel, and thus they are more effective,
resulting in the sharp resonance.

With the increase of J, the height of the peak becomes reduced, and for |J| > Tk it
almost completely vanishes. It can also be seen that the disappearance of the resonance is
faster in the case of the antiferromagnetic coupling, Figs. 6.4(c)-(d). Furthermore, as the
coupling J grows stronger, some additional features of spectral functions emerge. Apart
from the Hubbard peak, stemming form the Coulomb repulsion of two electrons in the
LUMO level, there are two additional resonances for the coupling between the LUMO
level spin and the SMM'’s core spin of the ferromagnetic type (J > 0), Figs. 6.3(a)-(b)
and 6.4(a), and one resonance in the antiferromagnetic case (J < 0), Figs. 6.3(c)-(d)
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Figure 6.5: Tllustration shows schematically the position of selected lowest lying states within
spin multiplets corresponding to single occupation of the LUMO level, which participate in
formation of resonances in the Kondo effect. The dashed line represents the position of the
LUMO level in the absence of the exchange coupling (J = 0).

and 6.4(b). Among the two resonances for J > 0, the position of one depends on energy
very weakly (line A), whereas the other one moves towards larger energies with increasing
J (line B), see the dashed lines in Fig. 6.3(a). The behavior of the latter peak suggests
that it has the same origin as the peak appearing for J < 0, Fig. 6.3(c).

In order to explain the mechanism responsible for creation of the resonances under
consideration, it can be useful to consider the role of the lowest lying molecular states
corresponding to single occupation of the LUMO level, Fig. 6.5. It should be noted,
however, that although such a simplified picture can be helpful here, in fact it is not
entirely correct. Due to the application of the NRG procedure, the energy spectrum
of the molecule can no longer be described by means of formulae given in Section 2.4,
because now one deals with new hybridize states resulting from the strong coupling
between electron states in electrodes and the LUMO level of a SMM. Nevertheless, I
will use the spectrum of a free-standing molecule to draw at least some quantitative
conclusions about the origin of the additional resonances.

First of all, I shall recall that the many-body states belonging to spin-multiplets cor-
responding to a singly occupied SMM have the general form

|St =S+ 1/2; 1, m> = Am|\L>orb(®|7n+1/2>mol + IBm|/r>orb®|'rn*1/2>rnola (622)

where the significance of coefficients A,, and B,, was discussed in Section 2.4. It has
been shown that the coupling between the electron spin occupying the LUMO level and
the SMM’s core spin leads to decomposition of molecular magnetic states into two spin-
multiplets for Q = 1, and the sign of the coupling parameter J decides whether the
multiplet S+ 1/2 or S — 1/2 has lower energy, see Fig. 2.4(b)-(c). Since in the present
chapter I consider only the case of T = 0, thus it seems justified to assume that only

the states of lowest energy in both spin-multiplets contribute significantly to the effect.
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In some sense, this situation is similar to the case of a quantum dot subjected to an
external magnetic field, which leads to splitting the Kondo resonance [228,264|. The
main difference is that for a quantum dot, one level splits into two, whereas in the case
of a SMM one gets much more complex energy structure. Moreover, except the states
|5/2;1,£5/2), all molecular states for () = 1 are the admixture of states corresponding
to the LUMO level containing an electron with the spin ‘up’ and ‘down’.

Let’s analyze the situation for J > 0, the left panel of Fig. 6.5, and assume that initially
the molecule occupies the state |5/2; —5/2).7 As it was introduced at the beginning of this
chapter, in the virtual state the molecule can either accommodate another electron or
release one, and then upon returning to the initial state the spin direction of the electron
in the LUMO level can be reversed. However, in the situation under consideration it
means that the SMM can end up in one of three states: |5/2; —5/2) (i.e. it goes back
to the same state — no contribution to the Kondo effect), |5/2; —3/2) and |3/2; —3/2).
Using Eqs. (2.19)-(2.22), it can be estimated that for J > D), with D) = D 4 Dy,
the energy gaps shown in Fig. 6.5 are

25 +1

(551 ~ 5

J,

27 — 2D (6.23)

(25 +1)(J —2DM) |

6& ~28DW |1 —

Consequently, it transpires that the origin of the resonance marked by the line A is
related to transitions characterized by the energy gap d€, while the resonance indicated
by the line B by 6&;.

The situation changes slightly for the exchange coupling of the antiferromagnetic type
(J < 0), Fig. 6.3(c), because then the position of the spin-multiplets S+1/2 and S—1/2
is interchanged with respect to the case of J > 0. Assuming that the SMM is at the
beginning in the state [3/2; —3/2), due to processes resulting in reversing the spin of an
electron occupying the LUMO level, the molecule can in principle be transferred into
five different states: |5/2;—5/2), |5/2;—3/2), |5/2;—1/2), |3/2; —3/2), and |3/2; —1/2).
However, taking into account all possible transitions, it turns out that the dominating
contribution should just come from transitions to the state |5/2; —3/2) (characterized by
the energy gap d€1), and, as a result, only the resonance denoted by the line B is visible.
It is also worth highlighting that for J < 0 the resonance is even more distinct than the
analogous peak for J > 0. Finally, the origin of resonances in the case of the parallel
magnetic configuration, Fig. 6.4(a)-(b), can be qualitatively analyzed in a similar way.

Figure 6.6 presents how the total LUMO level spectral function A(w) = > As(w)
depends on the position of the LUMO level . It can be seen that most significant
modifications of the spectral function, with respect to the case of J = 0, appear in the
region corresponding to single occupation of the LUMO level (@ = 1). Let’s focus on
analyzing the behavior of the spectral functions for low energies. First of all, for J = 0 in

"For notational clarity, I omit here the number of electrons occupying the LUMO level, as in the
current case it is always Q = 1.
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Figure 6.6: The dependance of the total LUMO level spectral function A(w) = > As(w)
on the position of the LUMO level ¢ for the antiparallel (a,c,e) and parallel (b,d,f) magnetic
configuration of electrodes, in the case of the ferromagnetic (a,b) and antiferromagnetic (c,d)
coupling between the LUMO level spin and the SMM’s core spin. For comparison the rightmost
panels show the spectral function when J = 0. Here, |.J| = 0.0005, and the remaining parameters
are as in Fig. 6.3 and 6.4.

the antiparallel magnetic configuration, Fig. 6.6(e), it can be seen that when the LUMO
level is occupied by one electron, the clearly pronounced Kondo resonance arises, and it
survives until the population of the level by another electron is energetically allowed. The
vanishment of the Kondo effect in the situation when the LUMO level accommodates
two electrons of opposite spins is related to the fact that the effective spin of the level
is then equal to zero, so that spin exchange processes due to tunneling of electrons
cease to operate. For the antiparallel orientation of electrodes’ magnetic moments, one
observes the maximal value of A(w) in the whole region of the LUMO level position
corresponding to ) = 1, because, as discussed above, one of the transport channels,
responsible for reversing the spin of an electron in the LUMO level, involves only the
majority spin bands of the electrodes.

The situation alters completely in the parallel magnetic configuration, Fig. 6.6(f),
where for () = 1 the Kondo effect becomes suppressed for almost all values of € except
those that are very close to the position of the LUMO level at which the character of
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Figure 6.7: (a) Tunnel magnetoresistance (TMR) as a function of the exchange coupling pa-
rameter J for the position of the LUMO level e = —0.1. (b) Comparison of TMR as a function
of € when |J| = 0.0005 for the two types of the exchange coupling between the LUMO level and
the SMM'’s core spin with the case of J = 0.

transport changes from particle- to hole-type (i.e. the particle-hole symmetry point, men-
tioned in Section 5.3.1). In such a point, the Fermi level of electrodes lies exactly in the
middle of the energy gap between the states corresponding to single and double elec-
tron occupancy of the level, Fig. 6.1(a). Consequently, in the vicinity of this point both
hole-like [the bottom path in Fig. 6.1(a)] and particle-like [the top path in Fig. 6.1(a)]
mechanisms of transport leading to creation of the Kondo peak are active. The super-
position of these two processes, in turn, allows for circumvention of the problems with
spin exchanging transport processes stemming from the parallel magnetic configuration
of electrodes. If I now turn on the interaction between the LUMO level and the SMM’s
core spin (J # 0), Figs. 6.6(a)-(d), this generally results in quenching of the spectral
function in the region where the LUMO level is singly occupied. Furthermore, the sup-
pression of the Kondo resonance is more noticeable for the antiferromagnetic type of the
coupling. The nature of such a behavior can be understood on the basis of analogous
arguments that I used earlier to explain the dependance of the Kondo resonance on the
coupling parameter J.

Employing the data presented in Figs. 6.4(c)-(d) and 6.6, as well as the formulae for
conductance of the system, Eqgs. (6.21), I can calculate tunnel magnetoresistance as

TMR = M

(6.24)
Gap

The result is shown in Fig. 6.7. First of all, it can be noticed that for small values
of the coupling J between the LUMO level spin and the SMM’s core spin, transport
in the antiparallel magnetic configuration can dominate over transport in the parallel
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configuration, which is represented by the negative TMR. However, as |.J| gets increased,
the trend becomes reversed. I recall here that the growth of the coupling strength J is
associated with broadening the energy gap 0€; between the key states participating in
formation of the Kondo resonance, Eq. (6.23) — the energy gap d&; remains approximately
constant.

Even more interesting seems to be the dependance of TMR on the LUMO level posi-
tion, Fig. 6.7(b), as this figure allows me to make a qualitative comparison between the
results obtained for the weak and strong regime of coupling between the molecule and
electrodes; for TMR in the weak coupling regime see Figs. 5.6(a) and 5.12(a). To begin
with, it should be emphasized that the curve for J = 0 agrees with the result obtained
by means of the same method for a quantum dot coupled to ferromagnetic leads [254].
One can see that in the case of a SMM, TMR differs greatly from that for a simple
quantum dot. Furthermore, similarly as in the case when the molecule was only weakly
coupled to electrodes, Figs. 5.6 and 5.12, TMR is sensitive to the type of the exchange
coupling between the electron spin at the LUMO level and the SMM'’s core spin. Inter-
estingly enough, it seems that there exist some correspondence between main features
of the curves in the strong and the weak coupling regime. For instance, the increase of
TMR in the vicinity of the middle point &,,® is observed, and generally TMR for J < 0
is larger than for J > 0 in this region. The most striking difference, on the other hand,
concerns the fact that in the present situation TMR can be negative for the position of
the LUMO level € corresponding to the level occupied by a single electron (Q = 1).

8Note that in the situation under consideration this point doesn’t correspond to the particle-hole
symmetry point. It is worth recalling that owing to the presence of corrections D; and Ds, represent-
ing the influence of the LUMO level’s occupation on to the anisotropy, the Hamiltonian describing a
SMM (2.5) doesn’t exhibit the the particle-hole symmetry.
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CHAPTER [

Optically stimulated
current-induced magnetic switching of
a single-molecule magnet

From the point of view of potential applications of all mechanisms that can lead to
the reversal of a magnetic moment, and hance serve to write a bit of information,
an important issue is the time at which the process can take place. In the case of the
switching due to a precessional motion in the presence of a perpendicular magnetic
field pulse, it has been shown that deterministic magnetization reversal ceases for pulses
shorter than a few picoseconds [265]. The main problem with fast magnetic switching
concerns the fact that an ultrafast stimulus usually enforces the system into a strongly
nonequilibrium thermodynamic state [266], as in such a case the time scale at which
thermalization of a magnetic excitation occurs is much longer than that associated with
the excitation mechanism. It would be therefore desired to utilize some non-thermal
mechanizm, which would allow avoiding the major obstacle stemming from limitation of
the repetition rate by the cooling time, i.e. one wouldn’t have to wait until the system
returns to the initial (ground) state before application of the next pulse.

Generally, experiments employing optical methods for controlling the magnetic state
of a system can be divided into two groups depending on whether an optical pulse is
absorbed or not. Since in the former case the absorption of photons is followed by an
increase of temperature, such methods are referred to as thermal ones, and consequently
the latter group encompasses so called non-thermal methods. As already mentioned
above, the major problem for obtaining fast magneto-optical demagnetization or switch-
ing with thermal methods is relatively long time which the system needs to recover an
equilibrium state [267-269]. Moreover, the complete reversal of the magnetization occurs
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only in the presence of an external magnetic field [270]. As a result, during previous
years much effort has been devoted to exploring properties of non-thermal processes,
and it has been experimentally demonstrated that ultrafast magnetic processes can be
effectively induced and studied with the use of laser pulses [266,271-274].

One of the most compelling ideas suggested so far is the possibility of using circularly
polarized light to manipulate a magnetic system with the resultant effect analogous to a
magnetic field oriented parallel to the wave vector. Although this mechanism, called the
inverse Faraday effect, was proposed [275,276] and shown to work [277] almost half a
century ago, only the recent development of modern high-power and ultrafast lasers raises
hope for exploiting the latent technological potential of this effect. An important property
of the inverse Faraday effect is that it employs Raman-type coherent optical scattering
processes via virtual states with strong spin-orbit coupling, and thus no absorption of
photons is involved [278]. It means that the effect of light on the magnetization is non-
thermal [279]. It should also be stressed that no external magnetic field is necessary for
the process to take place and the final magnetic state of the system depends only on the
helicity of the laser pulse.

Up to now, circularly polarized femtosecond pulses have been proven to control spin
oscillations in a weak ferromagnet DyFeOgs [279]. Additionally, reproducible reversal of
the magnetization in an amorphous ferrimagnet alloy GdFeCo by a single 40 fs circu-
larly polarized laser pulse [278,280] as well as optical control of the magnetization in
ferrimagnetic garnet films [281] have been demonstrated. Although the general theory
of the mechanism [276,282-285] has been generally accepted, the universal microscopic
mechanism is still the subject of debate as it is not clear which reservoir, i.e. the crys-
tal lattice or photons, is the source of angular momentum required for the magnetic
switching [286-288|. Moreover, it has been shown that it is rather unlikely that the effect
arises owing to the direct magnetic-dipole interaction between the angular momentum
of a medium and the magnetic field of the light wave, because such a mechanism would
require much larger beam intensities than those actually used in experiments [289]. The
general conclusion is that the switching of magnetization caused by the inverse Faraday
effect occurs as a complex multistage process in which orbital, spin, photon and phonon
systems participate.

From a fundamental perspective, both the Faraday and inverse Faraday effect derive
from the same free energy [276,277,290]|, and thus from a thermodynamical point of view
they constitute a pair of reciprocal processes [291,292]. One should therefore expect that
if a magnetic system is capable of inducing the rotation of the polarization plane of
electromagnetic (EM) wave passing through it (the Faraday effect), the reverse process
should in principle also operate, i.e. circularly polarized light can influence the magne-
tization of the system (the inverse Faraday effect). This point motivates my interest in
application of optical methods for manipulating the magnetic state of SMMs, as at least
one SMM species (the Mnjy family) has been shown to exhibit the Faraday effect! [293].

'Note that the experiment was performed on a sample consisting of iso-oriented single crystals, and
not on a single molecule.
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Figure 7.1: (a) Schematic depiction of various processes relevant for the spin dynamics that
can arise after resonant absorption of the left-handed circularly polarized (LHC) EM-radiation.
(b) Symbolic illustration of the application of a short LHC EM-radiation pulse to stimulate the
CIMS of the SMM’s spin in the Coulomb blockade regime.

However, despite growing interest in investigating optical properties of SMMs, not much
is known about their non-thermal response to EM-radiation, even in a crystal form. On
the other hand, attempts to control the magnetization dynamics of SMMs (bulk samples)
by absorption of continuous or pulsed radiation turned out to be more successful.

It has been demonstrated that the partial reversal of the magnetization of a system of
Feg molecules induced by applying radiation at resonant frequency is feasible [294,295].
In such a case, the absorption of radiation triggers transition between two lowest energy
levels, and this in turn is subsequently followed by thermal (Orbach) or tunneling re-
laxation processes [296], Fig. 7.1(a). Moreover, time-resolved magnetization experiments
in the presence of EM-radiation provide valuable information about the spin relaxation
time or spin decoherence time [297]. On the experimental ground, the situation becomes
even more interesting if the radiation of frequency resonant with transition between two
excited states is used. Because of the much larger phonon DOS, when the spin system
returns to the a state of lower energy after the excitation, it will most likely release a
phonon instead of a photon. Thermalization of these phonons leads to augmenting the
temperature of the sample, and in consequence also to the increased population of ex-
cited states. This means that more photons can be absorbed, and thus the system is
driven towards higher temperatures as an effect of such a feedback mechanism [298,299].
Furthermore, the problem of heating can be circumvented by performing experiments
at much shorter time scale. Subjecting the crystal of Feg molecules to an intense and
short microwave pulses, it turns out that the phonon bottleneck effect® starts playing a
dominant role in the magnetization dynamics, for it puts a constraint on the spin-phonon
relaxation [73,297,306].

2In general, the phonon bottleneck effect arises as a consequence of some hindrance in energy transfer
from the spin system to the phonon bath [300-302]. It is worth mentioning that in the case of molecular
magnets which don’t exhibit an energy barrier against the spin reversal, the effect is responsible for the
occurrence of characteristic butterfly-like hysteresis loops [303-305].
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The main objective of this thesis is to analyze transport properties of SMMs with dom-
inating uniazial anisotropy in terms of possible mechanism allowing the manipulation of
the molecule’s spin. Therefore in the following section I will focus primarily on the ab-
sorption of circularly polarized light in the context of its application to stimulate CIMS
in the Coulomb blockade regime, Fig. 7.1(b). Since there is no external magnetic field
applied, and very low temperatures are assumed, all thermal and quantum tunneling-
based reversal processes are disregarded. The main emphasis is put on analyzing the
effect of transitions between molecular magnetic states induced by tunneling of electrons
and interaction of the molecule with EM-radiation. Nonetheless, the temperature depen-
dent spin relaxation processes are taken into account on a phenomenological level, as
discussed in Section 4.2.

7.1 The effective Hamiltonian of interaction between a sin-
gle-molecule magnet and EM-radiation

In order to model the interaction between a SMM and EM-radiation, the Hamiltonian
of the form characteristic to the linear magnetoelectric effect is adopted 284,307, 308|

/Hg%fOI_EM = — Z aijEiHj- (71)

©LI=T,Y,%

Here, o;; is a second-rank tensor, in general unsymmetrical, called the magnetoelectric
(ME) susceptibility tensor. Making the substitution H; — M; = —gupS;, where S =
[Sz, Sy, S:] denotes the spin of a molecule, one therefore obtains

/Hg%fOI_EM = guB Z OéijEQ'Sj. (7.2)

LHLI=%,Y,2

Although the above expression fails to provide an actual physical mechanism governing
the interaction, and hence Eq. (7.2) should be considered merely as the representation
of a phenomenological model, it allows to capture symmetry features of the system. As
discussed in Section 2.2, in the case of a molecule deposited onto a surface or attached
to electrodes, symmetry-related issues may play a dominat role in describing transport
through the molecule.

To keep calculations maximally clear, it is assumed that EM-wave propagates along
the z-axis E = (E,, E,,0), so that the Hamiltonian can be put down explicitly as follows,

/HénﬁOI_EM = gHB{axxExSx + axyExSy + a, B, S,
g BySy + ayyBySy + 0y:EyS. }. (7.3)

Furthermore, introducing the ladder operators for the SMM’s spin operator S+ = S, £+
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1Sy, and then using the auxiliary operators

Sy = up(Sy + S_) + 0y (S— — S1) + 20,.5., 4
Sv/y = Qo (54 + 5-) + iy (S— — 54) + 20425, .
the Hamiltonian is cast in a more compact form
Hage M = 228 (B.5. + ByS, ). (7.5)

Within the quantum-mechanical model of the EM-field, the electric-field operator can
be expressed as [239,309, 310]

hw ~ -
E(r,t) = ZZ \/ 250€/eks [akse’(k'r_“kt) — aLse_Z(k'r_w’“t)], (7.6)
k,s

where k is a wavevector describing the propagation of a EM-wave, wj is an angular

frequency for the k-mode, and ey (s = 1, 2) are two orthogonal unit polarization vectors
(i.e. eks - ks = Osg), which satisfy the condition ey, -k = 0.

Since in the case under consideration, I am interested only in a one-mode field, all
redundant k-indices are omitted. Furthermore, making use of the fact that the EM-field
oscillations take place in the zy plane, I align polarization versors along x and y axes.
Finally, because the wave length A of radiation to be employed is much larger that the
size of the molecule characterized by ry,e1, the dipole approzimation [239] is applied,

A 1 k. .
%:m» Irmol] = e**Tx~1+ik-r+ho., (7.7)

so that the exponential term can be replaced by unity. As a result, one derives

; hw —iw iw
B(1) = iy o {[ests + ey ]! = [esal + ejaf]e}. (79

Because the primary objective of this chapter is to consider transfer of angular momen-
tum between photons and a molecule, the choice of a proper basis for the polarization of
photons is of major importance. Up to this point, the polarization of the beam has been
described by versors along = and y axes, i.e. photons in the beam are polarized either
along = or y axis. Since the key feature of the system under investigation is to be the
presence of circularly polarized light, thus such a basis will not be very convenient to
handle in further analysis. Consequently, one would prefer a basis which inherently ex-
pressed the polarization of the beam in terms of left-handed and right-handed circularly
polarized photons. For this purpose, I use a canonical transformation for photon-field
operators and polarization versors [311]:

(1)) (3) ()51 ) (2) o
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which yields

E(t) = iEO(w){ lejar + e aR]e_iwt - [e,aE + e+aH ew}, (7.10)

with Ey(w) = y/hw/(269V). It is worth noting that the transformation in Eq. (7.9)
doesn’t change the number of photons,

ala=ala, + a;;ay = aTLaL + aEaR. (7.11)

The x and y components of the electric-field operator in the new basis is given by

Ey(t) =E(t) - e; = iEO(W){ [ap + agle™™! — [a] + al}] ei”t},

. . (7.12)
Ey(t) =E(t) - e, = —Eo(w){ la, —arle™" + [a} - a};] e“"t},
so that the final expression for the interaction Hamiltonian takes the form
1 ~ ~
HgflfOI_EM(t) = §gUBEO (w){z [aL + aR] Sxeimn‘/ — Z[CLE + LLTR] SxeMt
—[az — ar] Sye it — [aTL — aTR] gyei”t}. (7.13)
Some additional auxiliary operators,
Awry = oz +or] % g Ay = oz~ ar]5y, (7.14)
As(z) = [af, +ag] S, Ayz) = [a], — ap]Sy,

allow me to retype the equation in an abbreviated form

1 j j
HEHEM (1) = 5g,uBEo(w){ [iAuq) — Ayyle ™" = [iAy ) + Ay(z)]eZWt}. (7.15)

7.2 Transition rates

Transition rates between neighboring magnetic molecular states due to the interaction
of a SMM with circularly polarized EM-radiation are found by employing Fermi golden
rule, similarly as in Chapters 3 and 4. The general expression for the first order transition
probability amplitude, for the transition of the state |l) to another orthogonal state |k)
[312], is given by

T/2
i = = Iim / |EmO-EM, (1 [yoien 07 g (7.16)
T/2

Using the Hamiltonian (7.15), it is derived

CHF%W{[A’”“ + AV 8 (s — w) = [AGD — i AP o(wn +w) b (7.17)

102



7. Optically stimulated current-induced magnetic switchi ng of a single-molecule magnet
7.2. Transition rates

Here, Ail(l) = (k|Az1)ll), and the remaining terms are defined in analogous way. More-
over, wy; = wy—w; and two Dirac’s deltas have appeared due to limy_, ffy expliaz|dxr =
27md(a). The transition rate Pj_,;, = |c;_1|? reads then as

rgupEo(w)\? z .
Py = <7g“3h0( )> (AR + iV 6w - w)

AT AV 1252 (1 4 w)}. (7.18)

Before I proceed to deriving the sought expression for the transition rates, first I have
to deal with the product of Dirac’s deltas present in the equation above. I can get rid of
one of the deltas in the following way [312]:

1 /T2 , T
§(a —b)d(a—b) = lim 8(a —b)— / @2 qg = §(a — b) lim —, (7.19)
T—00 s —T/2 y—00 27
where the rightmost formula was obtained by noting that the Dirac’s delta in front of
the integral differs from zero only if a = b, so that the trick is to substitute the integrand
with a = b. As a result,

photon’s absorption
"

2
Ry = Py _T guEp(w) { }Ax(l) +Z'Ay(1)}25(wkl — )
— T 2 h kl kl

| A = il Po(wn + w) b (7.20)

photon’s emission

The classical formula for the irradiance of a EM-wave reads as T = ceq| E|?/2. Accord-
ing to the correspondence principle [309,313] in the limit of large number n of photons
in a box of volume V', one can directly relate the quantum energy density to the one
following from the classical treatment,

nhw 1
= anyE]Q = |E|=2VnFE(w). (7.21)
It allows me to substitute the electric field Ey(w) for the intensity Z(w) of a laser beam,
which is a more preferable parameter to be used in laser spectroscopy experiments.
Consequently,
T(w) = 2nceoBa (w). (7.22)

Last but not least, I take into account the fact that in real systems due to various types
of interactions, mainly with the environment, the system can stay excited only for a
limited period of time, after which it returns to a state of lower energy. As a result,
energy levels acquire finite widths, and transitions between two states can also occur for
energies slightly detuned from the resonant value [302|. Equation (7.20) should be thus
multiplied by the line shape function Fy;(w) that describes broadening of the energy
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of two states |I) and |k) involved in the transition process,® and then integrated over

transition energies,

gus\2 7Z(w ) "
R = ( hB) ncey { |Akl1) ZAZEI)F]: + |A @ _ Z§2)|2]‘-}d(*w) } (7.23)

photon’s absorption photon’s emission

Now, I can apply the above equation to the case under consideration. In general, the
energy of the radiation can be tuned in order to stimulate specific transitions between
two neighboring molecular magnetic states within a certain spin multiplet. It should be
noted, however, that for SMMs, due to the presence of uniaxial anisotropy, absorption
(as well as emission) of a photon may lead either to increase or decrease of the molecule’s
zth component of spin ,S7 = m, depending on whether m is larger or smaller than zero.
Therefore for H, = 0, i.e. no external longitudinal magnetic field, the expressions for
transitions induced by EM-radiation are classified in the following way:

e for m <1 (m > 1) absorption of a photon results in increasing (decreasing) m

Spin,m)|Sism,ma1 g \2 7Z(w
s = (L) ZHO () S

(VL ~ V) it n| Fram(@),  (7.24)

e for m < 0 (m > 0) emission of a photon results in decreasing (increasing) m

Siin.m)|Sem,mF1 gus\2 7Z(w)
s = (T50) e | (VI + V) Szt n

71(\/777—\/77_3) 11m) Fmgim(—w). (7.25)

)

Here, the abbreviated notation has been used 5:55,‘1{7” = <St;n,m’|§x(y)|5t;n,m>. I have
also assumed that the molecule is exposed to large number of photons. Moreover, since
from Eq. (7.11) it follows that n = ny, + ng, the total intensity is Z(w) = Zr,(w) + Zr(w),
and Zpp) = nyrZ(w), where gy = nrg)/n describes the fraction of left-handed
(right-handed) circularly polarized photons in a beam. Finally, the line shape function

in the above equations is assumed to be the Lorentz function,

2t*
1+ (j:w wkl)2t*2

Fkl(iw) (7.26)
with t* denoting a characteristic relaxation time, for simplicity assumed here t* = 7.
The processes of EM-radiation-stimulated transitions between molecular magnetic
states, described by Egs. (7.24) and (7.25), can be then formally incorporated into the
master equation (4.11), introduced in Section 4.2. Such approach allows me to study
dynamics of the system only in the first approximation, i.e. only sequential tunneling

3From the physical point of view, F (w) can be interpreted as the probability density (per frequency
unit) of photon’s emission or absorption.
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processes are taken into account. Since in Chapter 5 it has been shown that second-order
(cotunneling) processes can play a fundamental role in the mechanism of the current-
induced magnetic switching of the molecule’s spin, especially in the Coulomb blockade
regime, I should justify why one can with impunity omit higher-order processes in the
following discussion. The key are different time scales of the spin’s dynamics set by
tunneling processes of various orders. Because the spin’s reversal due to cotunneling
processes occurs at time tg of the order of 10! — 10® us (or even slower, Section 4.3),*
which is much longer than in the case of the magnetic switching resulting from sequential
tunneling of electrons (ts ~ 10" — 103 ns, Section 4.2), I neglect the former processes as
insignificant for the case under consideration.

7.3 The effect of EM-radiation on the magnetic state of a
single-molecule magnet

Similarly as in previous three chapters, numerical results are presented for a hypothetical
single-molecule magnet of spin S = 2 with strong uniaxial magnetic anisotropy. To begin
with, it is worth recalling that the magnetic state of a molecule in the absence of bias
voltage depends on temperature, Fig. 7.2, which in the model under discussion is straight-
forwardly related to relaxation processes. Throughout this work I assume that the system
is always kept at temperature lower than the blocking temperature Ty, which excludes
the possibility of occurring thermally activated magnetic relaxation. On the other hand,
I take into consideration the fact that the molecule can suffer intrinsic relaxation pro-
cesses, which on a phenomenological level are included in the model through Eqgs. (4.9)
and (4.10). For temperatures lower than some characteristic temperature f, when the
relaxation processes are frozen, the molecule’s spin is trapped in one of two metastable
states corresponding to the maximal value of its zth component, the region denoted as
O in Fig. 7.2. It means that once the molecule is saturated in the state S, = +.5, it
should remain in this state for an infinitely long time. Increasing temperature above f,
one enters the region [, where intrinsic spin relaxation starts playing a prominent role,
eventually leading to complete dephasing of the molecule’s spin. Moreover, it can be seen
that the higher the temperature is, the faster the molecule demagnetizes.

The idea of using a pulse of circularly polarized light is to induce instantaneous
nonequilibrium in the probability distribution for the states either with the positive or
negative zth component of the molecule’s spin in order to initiate the magnetic switch-
ing. Therefore it matters whether the process takes place in the region [J or [, as for
low bias voltages, i.e. voltages lower than the threshold voltage for CIMS, the effective
strength of spin relaxation determines the final magnetic state of the molecule.

To study dynamics of the SMM'’s spin I solve Eq. (4.11) with additional terms corre-
sponding to transitions induced by EM-radiation, Eqs. (7.24) and (7.25). As previously,
it is assumed that at ¢ = 0 the molecule occupies only the state |2;0, —2). Consequently,

It should be noted that this time is comparable or even longer than typical relaxation times exper-
imentally observed in the real molecules, see Section 2.1.
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Figure 7.2: Dependance of the average value of the molecule’s spin (S7) in a steady state (solid
line) and the time g the system needs to reach such a state (dashed line) on temperature kgT'
of the system (expressed in units of energy) in the case of no external bias voltage applied
(V' =0). The molecule of spin S = 2 is characterized by the same parameters as in Section 5.2
(ie. J =0.2meV, D =0.05 meV, D; = —0.005 meV, Dy = 0.002 meV, U = 1 meV, e = 0.75
meV), so that the SMM’s spectrum is represented by Fig. 5.5(b). The other parameters of the
system are: 1] = 1 ns, P, = Pr = 0.5 and I' = 0.002 meV.

in the Coulomb regime only the spin multiplet |2;0,m) participates in the switching
mechanism. Furthermore, if the wavelength of the radiation is chosen to be resonant
with the transition energy between the states |2;0,—2) and |2;0,—1), the transitions
stimulated by light also appear only within this multiplet. Below the explicit form of

terms S z(y)

mt1m for transitions within the spin multiplet [2;0,m) is given

N;Enil,m = Ci(aﬂvx + iafﬂy)) (7 27)
~ _ C;TE .

m=xl, (O‘yw‘ + io‘yy%

where C£ = /S(S + 1) — m(m £ 1). One can note that this is exactly the point where
the symmetry of a SMM enters the model via elements of the magnetoelectric suscepti-
bility tensor. Since the amount of available information concerning distortion of a SMM’s
spatial structure during deposition on a surface is still rather modest, see Section 2.2,
I limit the following analysis to the simplest case of azy = ayy = 10710 s/m (typical
values [308]) and oy = ay, = 0. Finally, the time evolution of a pulse is described by
the Lorentz function

B twhM/2
16 = (twraMm/2)? + (t — tpos)?’ (7.28)

with twnwm denoting the width of a pulse at half maximum, whereas o5 is the position
of a pulse on a time-scale. It should be emphasized that here position of the pulse means
position of the maximum value of the pulse.
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Figure 7.3: Dependance of a stable state of the molecule’s spin (Sf) on a bias voltage V' for
various beam intensities Z in the antiparallel magnetic configuration. The parameters describing
the light pulse are n;, = 1 (i.e. left-handed circular polarization), twum = 75 ps and tpes = 100
ns (other parameters as for Fig. 7.2). The inset shows how the steady average value of the spin
(S7) is related to the intensity Z for the voltage V' = 0.5 mV and kgT = 5 peV in the case of
left-handed circularly polarized (LHC, solid line), right-handed circularly polarized (RHC, dashed
line), and linearly polarized light (dash-dotted line).

7.3.1 The region of a fully blocked spin

I start with considering how the EM-radiation pulse affects the stable state of the SMM’s
spin, Fig. 7.3. It can be seen that the pulse leaves a permanent mark on the molecule’s
magnetic state only for voltages not exceeding the threshold voltage for the current-
induced magnetic switching. For larger bias voltages, the final state of the molecule is
independent of whether it was illuminated or not. This can be easily explained by noticing
that transitions stimulated by flow of electrons via the LUMO level are characterized
by much larger rates than those stemming from interaction of the molecule with EM-
radiation. Furthermore, since the former transitions dominate in the system, the light
may exert a temporary effect on the spin, but ultimately it is tunneling of electrons
that determines the stable state of the SMM’s spin. It should also be noted that in
the example discussed, the light can affect the state of the molecule’s spin only if it
is left-handed circularly polarized, the inset in Fig. 7.3. For the right-handed circular
polarization the initial state |2;0,—2) of the SMM remains unaltered, whereas for the
linearly polarized light and large intensities the molecule becomes demagnetized.

In the range of voltages corresponding to the Coulomb blockade, where the effect of
the EM-radiation on the SMM'’s spin state is most pronounced, the final state of the
system results from the interplay of three independent relaxation processes. First of all,
there are processes originating from interaction of the molecule with spin-polarized cur-
rents, which are the main topic of this thesis. However, in the case under consideration,
when the SMM'’s spin is saturated in the state of minimal energy and bias voltage is
below the threshold value for initiating the CIMS, such processes alone cannot change
the molecule’s magnetic state. Second, one should also expect some intrinsic spin relax-
ation dependent on temperature to occur, as discussed above. Finally, the third type of

relaxation that can take place in the system are processes stimulated by the light pulse,
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Figure 7.4. Time evolution of the molecule’s zth component of the spin when a light pulse is
applied to the system at V' = 0.5 mV. The dotted line depicts the position of the pulse, t,os = 100
ns and twpy = 75 ps. Remaining parameters the same as for Fig. 7.2.
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Figure 7.5: Time-dependance of the probabilities for finding a SMM in the state |2;0,m) = |m).
The above plots fully correspond to the case of Z = 10'® W/m? shown in Fig. 7.4.
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Figure 7.6: Dynamics of the average value of the SMM’s spin (S7) for the molecule exposed
to a series of 10 EM-radiation pulses shown for different maximal pulse intensities Z. The time
separation of pulses is 100 ns, and the other parameters are as in Figs. 7.3 and 7.4. The dashed
line represents the initial state of the molecule’s spin.

which are the subject of the present chapter. It transpires then that the last mecha-
nism plays a role of a trigger for a more complex mechanism. Absorbing the pulse, the
molecule becomes temporarily excited, so that for a brief moment the energy barrier for
the CIMS stemming from too low bias voltage can be circumvented. Therefore it can
be seen that the EM-radiation pulse serves here to activate the relaxation processes due
to interaction with tunneling electrons, and consequently the intensity beam determines
the final magnetic state of a SMM in the Coulomb blockade.

For reasons mentioned above, I focus on analyzing the process of interest only in the
Coulomb blockade regime. In Fig. 7.4, the dynamical response of the molecule’s spin
to a EM-radiation pulse is presented. At t,,s = 100 ns, where the pulse reaches its
maximal intensity, a significant change in the magnetic state of the molecule is observed,
and then during next one to a few hundred nanoseconds the SMM’s spin relaxes to the
stable state. This behavior of the molecule’s spin in the presence of EM-radiation can be
qualitatively understood on the basis of the time-evolution of the probability distribution
between states of the spin multiplet |2;0,m), for convenience referred to as |m), Fig. 7.5.
At the beginning (¢ = 0), the molecule is saturated in the state | — 2), which formally
corresponds to P|_oy = 1 in Fig. 7.5(a). Since the radiation is tuned to the transition
energy between the states | — 2) and | — 1), when the pulse approaches its maximum
intensity at f,os, the building up of the finite probability for finding the molecule in
the state | — 1) becomes visible, Fig. 7.5(b). Once the maximum value of the intensity
T is reached, the part of the probability is transferred via intermediate states to the
final state |2). This is possible due to the presence of the line shape function F(w) in
Egs. (7.24) and (7.25), as in a limited range it also admits non-resonant light-induced
transition between molecular magnetic states.

The main drawback of the mechanism is the value of the beam intensity Z needed
to observe the change in the molecule’s spin. Furthermore, the values of Z ~ 107 —

10'® W/m?2, which give the most pronounced effect, are definitively beyond the reach of
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Figure 7.7: (a) Time evolution of the average value of the molecule’s spin (S!) for different
maximal laser pulse intensities Z in the case of kgT = 40 peV, when intrinsic spin-relaxation
processes leads to complete demagnetization of the molecule in a steady state. Remaining pa-
rameters except tpos = 500 ns (marked by the dotted line) are the same as in Figs. 7.3 and 7.4.
(b)-(f) Probabilities B,y as a function of time ¢ for the situation corresponding to Z = 10'°
W /m? in (a). The dashed lines represent the relevant probabilities in the case when the molecule
is not exposed to EM-radiation.
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experiment, and most probably they would lead to destruction of a sample. However, for
smaller 7 it still should be possible to obtain a significant increase of the molecule’s spin
by application of a series of light pulses, Fig. 7.6.

7.3.2 The region of significant intrinsic spin relaxation

The situation changes drastically, when one moves to region [, in which intrinsic relax-
ation processes start playing an important role. It can be seen that in the absence of
the EM-radiation pulse (Z = 0) the relaxation processes drive the molecule towards the
nonmagnetic state by trying to equalize the probabilities of finding the SMM'’s spin in
one of two states |+ 2) of the lowest energy. However, because a finite bias voltage is ap-
plied, no equal distribution of probabilities between these two states is actually reached,
see dashed lines in Fig. 7.7(b)-(f). The final average value of the SMM’s spin is slightly
larger than zero. [llumination of the molecule with an ultrashort laser pulse induces then
only a temporary disequilibrium in the probability distribution seen as an increase of the
average value (S7), and as soon as the pulse ceases the relaxation processes again tend
to restore the even occupation of states | 4= 2).
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‘ N Tith the recent development of experimental techniques allowing one to measure

transport properties of nanoscopic systems, such as individual molecules, nan-
otubes or nanowires, a growing interest in describing and understanding transport phe-
nomena through such systems has been observed. Taking into account possible applica-
tions in novel spintronic devices, especially promising seem to be single-molecule mag-
nets (SMMs). Not only for this reason, but also for understanding the most fundamental
physics underlying transport processes in SMMs, theoretical studies of these systems at-
tract more and more attention. Under this respect, the present dissertation, whose main
objective is to investigate transport of charge and spin through a SMM, aims at making
a contribution towards advancing the current comprehension of mechanisms governing
transport processes through SMMs.

After reviewing some basic properties of SMMs at the beginning of Chapter 2, I focused
on introducing formally the model to be discussed throughout the thesis. Since the
interface-related issues, following from the actual manner through which a SMM and
electrodes are connected, can affect transport through such a system in various ways, I
considered here only the minimal model, which allowed for capturing the basic features
of the type of molecule under discussion. The model system consisted of a SMM inserted
between two metallic, ferromagnetic electrodes of collinear magnetizations. Furthermore,
the assumption was made that electronic transport through the molecule occurs only via
the lowest unoccupied molecular orbital (LUMO) of the SMM, which is in turn exchange
coupled with the molecule’s core spin. Finally, except Chapter 3, I limited the analysis
to the case of molecules which, with a sufficient approximation, can be assumed to
be characterized only by the uniaxial anisotropy. Thanks to this assumption I could
analytically digonalize the molecular Hamiltonian in the basis of states labeled by the
zth component of the molecules total spin, which was crucial from the point of view of
theoretical methods to be used in the further part of the thesis.

Next, in Chapter 3 I studied how the presence of reservoirs of spin-polarized electrons
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can influence the quantum tunneling of magnetization (QTM) in SMMs, which is one
of the most recognizable features of many SMMs. Using the Landau-Zener model for
describing the QTM mechanism, and the perturbation approach (Fermi golden rule) for
including the effect of spin-polarized tunneling electrons on the molecule’s spin, I showed
that relaxation processes stemming from scattering of electrons on the molecule’s spin
can facilitate the spin reversal due to the QTM.

In the subsequent chapter I investigated the phenomenon of current-induced magnetic
switching (CIMS) in the case of an individual SMM. The essential mechanism of CIMS
relies on angular momentum transfer between tunneling current and a molecule, which is
possible due to the presence of the interaction between the spin of an electron occupying
the LUMO level and the SMM’s core spin. The problem was analyzed in terms of the dy-
namical response of the molecule’s magnetic state to a constant bias voltage. I discussed
two distinctive ranges of voltages: the first one, corresponding to the Coulomb blockade,
where only higher order tunneling processes can occur, and the second one, so-called the
sequential tunneling regime, in which electrons possess sufficient energy to tunnel freely
between the molecule and electrodes. The obtained results suggest that, under certain
conditions, the spin reversal induced by a spin-polarized current can take place over a
timescale as short as of a few tens of nanoseconds. In addition, the magnetic switching
of a SMM is accompanied by an additional signal in the current flowing through the
system.

A more general description of various spin effects that can arise in the molecule owing
to flow of spin-polarized electrons was provided in Chapter 5. Employing the real-time
diagrammatic technique, which enabled me to systematically analyze electronic transport
through the system in different orders with respect to tunneling processes between elec-
trodes and the molecule, I considered how inclusion of electron cotunneling, i.e. higher-
order tunneling processes, modifies transport characteristics of the system in the linear
and nonlinear voltage regime. It transpires that cotunneling processes play a vital role
especially in the blockade regime. Moreover, one observes there a complex interplay be-
tween inelastic cotunneling, which affects the molecule’s spin state, and elastic tunneling
of electrons. With the purpose to complete the discussion, I also studied the transport in
the situation when electrodes exhibit a significant asymmetry in their spin-polarization
parameters, drawing a conclusion that a SMM acts then as a spin diode.

The analysis on transport properties of SMMs conducted in Chapters 3-5 concerned
only the case of a SMM weakly coupled to electrodes. In order order to complement the
results of preceding chapters, the opposite limit of strong coupling regime was addressed
in Chapter 6. By means of the Wilson’s numerical renormalization group, I investigated
the influence of the LUMO level-SMM'’s core spin coupling strength on the formation of
the Kondo effect. It turns out that not only does the increase of the coupling parameter
J lead to suppression of the Kondo resonance, but also one can notice the occurrence
of some extra resonances. Additionally, I computed tunnel magnetoresistance (TMR) as
a function of the LUMO level position in the linear response regime, so that I could
perform qualitative comparison between the result for the weak and strong coupling
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regime. It seems there is some general correspondence between the main features of
TMR curves in these two cases. However, one should note that in the strong coupling
limit, negative TMR is seen, which means that the transfer of electrons is easier for the
antiparallel magnetic configuration of leads.

The final chapter was devoted to studying the possibility of applying electromagnetic
radiation for stimulation of the CIMS in SMMs. Since the mechanism of CIMS has its
origin in angular momentum transfer between the molecule and its environment, there-
fore it occurs that also a pulse of circularly polarized electromagnetic radiation can in
principle serve as the source of angular momentum. Following this idea, I showed that
in the Coulomb blockade, when a bias voltage is below the threshold value for initiation
of CIMS, a short pulse of electromagnetic radiation can be engaged to trigger a series of
processes leading to the reversal of the SMM’s spin. The precise switching mechanism
results in this case from the interplay of relaxation processes stemming from the inter-
action of a molecule with spin-polarized currents, intrinsic spin relaxation processes and
processes induced by absorption of a light pulse. Furthermore, the brief excitation of a
SMM due to the radiation absorption allows for temporary circumvention of the energy
barrier for the CIMS, which is a consequence of too low bias voltage. The main drawback
of the mechanism under discussion is related to extremely large beam intensities at which
one could observe the effect. Nevertheless, one possible solution enabling elimination of
this problem would be to use a succession of pulses characterized by lower intensities,
instead of one high-power pulse.

Although the results presented in this thesis seem to be encouraging for further stud-
ies of SMMs in terms of utilizing them as elements of spintronic devices, it should be
clearly stated that, from the experimental point of view, the ideas under consideration
are still pretty far from realization. One of the major obstacles are low temperatures at
which such devices would operate. Thus enormous efforts are concentrated on synthesiz-
ing new SMMs of even higher blocking temperatures, which at the same time would be
characterized by a decent energy barrier for the spin reversal. In regard to theoretical
aspects of SMM’s transport properties, it seems that at the moment it is important to
gain understanding how the deposition of a molecule onto a surface changes properties
of the molecule that can be crucial for the electronic transport. Furthermore, as it tran-
spires that spin polarized transport will most probably be observed first in the system
comprising a SMM on a metallic but nonmagnetic substrate and the scanning tunnel-
ing microscope with a magnetic tip, it could also be interesting to analyze how ballistic
transport of electrons through a molecule affects its structure and magnetic state.
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‘ ‘ T tradycyjnych uktadach elektronicznych przetwarzanie informacji odbywa si¢ z
wykorzystaniem tadunku elektronu. Jednakze oprocz tadunku, elektrony posia-

daja réowniez drugi stopienn swobody, ktorym jest spin. Wraz z odkryciem w uktadach
sktadajacych sie z wielu warstw magnetycznych zjawiska gigantycznego magnetooporu
(nazywanego potocznie efektem GMR — od angielskiego ‘gigant magnetoresistance’) [4,5],
stalo sie jasne, ze takze spin elektronu moze zostaé¢ uzyty jako kluczowy sktadnik mecha-
nizmu dziatania nowej klasy urzadzen. Obecnie uktady, w ktérych spinowy stopien swo-
body elektronéw odgrywa pierwszorzedna role nazywamy uktadami elektroniki spinowe;.”
Duze praktyczne znaczenie takich ukladéw wynika z faktu, ze w poréwnaniu z klasy-
cznymi uktadami elektronicznymi, powinny si¢ one charakteryzowaé nieulotnoscia, wyz-
sza predkoscia dzialania oraz znacznie mniejszymi rozmiarami [10-12]. Szerokie wprowa-
dzenie uktadow spintronicznych na rynek komercyjny oznaczaloby prawdziwy przetomem
technologiczny, czym nalezy ttumaczyé obecne ozywienie w badaniach na tymi uktadami.
Ostatecznym celem przyswiecajacym dziataniom zmierzajacym do coraz wiekszej mi-
niaturyzacji uktadéw elektronicznych jest osiagniecie poziomu molekularnego, gdzie mo-
lekuta bytaby wykorzystywana jako w petni funkcjonujacy skladnik wiekszego uktadu.
Molekuty budza duze zainteresowanie gtéwnie dzieki swoim wtasnoscia optycznym, mag-
netycznym oraz mechanicznym, gdyz moga one zostaé¢ uzyte do skonstruowania uktadow
hybrydowych, ktére cechowalyby wtasnosci praktycznie nieosiggalne w przypadku do-
stepnych obecnie klasycznych uktadéow elektronicznych bazujacych na krzemie [9,24-28|.
Jednym z przyktadow takich unikalnych wtasnosci jest wzajemne oddzialywanie pomie-
dzy skwantowanymi elektronowymi i mechanicznymi stopniami swobody [18|. Warto
rowniez zauwazy¢, ze poniewaz molekuly sa otrzymywane na drodze syntezy chemicznej,

*W literaturze wspomniane uklady wystepuja rowniez pod nazwa uktadéw spintronicznych lub mag-
netotronicznych.
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stad w procesie ich przygotowania, molekuty mozna wyposazyé w okreslone wlasnosci.

Sposrod wielu roznych klas molekut, przez ktore mozna badaé transport elektronu
i spinu, szczegodlnie interesujace wydaja sie by¢ molekuty posiadajace wewnetrzny mo-
ment magnetyczny [29]. Wykazuja one bowiem potencjal do wykorzystania w obszarze
technologii zwiazanych z przechowywaniem i przetwarzaniem informacji [9, 31|. Aby
molekuta mogta w ogoble by¢ brana pod uwage jako baza dla molekularnej komorki
pamieci, musi ona spelia¢ dwa podstawowe warunki. Po pierwsze, molekuta taka po-
winna by¢ magnetycznie bistabilna, oraz po drugie, jej stan nie powinien podlegaé¢ deko-
herencji dla odpowiednio dlugiego czasu [32|. Okazuje sie, ze ukladami wypelniajacymi
powyzsze wymagane kryteria sa pojedyncze magnetyczne molekuly (w skrocie SMM — od
angielskiego ‘single-molecule magnet’).

Celem niniejszej pracy jest zbadanie transportu tadunku i spinu przez pojedyncze ma-
gnetyczne molekuty oraz jego wpltywu na magnetyczny stan tychze molekul. W szczegol-
nosci analizie poddany jest mechanizm oddzialtywania pomiedzy pradem tunelowym a
momentem magnetycznym molekuly, ktory odpowiedzialny jest za wystapienie tzw. in-
dukowanego prgdem magnetycznego przetgczania molekuly. Nastepnie skupiam sie na
rozwazeniu ewolucji czasowej magnetycznego stanu molekuly wynikajacej z przylozenia
do uktadu stalego napiecia transportowego. W kolejnym rozdziale badam efekty spinowe
towarzyszace stacjonarnemu przeplywowi spinowo-spolaryzowanego pradu. Dalsza cze$é
pracy poswiecona jest analizie wplywu wielkosSci oddzialywania pomiedzy molekula a
elektrodami na charakter transportu przez molekule oraz jej stan. W ostatnim rozdziale
rozwazam mozliwos¢ zastosowania kotowo spolaryzowanego swiatta do stymulowania in-
dukowanego pradem magnetycznego przelaczania molekuty.

Po wprowadzeniu do tematyki zwigzanej z rozwazanymi przeze mnie zagadnieniami
oraz przedstawieniu uzasadnienia podjecia badan (rozdzial 1), przechodze w rozdziale 2
do oméwienia podstawowych wlasnosci pojedynczych magnetycznych molekul. W ra-
mach poruszanych w pracy probleméw, przez pojedyncza magnetyczna molekute rozu-
miem uklad wykazujacy trwaly moment magnetyczny, a w konsekwencji rowniez histereze
magnetyczna, ktory ma czysto molekularne pochodzenie, tzn. wynika z silnych oddziaty-
warl pomiedzy jonami magnetycznymi tworzacymi molekule [37,38,57,58|. Cecha chara-
kterystyczna rozwazanej klasy molekut jest powolna relaksacja magnetyczna pojawiajaca
sie w niskich temperaturach. Bariera energetyczna AFE, ktora molekuta musi pokonaé
w celu odwrocenia swojego momentu magnetycznego, jest wynikiem potaczenia duzego
spinu S stanu podstawowego oraz znacznej anizotropii jednoosiowej (typu Isinga), opi-
sanej przez parametr D.

Badania doswiadczalne pokazaly, ze w niskich temperaturach pojedyncze magnetyczne
molekuly swoim zachowaniem przypominaja molekuly superparamagnetyczne [34, 59].
Powyzej pewnej temperatury granicznej Ty, zwanej temperaturg blokowania, wskutek
wzbudzania termicznego spin molekuty moze swobodnie sie obracaé¢. Kiedy jednak tem-
peratura ulega obnizeniu ponizej Tg, energia termiczna staje sie niewystarczajaca dla
pokonania bariery energetycznej AFE i spin molekuty zostaje uwieziony w jednej z dwoch
dozwolonych orientacji. Zachowanie to stanowi podstawe dla zastosowan omawianych
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molekul jako komoérek pamieci. Poniewaz w tym kontekscie istotna jest réwniez relak-
sacja spinowa oraz utrata koherencji w wyniku oddzialywania molekuly z otoczeniem,
oba te aspekty sa takze przedyskutowane.

W kolejnej czesci rozdziatu 2 rozwazam model sprzezenia molekuty z elektrodami.
Dotychezas zaproponowano kilka réznych geometrii (rys. 2.2), w jakich molekulte mozna
przytaczyé do metalicznych, a w szczegolnosci magnetycznych, elektrod [28]. Nalezy przy
tym zauwazyé, ze dostepne w literaturze wyniki pomiaréw transportu przez pojedyncze
magnetyczne molekuly zostaly uzyskane w geometrii ztamanego ztacza [44,46, 47| oraz
z wykorzystaniem skaningowego mikroskopu tunelowego [48, 49|, wylacznie dla przy-
padku elektrod niemagnetycznych. Okazuje sie ponadto, ze przymocowanie molekuty do
elektrod nastrecza wiele trudnosci technicznych. W pracy rozwazam koncepcyjnie naj-
prostszy model (rys. 2.3), sktadajacy sie z molekuly umieszczonej pomiedzy dwiema ma-
gnetycznymi elektrodami, ktérych momenty magnetyczne moga by¢ ustawione rownole-
gle lub antyrownolegle. Elektrody scharakteryzowane sa przez nieoddziatujace elektrony
wedrowne, row.(2.2), natomiast procesy tunelowania elektronéw pomiedzy elektrodami a
molekuta opisuje hamiltonian (2.3). Napiecie transportowe jest przyktadane do elektrod
symetrycznie.

Do opisu proceséw transportu elektronéw przez molekute wykorzystuje model, w ra-
mach ktérego zaktadam, iz redukcji molekuly odpowiada obsadzenie najnizszego nieob-
sadzonego poziomu molekularnego (w skrocie nazywanego LUMO — od angielskiego ‘low-
est unoccupied molecular orbital’) przez maksymalnie dwa elektrony, row. (2.5). Spin
poziomu LUMO ulega nastepnie efektywnemu sprzezeniu wymiennemu z wewnetrznym
spinem molekuly, row. (2.6), ktore opisane jest przez stala J. Warto podkreslic dwa
fakty dotyczace hamiltonianu (2.5). Po pierwsze, hamiltonian ten mozna wykorzystac
tylko do opisu molekuty wykazujacej wytacznie anizotropie jednoosiowa. Po drugie, zaw-
iera on dwa cztony proporcjonalne do D; oraz Ds, ktére uwzgledniaja eksperymentalnie
pokazany efekt [98-100], polegajacy na tym, ze zmiana obsadzenia poziomu LUMO moze
wplywaé na wielkos¢ anizotropii molekuty.

Nalezy jednak zauwazy¢, ze w ogblnym przypadku, molekula moze réwniez wykazy-
wac anizotropie poprzeczna, row. (2.8). Za wyjatkiem rozdzialu 3, w ktorym obecnosé
cztonu (2.8) jest kluczowa dla wystapienia omawianych tam efektow, w pozostalej czesci
pracy skupiam sie¢ jedynie na molekutach, dla ktérych anizotropia poprzeczna jest zanied-
bywalnie mala i molekuty takie mozna z dobrym przyblizeniem uznawaé¢ za uklady
o anizotropii jednoosiowej. W takim przypadku okazuje sie, ze hamiltonian molekuty
moze zostaé¢ zdiagonalizowany analitycznie [103,104], a poszczegolne stany molekularne
opisane sa przez nastepujace trzy liczby kwantowe: catkowity spin molekulty S; (przez
ktory rozumiem sume spinu poziomu LUMO oraz wewnetrznego spinu molekuty), skta-
dowa z caltkowitego spinu molekuly S7 odpowiadajaca liczbie elektronéw n obsadza-
jacych poziom LUMO, gdzie n = 0,1,2. Pozostala cze$é rozdziatu 2 poswiecona jest
przedstawieniu wzoréw analitycznych opisujacych stany, row. (2.9)-(2.16), oraz energie,
row. (2.19)-(2.22), dla przypadku molekuly wykazujacej anizotropie jednoosiowa.

W rozdziale 3 rozwazam najbardziej charakterystyczny efekt wystepujacy w przy-
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padku pojedynczych magnetycznych molekut, umieszczonych w zewnetrznym, zaleznym
od czasu polu magnetycznym, jakim jest kwantowe tunelowanie wektora namagnesowa-
nia (w skrocie QTM — od angielskiego ‘quantum tunneling of magnetization’). Zjawisko
QTM jest przykladem efektu makroskopowego tunelowania i objawia si¢ tym, ze dla
okreslonych wartosci zewnetrznego pola magnetycznego wartosé¢ sktadowej z spinu mole-
kuty moze ulega¢ skokowym zmianom. Takie zachowanie spinu molekuly jest typowe dla
obiektu kwantowego i r6zni sic od tradycyjnego opisu zjawiska tunelowania czastki przez
bariere potencjatu jedynie tym, ze w przypadku QTM, akt tunelowania odbywa siec w
przestrzeni momentu pedu. Wystepowanie efektu QTM prowadzi do powstania petli his-
terezy o charakterystycznym ksztalcie, rys. 3.1, sktadajacym sie serii nastepujacych po
sobie ptaskich obszaréw oraz stromych schodkéw. Celem tego rozdziatu jest zbadanie jak
sprzezenie pojedynczej magnetycznej molekuty z rezerwuarami spinowo-spolaryzowanych
elektronow wplywa na zjawisko QTM.

W czedci 3.1 przechodze do omdwienia teoretycznego modelu stuzacego do opisu efektu
QTM. Przede wszystkim na poczatku rozwazam fizyczne zrédto mechanizmu QTM.
Okazuje sie, ze badane zjawisko tunelowania jest wynikiem obecnosci w uktadzie ani-
zotropii poprzecznej lub stabego, poprzecznego, przytozonego z zewnatrz pola magne-
tycznego, ktore prowadza do mieszania stanéw opisanych przez rézne liczby spinowe
S75 oraz zniesienia degeneracji energii pomiedzy odpowiednimi stanami znajdujacymi
sie po przeciwnych stronach bariery energetycznej. W rezultacie, dla poél rezonansowych
zamiast krzyzowania si¢ pozioméw energetycznych obserwuje sie pojawienie przerw e-
nergetycznych A, rys. 2.5 oraz 3.2.

Nastepnie rozwazam, powszechnie stosowany do modelowania zjawiska QTM, mecha-
nizm tunelowania Landaua-Zenera [70,101,136-144]. W ramach tego modelu zaktada sie,
ze w zakresie warto$ci pola magnetycznego bliskich danej wartosci pola rezonansowego,
zachowanie ukladu mozna opisa¢ przez efektywny hamiltonian dla uktadu dwupozio-
mowego, row. (3.1). Rozwiazujac zalezne od czasu rownanie Schrodingera dla funkeji w
przyblizeniu adiabatycznym, réow. (3.2), mozna pokazac [83,146|, ze prawdopodobienstwo
przetunelowania spinu molekuty miedzy odpowiednimi stanami znajdujacymi sie po prze-
ciwnych stronach bariery energetycznej, jak pokazano schematycznie na rys. 3.3(a)-(c),
opisane jest wowczas rownaniem (3.4).

W celu zilustrowania wynikéw analitycznych, rozwazam zjawisko QTM dla przypadku
molekuly Feg, rys. 3.4. Najistotniejsza cecha przedstawionej sredniej wartosci sktadowe;
z spinu molekuly w funkcji amplitudy podtuznego pola magnetycznego, jest jej silna za-
leznos¢ od szybkosci narastania wartosci pola. Do tego momentu rozwazatem sytuacje, w
ktorej proces tunelowania byt jedynym mechanizmem odpowiedzialnym za zmiane stanu
magnetycznego molekuty. Jednakze w rzeczywistych uktadach moze wystepowaé réwniez
relaksacja spinu molekuly zwiazana ze sprzezeniem molekuly z otoczeniem, rys. 3.3(d).
Szczegbdlnym przypadkiem takiego oddzialywania sg procesy rozpraszania elektronow,
tunelujacych pomiedzy dwiema elektrodami, na spinie pojedynczej magnetycznej mole-

SW dalszej czesci odwolujac sie do stanéw molekuty opisanych przez liczbe spinowa S7, stany te
bede nazywal stanami magnetycznymi molekuty.
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kuly. Wspomniane procesy matematycznie uwzgledniam w rozwazaniach przy pomocy
hamiltonianu Appelbauma (83,146, 153,154, row. (3.6), ktory opisuje efektywne oddzia-
tywanie wymienne pomiedzy elektronami przewodnictwa z elektrod a spinem molekuty.
Zakladam ponadto, ze miedzy elektrodami nie jest przylozone napiecie transportowe, a
potozenie poziomu LUMO dobrane jest w taki sposéb, iz pozostaje on nieobsadzony.

Wykorzystujac zlota regute Fermiego (tj. rachunek zaburzen drugiego stopnia wzgle-
dem stalej K opisujacej sprzezenie wymienne spinu molekuly z elektronami przewod-
nictwa) wyznaczam czestosci przejs¢ miedzy sasiednimi stanami magnetycznymi mole-
kuty, row. (3.11), ktore sa wynikiem rozpraszania elektronéw przewodnictwa z elektrod
na spinie molekuly. Wszystkie inne procesy prowadzace do relaksacji spinu molekuly
uwzgledniam w postaci pojedynczego fenomenologicznego parametru, czasu relaksacji
Trel, @ 0dpowiadajaca im czestosé przejsé opisana jest row. (3.12). Dysponujac wyrazenia-
mi na czestosci przejsé pomiedzy stanami magnetycznymi molekuty, moge zapisa¢ uktad
réwnarn bilansu prawdopodobienstw (tzw. réwnanie master) dla poszczegélnych zakresow
pola magnetycznego pomiedzy kolejnymi wartosciami rezonansowymi pola, row. (3.14).
Zmnalezione wczesniej, w oparciu o model Landau-Zenera, prawdopodobienstwa tunelowa-
nia spinu molekulty pomiedzy odpowiednimi stanami pelnig tutaj role warunkéw pocza-
tkowych dla kazdego z rozwazanych przedzialéw wartosci pola magnetycznego. Tym
samym, aby wyznaczy¢ zaleznosé sredniej wartosci sktadowej z spinu molekuty od pola
magnetycznego, row. (3.17), musze obliczy¢ z réwnania bilansu prawdopodobienistwa
znalezienia molekuty w kazdym z jej stanéw magnetycznych.

Wyniki numeryczne ponownie przedstawiam dla molekuty Feg. Rysunek 3.6 pokazuje,
iz obecnos¢ procesoéw relaksacyjnych (przerywana linia) jest niezbedna dla catkowitego
przetaczenia spinu molekuty miedzy dwiema orientacjami przy pomocy efektu QTM.
Dynamika proceséw relaksacyjnych wynikajacych z rozpraszania spinéw elektronéw na
spinie molekuty zalezy od wlasnosci magnetycznych elektrod, a doktadnie od stopnia ich
spinowej polaryzacji, opisanego przez parametry P oraz Ppr, oraz konfiguracji magne-
tycznej momentéw spinowych elektrod. W celu jakosciowej analizy omawianych zjawisk,
postuguje sie pojeciem tzw. czasu stabilizacji ts, magnetycznego stanu molekul, przez
ktory rozumiem czas po jakim Srednia wartos$é sktadowej z spinu molekuty osiaga 99.999%
wartosci odpowiadajacej stanowi stabilnemu molekuty (tj. dla ¢ — o).

Na rys. 3.7 oraz 3.8 rozwazam zachowanie spinu molekuty po akcie tunelowania
rownowaznemu trzeciemu schodkowi na rys. 3.6(b), w przypadku réwnoleglej konfigu-
racji magnetycznej elektrod. Procesy relaksacji zwiazane sa z odwrdceniem kierunku
spinéw elektronéw przewodnictwa wskutek ich rozpraszania na spinie molekuty. Dla
rownoleglego ustawienia momentéw spinowych elektrod, zwiekszenie stopnia polaryzacji
elektrod prowadzi do ostabienia efektu relaksacji, rys. 3.8(a), poniewaz jest on zwiazany
z transferem elektronéw pomiedzy kanatami mniejszosciowymi a wiekszoSciowymi ele-
ktrod. Inaczej sytuacja prezentuje sie w przypadku antyrownolegtego ustawienia mo-
mentéw spinowych elektrod, rys. 3.8(c), kiedy spowolnienie proceséow relaksacyjnych
nastepuje, gdy parametry polaryzacji spinowej elektrod znaczaco réznia sie od siebie.
Natomiast dla Py, = Pg, relaksacja przebiega najszybciej. Ponadto uwzglednienie do-
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datkowych proceséw relaksacyjnych moze prowadzié¢ do dalszego skrdcenia czasu stabi-
lizacji, o ile 1/7y¢ jest wieksze niz czestosci przej$é wywolane rozpraszaniem elektronow
przewodnictwa na spinie molekuty, rys. 3.9.

W rozdziale 4 skupiam sie¢ na przeanalizowaniu dynamicznych aspektow zwigzanych
z transportem elektronéw przez pojedyncze magnetyczne molekuty. Szczegdlng uwage
poswiecam rozwazeniu mechanizmu prowadzacego do wystapienia w molekule indukowa-
nego prgdem magnetycznego przetgczania (w skrocie CIMS — od angielskiego ‘current-
induced magnetic switching’). W odniesieniu do wczesniejszego rozdziatu, w ktorym
przedyskutowatem zjawisko QTM, obecnie zaktadam, ze molekula jest charakteryzowana
wylacznie przez anizotropie jednoosiowa oraz miedzy elektrodami jest przylozone skon-
czone napiecie transportowe.

Zanim przechodze do sformutowania problemu zjawiska CIMS w przypadku poje-
dynczych magnetycznych molekut, na poczatku omawiam ogdlna idee wspomnianego
zjawiska. Termin CIMS uzywany jest w szerszym kontekscie do opisu zjawisk zwiazanych
z przepltywem spinowo-spolaryzowanego pradu przez magnetyczne uktady o rozmiarach
nanoskopowych. Okazuje sie bowiem, ze w takim przypadku moment magnetyczny u-
ktadu poddany jest dzialaniu momentu obrotowego, bedacego wynikiem przeplywu mo-
mentu pedu pomiedzy pradem a ukladem. Zjawisko CIMS zostato teoretycznie przewi-
dziane niezaleznie przez Slonczewskiego oraz Bergera [157-161], a nastepnie idea ma-
nipulowania momentem magnetycznym przy pomocy pradu zostata eksperymentalnie
potwierdzona w wielu réznych uktadach, takich jak: ztacza typu punktowego [162,163],
nanodruty [164], nanokolumny [165-167| oraz indywidualne wyspy superparamagnety-
czne [168]. W dalszej czesci wstepu do rozdzialu 4 omawiam mechanizm CIMS dla
spinowo-spolaryzowanego pradu plynacego przez pojedyncza magnetyczng warstwe,
rys. 4.1.

Z punktu widzenia mozliwych zastosowan mechanizmu CIMS, istotna kwestig jest
dynamika procesu odwrdcenia momentu magnetycznego. Standardows metoda bada-
nia ewolucji czasowej zachowania momentu magnetycznego w obecnosci rzeczywistych
oraz efektywnych pél magnetycznych jest makroskopowe réwnanie Landaua-Lifszyca-
Gilberta (LLG) [127,128]. Slonczewski pokazal [157], ze bez koniecznosci rozwazania
mikroskopowego mechanizmu, zjawisko wymiany momentu pedu miedzy uktadem a pra-
dem moze zosta¢ uwzglednione w rownaniu LLG jako dodatkowy czton [178,179|, patrz
ostatni czton w row. (4.1).” Oczywistym jest, ze uktad zawierajacy warstwe magnetyczna,
rozni sie zasadniczo od uktadu z pojedyncza magnetyczna molekuta, w przypadku ktorej
mam do czynienia z dyskretnym widmem stanéw magnetycznych. Nie moge w zwiazku
z tym zastosowaé¢ do opisu dynamiki spinu molekuty poétklasycznego modelu makrospinu
wykorzystujacego rownanie LLG, co oznacza, ze istnieje konieczno$é zaproponowania
innego modelu, ktory uwzgledniatby specyficzne wlasnosci rozwazanych molekut.

W zaleznosci on wartosci napiecia V' przytozonego do elektrod mozna rozrézni¢ dwa

"W powyzszym rownaniu uwzgledniona jest jedynie, pierwotnie zaproponowana, sktadowa
poprzeczna (tzn. lezaca w plaszczyznie warstwy) momentu obrotowego wynikajacego z przepltywu mo-
mentu pedu. Oprocz niej moze rowniez wystepowaé sktadowa dzialajaca w plaszczyznie prostopadlej do
plaszczyzny warstwy [161].
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podstawowe obszary transportu elektronéw przez molekule. Zakres napie¢, dla ktoérych
elektrony posiadaja energiec wystarczajaca dla obsadzenia poziomu LUMO nazywany
jest zakresem tunelowania sekwencyjnego. Jezeli natomiast napiecie jest zbyt matle i e-
lektrony maja zbyt mala energie, aby pokonaé¢ bariere tunelowa, a tym samym trans-
port sekwencyjny jest niemozliwy, to mowi sie o zakresie blokady kulombowskiej. Warto
jednak zauwazy¢, ze nadal mozna obserwowaé przeplyw pradu przez uktad, ktéry jest
wynikiem wystepowania proceséw tunelowania wyzszego rzedu, stad tez alternatywna
nazwa tzw. zakres wspottunelowania. W obu wspomnianych przypadkach, rozwazany
przeze mnie efekt CIMS w odniesieniu do pojedynczych magnetycznych molekut pojawia
sie jako wynik oddzialywania wymiennego pomiedzy spinem elektronu znajdujacego sie
na poziomie LUMO a wewnetrznym spinem molekuty. Mechanizm CIMS polega zasad-
niczo na zalozeniu, ze wskutek oddziatywania ze spinem molekuly elektrony tunelujace
przez LUMO moga zmienia¢ swoja orientacje spinu na przeciwna, co z kolei odpowiada
przekazywaniu momentu pedu pomiedzy elektronami przewodnictwa a molekuta. Tym
samym, zmiana stanu magnetycznego molekuty wywolywana jest nieelastycznymi proce-
sami tunelowymi, rys. 4.2(b)-(c). Poniewaz w omawianym rozdziale skupiam sie przede
wszystkim na analizie gléwnych cech dynamiki odwracania spinu molekuty, stad korzy-
stam z najprostszej dostepnej metody, jaka jest rachunek zaburzen w postaci ztotej reguty
Fermiego oraz réwnanie bilansu prawdopodobienistw. Nalezy w tym miejscu zauwazy¢,
ze zastosowanie wspomnianej metody jest fizycznie uprawnione tylko dla konkretnego
zakresu, tzn. albo zakresu tunelowania sekwencyjnego albo zakresu wspoéttunelowania.
Obszar przejéciowy, gdzie istotna role moga odgrywaé procesy tunelowe réznych rzedow,
wymaga zastosowania nieco innego podejscia, jak zostanie pokazane w rozdziale 5.

Dyskusje rozpoczynam od analizy problemu dla zakresu tunelowania sekwencyjnego,
podrozdziat 4.2. Na poczatku przedstawiam ogdlna postaé¢ formuly na prad tunelowy
plynacy pomiedzy elektroda a molekula, row. (4.3), ktora zwiera wyrazenia opisujace
czestosé przejéé pomiedzy réznymi stanami magnetycznymi molekuty wskutek trans-
portu elektronéw przez poziom LUMO molekuly, row. (4.4). Korzystajac z wynikow
rozdzialu 2, wyprowadzam ogoélne wyrazenie na czestosé przejsé, row. (4.7), w ktorym
wspotezynnik Cgﬁ ustanawia reguty wyboru rzadzace przejSciami pomiedzy stanami ma-
gnetycznymi molekuly, a stad takze definiuje fizyczne procesy stanowiace podstawe me-
chanizmu CIMS w przypadku molekut. Podobnie jak w rozdziale 3, wszystkie inne pro-
cesy relaksacji, niezwigzane z transportem elektronéw, uwzglednione sa na poziomie
fenomenologiczny przy pomocy réw. (4.9)-(4.10).% Nastepnie zapisuje stosowny uktad
rownan bilansu, ktére rozwiazuje dla okreslonych warunkéw poczatkowych. Warto pod-
kresli¢, ze liczba rownan wynosi 25 + 1 (S — wartos¢ spinu swobodnej molekuly), a tym
samym w przypadku molekut takich jak Mnio czy Feg, dla ktérych S = 10, mam do
czynienia z uktadem 84 réwnai.

Dyskusje wynikéow numerycznych, ktéra prowadze dla przypadku molekuly Mnjo,

SRownanie (4.9) opisuje procesy relaksacji w obrebie jednego multipletu spinowego dla okreslone;
liczby obsadzenia poziomu LUMO oraz catkowitego spinu molekuty, podczas gdy réw. (4.10) reprezentuje
procesy relaksacyjne, ktore moga zachodzi¢ pomiedzy dwoma roéznymi multipletami dla poziomu LUMO
obsadzonego prze jeden elektron.
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rozpoczynam od zaprezentowania zaleznosci sredniej wartosci sktadowej z calkowitego
spinu molekuty oraz pradu plynacego przez uktad od napiecia transportowego po osiag-
nieciu stanu stacjonarnego, rys. 4.4. W rozwazanym przypadku zaktadam, ze poczatkowo
molekuta znajduje si¢ w stanie spinowym S7 = —10, a nastepnie w chwili ¢ = 0 do ele-
ktrod symetrycznie przykladane jest stale napiecie. Widaé, ze gdy uwzglednione sa tylko
procesy tunelowania sekwencyjnego, zmiana stanu magnetycznego molekuty wskutek
przeplywu pradu pojawia sie po przekroczeniu pewnej wartosci progowej napiecia, ktéra
odpowiada przerwie energetycznej pomiedzy poczatkowym a najblizszym stanem ma-
gnetycznym spelniajacym reguly wyboru. Nalezy ponadto zauwazyé¢, ze dla duzych
napie¢, dla ktorych w transporcie uczestnicza wszystkie stany molekuty, efekt CIMS
spinu molekuty obserwowany jest tylko dla antyréwnolegtej konfiguracji momentéw ma-
gnetycznych elektrod. Na kolejnym wykresie, rys. 4.5, przedstawiam ewolucje czasowa
magnetycznego stanu molekuty. Szczegdlnie interesujacy jest ksztalt krzywej pradowej
w przypadku antyréwnoleglej magnetycznej konfiguracji elektrod, rys. 4.5(b), bowiem
mozna zauwazy¢, ze procesowi obracania spinu molekuly towarzyszy pojawienie si¢ do-
datkowego sygnalu w pradzie.

Obecnosé impulsu pradowego mozna wyttumaczy¢ rozwazajac kanaty pradowe, przez
jakie elektrony przemierzaja ztacze. Jak juz wcze$niej wspomniatem, podczas tunelowa-
nia elektronu przez poziom LUMO molekuly, w wyniku oddzialywania wymiennego z
wewnetrznym spinem molekuly, orientacja spinu elektronu moze ulec zmianie na prze-
ciwna, z czym zwiazany jest przeplyw momentu pedu pomiedzy pradem a molekuts.
Jezeli elektrony zmieniaja orientacje swoich spinéw w taki sposob, ze przepltyw mo-
mentu pedu prowadzi do obrocenia spinu molekuty, to wowczas odpowiadajacy takiemu
zachowaniu kanal pradowy nazywam kanatem przetqczajgcym (w skrocie SWC — od
angielskiego ‘switching channel’). Jezeli natomiast omawiane procesy daza do zachowa-
nia poczatkowego stanu molekuly, to taki kanal nazywam kanatem stabilizujgcym (w
skrocie STC — od angielskiego ‘stabilizing channel’). Idea nieelastycznych kanalow trans-
portowych zilustrowana jest schematycznie na rys. 4.6. Mozna tam zauwazy¢, ze dla row-
noleglego ustawienia momentéw magnetycznych elektrod, rys. 4.6(a), oba kanaly sa sy-
metryczne, podczas gdy w przypadku antyrownolegtym dominuje kanal SWC, rys. 4.6(b),
co prowadzi do powstania dodatkowego impulsu w pradzie.

Dalsza czes¢ analizy wynikoéw dotyczy wpltywu parametrow polaryzacji elektrod na czas
stabilizacji stanu magnetycznego molekuty, rys. 4.9, efektow wynikajacych z niewspotli-
niowego ustawienia osi tatwej molekuly wzgledem momentéw magnetycznych elektrod,
rys. 4.10, oraz dodatkowych proceséw relaksacyjnych, rys. 4.11 oraz 4.12.

Ostatni fragment rozdziatu 4, podrozdziat 4.3, zawiera dyskusje mechanizmu CIMS w
zakresie blokady kulombowskiej (wspottunelowania). Zakladajac, ze napiecie bramku-
jace dobrane jest w ten sposob, ze poziom LUMO pozostaje nieobsadzony, okazuje
sie, ze mechanizm CIMS w omawianym zakresie napie¢ rézni sie od mechanizmu w
obszarze tunelowania sekwencyjnego wylacznie tym, iz w obecnej sytuacji odwrocenie
kierunkow spinéw elektronéow przewodnictwa na przeciwny moze nastapié¢ tylko w stanie
wirtualnym, rys. 4.13(c)-(d). Ostateczny wzor na czesto$é przejsé miedzy sasiednimi sta-
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nami magnetycznymi molekuly wskutek proceséw tunelowych wyzszego rzedu dany jest
row. (4.21). Wyniki numeryczne nie odbiegaja jakosciowo od tych uzyskanych wezesniej
dla transportu sekwencyjnego. Jedyna roznica dotyczy skali czasowej, w jakiej zachodzi
proces odwrocenia spinu molekuty, ktory jest znacznie dluzszy niz w uprzednio rozwaza-
nym przypadku. Biorac pod uwage, ze uzyskane przeze mnie czasy przelaczania w zakre-
sie wspoltunelowania moga by¢ dluzsze niz czasy relaksacji wewnetrznej spinu molekuty,
wydaje sie, iz w rzeczywistych uktadach zaobserwowanie efektu CIMS dla rozwazanego
zakresu napie¢ moze okazaé sie bardzo trudne, a byé moze niemozliwe.

Dotychczas skupitem sie na analizie problemu dynamiki przetaczania spinu molekuly
przy pomocy pradu spinowo-spolaryzowanego osobno dla zakresu napie¢ odpowiada-
jacych blokadzie kulombowskiej oraz transportowi sekwencyjnemu elektronéw. Nalezy
jednak zauwazy¢, ze chociaz procesy tunelowe wyzszego rzedu odgrywaja znaczaca, role
gltownie w obszarze blokady kulombowskiej, to pozostaja one aktywne dla catego zakresu
napieé, rowniez w obszarze rezonansu, prowadzac na przyktad do rozmycia schodkow ku-
lombowskich [194]. W zwiazku z tym, korzystajac z techniki diagramowej [194,199-203],
w rozdziale 5 badam transport elektronéw przez pojedyncza magnetyczna molekute,
uwzgledniajac mozliwos¢ jednoczesnego wystepowania proceséw tunelowania sekwen-
cyjnego oraz wspolttunelowania.

Stosowana przeze mnie technika diagramowa polega na systematycznym rozwinieciu
zredukowanej macierzy gestosci ukladu oraz interesujacych mnie operatoréw wzgledem
sprzezenia I' pomiedzy poziomem LUMO molekuty a elektrodami. Prawdopodobienistwa
znalezienia molekuly w réznych stanach magnetycznych w dowolnej chwili mozna wy-
znaczy¢ z row. (5.1), gdzie II(,tg) jest macierza propagacji, a jej elementy opisuja w
jaki sposob uktad ewoluuje pomiedzy danym stanem poczatkowym w chwili ¢g, a stanem
docelowym w chwili t. W ramach omawianej metody, ewolucje te mozna schematycznie
przedstawié¢ jako serie nieredukowalnych diagramoéw na konturze Keldysh’a [194], rys. 5.1,
ktore po zsumowaniu odpowiadaja nieredukowalnym blokom energii wlasnych Wy, (¢, )
(ang. ‘irreducible self-energy blocks’) [201]. Macierz energii wlasnych W(t',t) jest za-
tem jedna z najwazniejszych wielkosci w omawianej metodzie, poniewaz jej elementy
Wy, (', t) mozna zinterpretowaé jako uogélnione czestosci przejsé pomiedzy dwoma
dowolnymi stanami magnetycznymi molekuty. Operatory opisujace wlasnosci transporto-
we rozwazanego uktadu, takie jak prad I oraz szum pradowy S, mozna nastepnie wyrazi¢
w jezyku techniki diagramowej, row. (5.5) oraz (5.10). W stanie stacjonarnym prawdo-
podobienistwa znalezienia uktadu w poszczegdlnych stanach otrzymywane sa w oparciu
o row. (5.4), ktore rozwiazuje uzywajac tzw. podejscia perturbacyjnego w obszarze przej-
Sciowym (ang. ‘crossover perturbation scheme’). Idea tego podejscia polega na rozwinie-
ciu jedynie macierzy W (¢, t), bez rozwijania prawdopodobienstw, az do drugiego rzedu
wzgledem T

Inaczej niz we wcezedniejszych rozdziatach, w rozdziale 5 wyniki numeryczne przed-
stawiam dla hipotetycznej molekuly o spinie S = 2, charakteryzujacej sie dominujaca
anizotropia jednoosiowa. Nalezy jednak w tym miejscu zaznaczy¢, ze poczynione obser-
wacje, na poziomie jakosciowym, obowiazuja takze dla molekut o wieckszej wartosci spinu.
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Wybér stosunkowo matego spinu dla zilustrowania wynikéw podyktowany jest tym, ze
pozwala on na do$¢ wnikliwa analize udziatu réznych stanéw magnetycznych molekuty
w procesach transportowych, co bytoby znacznie utrudnione w przypadku wiekszych
wartosci spinu. Efekty dyskutowane w podrozdziatach 5.3-5.5 prezentowane sa dla fer-
romagnetycznego (J > 0) sprzezenia pomiedzy elektronem na poziomie LUMO a spinem
wewnetrznym molekuly, a uogélnienie na przypadek antyferromagnetyczny (J < 0) za-
mieszczone jest w podrozdziale 5.6.

Dyskusje wynikéw rozpoczynam od konduktancji rozniczkowej, rys. 5.2, oraz odpowia-
dajacego jej wspotczynnika TMR (od angielskiego ‘tunnel magnetoresistance’), rys. 5.3,
ktory opisuje jak wlasnosci transportowe uktadu zmieniaja sie przy przejsciu od kon-
figuracji antyrownoleglej do rownoleglej ustawienia momentéw magnetycznych elektrod
[182,203,209]. Porownujac rys. 5.3(a), przedstawiajacy TMR obliczony przy uwzglednie-
niu pierwszego oraz drugiego rzedu rachunku zaburzen, z rys. 5.3(b), na ktérym TMR po-
liczony zostal w przyblizeniu transportu sekwencyjnego (tylko pierwszy rzad), widac, ze
uwzglednienie procesow wspottunelownia jest niezbedne dla uzyskania poprawnego opisu
transportu. Rysunek 5.4 potwierdza wczedniejsze obserwacje z rozdziatu 4, iz przeplyw
pradu spinowo-spolaryzowanego przez pojedynczg magnetyczna molekute wpltywa na jej
stan magnetyczny. Dla antyréwnolegtej konfiguracji magnetycznej elektrod, rys. 5.4(b),
orientacja spinu molekuly jest nie tylko Scisle powiazana z kierunkiem przeptywu pradu,
ale przede wszystkim widoczna jest preferencja spinu do ustawiania sie wzdhuz osi tatwe;j
molekutly. Natomiast w przypadku réwnolegtym, rys. 5.4(a), srednia wartos¢ sktadowej z
spinu tylko nieznacznie rozni si¢ od zera (spin preferuje plaszczyzne prostopadla do osi
latwej molekuly) i jest parzysta funkcja napiecia transportowego.

Podrozdziat 5.3 poswiccony jest analizie transportu przez molekute w zakresie liniowe;j
odpowiedzi uktadu. Na rys. 5.6 zamieszczona jest zaleznos$é wspotczynnika TMR oraz
Sredniej wartosci sktadowej z spinu molekuly od potozenia poziomu LUMO. Uzyskana
krzywa TMR, w obszarze odpowiadajacym poziomowi LUMO obsadzonemu przez jeden
elektron (@ = 1), znacznie rézni sie jakosciowo od tej uzyskanej dla uktadu zawierajacego
kropke kwantowa [203,210]. Wynika to stad, ze widmo stanéw wielocialowych molekuly,
przez ktére moga tunelowaé elektrony, jest znacznie bogatsze niz w przypadku kropki.
Inna interesujaca wtasnoscia krzywej TMR jest jej asymetria, tzn. réznica pomiedzy
maksymalnymi warto$ciami obserwowanymi dla Q = 0 oraz () = 2. Zachowanie to
odbiega od zachowania typowego dla modelu Andersona, gdzie TMR jest symetryczny
wzgledem punktu e = —U/2 [203]. W obecnej sytuacji brak symetrii spowodowany jest
uwzglednieniem poprawek do anizotropii podtuznej, wynikajacych z obsadzenia poziomu
LUMO molekuty, row. (5.19).

Uzupelnieniem wynikéw dla zakresu linowej odpowiedzi jest podrozdzial 5.4, w ktérym
dyskutuje zachowanie sie ukladu dla skoriczonych wartosci napiecia transportowego. W
kolejnym podrozdziale 5.5, uwzgledniam ponadto wplyw podtuznego, statego pola ma-
gnetycznego. Okazuje sie, ze nawet pole o malej wartosci moze znaczaco modyfikowaé
wtasnosci transportowe uktadu. Nie tylko ulega ztamaniu symetria wspotczynnika TMR
wzgledem zmiany znaku napiecia transportowego, rys. 5.8(a), ale takze pojawia sie mozli-
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wo$¢é, ze transport w przypadku antyréwnoleglego ustawienia momentéw magnetycznych
elektrod moze by¢ bardziej efektywny niz dla ustawienia réwnolegtego, co odpowiada
ujemnemu wspotczynnikowi TMR na rys. 5.8 oraz 5.10(c,g). Podobna sytuacje obser-
wuje dla antyferromagnetycznego (J < 0) sprzezenia elektronu na poziomie LUMO ze
spinem molekuty, rys. 5.11.

Ciekawa sytuacja pojawia sie, gdy pojedyncza magnetyczna molekula jest przytaczo-
na do elektrod charakteryzujacych sie roznymi parametrami polaryzacji, co jest przed-
miotem analizy ostatniej czesci rozdziatu 5. W szczegdlnosci rozwazam uktad, w ktérym
lewa elektroda jest niemagnetyczna, natomiast prawa cechuje wysoki stopienn polaryzacji
spinowej. Wlasnosci transportowe tak zdefiniowanego ukladu wykazujg wyrazna asy-
metrie wobec zmiany polaryzacji napiecia transportowego, tzn. dla jednej z polaryzacji
napiecia uktad stabo przewodzi prad, rys. 5.14(a,d). Wtasnosé ta jest typowa dla uktadow
zachowujacych sie jak dioda. Ponadto wskutek sprzezenia do elektrody ferromagne-
tycznej oraz zalezno$ci proceséw tunelowych od kierunku spinu, prad ptynacy przez
rozwazany uktad ulega spinowej polaryzacji, a dodatkowo polaryzacja ta moze ulec zmi-
anie przy odwroceniu kierunku przeptywu pradu. Tym samym mam do czynienia z ukta-
dem pemhiacym funkcje diody spinowej [215-217|. Jak pokazano na rys. 5.13 oraz 5.14,
szczegdlowe wlasnosci prostujace uktadu zaleza od tego, jaki typ sprzezenia wystepuje
miedzy elektronem na poziomie LUMO a wewnetrznym spinem molekuty.

Wszystkie rozwazane do tego momentu zjawiska, wynikajace z transportu tadunku
przez pojedyncza magnetyczng molekute, dotycza przypadku, kiedy molekuta jest stabo
sprzezona do elektrod. Jednakze w rzeczywistym eksperymencie, zalozenie takie nie-
koniecznie musi byé¢ spelione. Nalezaloby zatem zapytaé¢, jakim modyfikacja ulegaja
wtasnosci transportowe uktadu, gdy molekuta jest silnie sprzezona z elektrodami, co
stanowi przedmiot dyskusji rozdzialu 6. Na wstepie warto zauwazy¢, iz tunelowanie
elektron6w pomiedzy elektrodami a molekuta jest wynikiem oddzialywania pomiedzy
stanami zlokalizowanymi molekutly oraz stanami rozciagltymi elektronéow z elektrod. Kie-
dy molekuta jest jedynie stabo sprzezona z elektrodami, a tym samym mieszanie wspom-
nianych stanéw jest niewielkie, jej poziomy molekularne ulegaja tylko nieznacznemu
poszerzeniu, a tym samym nadal mam do czynienia z widmem dyskretnym molekuty.
Gdy natomiast przekrywanie sie standéw jest znaczne, to woéwczas stany molekularne nie
moga by¢ wykorzystane do opisu transportu elektronéw i nalezy jest zastapi¢ nowymi
stanami hybrydowymi, ktére beda uwzglednialy to, ze elektrony w takiej sytuacji sa
do pewnego stopnia zdelokalizowane pomiedzy elektrodami a molekuta. Co wiecej, w
przypadku gdy molekuta jest obsadzona przez nieparzysta liczbe elektronéw, omawiane
procesy moga prowadzi¢ do odwrdcenia spinu niesparowanego elektronu, a co za tym
idzie do pojawienia sie dodatkowego rezonansu w gestosci stanéw dla energii bliskich
poziomowi Fermiego elektrod, znanego jako rezonans Kondo (czasami réowniez jako re-
zonans Abrikosova-Shula).

Efekt Kondo jest zjawiskiem dobrze znanym w obrebie fizyki ciala statego [220-226],
gdzie w uktadach metalicznych zawierajacych magnetyczne domieszki objawia si¢ jako
wzrost opornodci ponizej pewnej temperatury Tk, zwanej temperaturg Kondo. Pod koniec
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lat 90-tych okazalo sie, ze wystepowanie tego efektu nie ogranicza sie wytacznie do
uktadéw masywnych, ale mozna go réwniez zaobserwowaé w transporcie przez uklady
nansokopowe takie, jak kropki kwantowe [228-230], nanorurki weglowe [231] oraz réznego
typu molekut [232-235]. Warto zaznaczy¢, ze mimo, iz mechanizm fizyczny prowadzacy
do utworzenia rezonansu Kondo jest taki sam zaréwno dla ukladéw masywnych jak i
nanoskopowych, to wystepuje jedna zasadnicza réznica. Mianowicie w przypadku tych
drugich ukltadéw, zamiast wzrostu opornosci ponizej Tk, nastepuje wzrost przewodnosci,
poniewaz dodatkowy rezonans odgrywa role mostu, ktory utatwia mieszanie sie standéw
elektronowych nalezacych do réznych elektrod, a tym samym wspomaga tunelowanie
elektronow przez uktad. Schemat proceséw prowadzacych do powstania rezonansu Kondo
w przypadku modelu domieszki magnetycznej zaproponowanej przez Andersona przed-
stawiony jest na rys. 6.1(a). W dalszej czesci wstepu do rozdzialu 6 dokonuje szcze-
gotowego przegladu obecnego stanu wiedzy na temat zjawisk mogacych pojawi¢ sie w
pojedynczych magnetycznych molekultach w sytuacji silnego sprzezenia molekuty z ele-
ktrodami.

W swietle powyzszej dyskusji, staje sie jasne, ze, gdy molekuta jest silnie sprzezona
z elektrodami, nie moge oczekiwaé, ze jedynie stany o energiach bliskich energii Fer-
miego elektrod beda wnosity istotny wktad do proceséw transportowych. W rzeczywis-
tosci, zaden stan z pasma przewodnictwa elektron nie moze zostaé w sposéb dowolny
wykluczony z rozwazan, a tym samym, badajac transport elektronéw przez molekule,
powinienem w obecnym przypadku wzia¢ pod uwage w zasadzie wszystkie stany z pasma
przewodnictwa elektrod. W zwiazku z tym, musze dotychczas stosowane metody pertur-
bacyjne zastapi¢ innym podejsciem, ktore uwzgledni szerokie, ciagle spektrum stanéow
elektronowych elektrod. W niniejszej pracy wykorzystuje numeryczng grupe renormali-
zacji (w skrocie NRG — od angielskiego ‘numerical renormalization group’), w postaci
zaproponowanej przez Wilsona [225,240,241], ktorej glowna cecha jest to, ze jest metoda
nieperturbacyjna ze wzgledu na wszystkie parametry uktadu.

Ogolne podejscie NRG wykorzystane przez Wilsona do zbadania zachowania domieszki
magnetycznej sprzezonej z morzem nieoddzialujacy elektronéw w elektrodzie mozna
krotko przedstawié jako sekwencje trzech krokéw, rys. 6.2. Po pierwsze, dokonuje sie lo-
garytmicznej dyskretyzacji pasma przewodnictwa. Nastepnie tak zdyskretyzowany model
zostaje odwzorowany na polnieskonczony taricuch, ktorego pierwszy wezet reprezentuje
domieszke. W ostatnim kroku, uktad w postaci péinieskoriczonego taricucha podlega ite-
racyjnej diagonalizacji, zaczynajac od wezta odpowiadajacego domieszce, a w kazdym
nastepnym kroku iteracyjnym dodawany jest kolejny energetyczny stopieri swobody.
Poniewaz wedrowka wzdluz tancucha réwnoznaczna jest z uwzglednianiem w oblicze-
niach coraz mniejszych skal energetycznych, rozwinieta przez Wilsona metoda dostar-
cza nieperturbacyjnego opisu przejscia od ukltadu swobodnej domieszki magnetycznej,
w wysokich temperaturach, do uktadu silnie ekranowanego spinu, w niskich temperatu-
rach [241]. Szczegoly teoretyczne zastosowanej metody w odniesieniu do pojedynczych
magnetycznych molekut sg szeroko dyskutowane w podrozdziale 6.1.
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Wynikiem zastosowania procedury numerycznej NRG? jest zbiér stanéw oraz en-
ergii wlasnych uktadu, w oparciu o ktore moge nastepnie wyznaczy¢ funkcje spektralng
uktadu A, (w, T"). Znajomosé tej wielkosci wystarcza do znalezienia, w oparciu o rownanie
Landauera-Wingreena-Meira [187,259-263|, charakterystyk transportowych molekuty w
zakresie odpowiedzi liniowej, jak pokazano w podrozdziale 6.2. Przewodnosé¢ uktadu G
opisana jest row. (6.18). Pozostala czes¢ rozdzialu poswiecona jest analizie uzyskanych
wynikow dla hipotetycznej molekuly o spinie S = 2.

Dyskusje rozpoczynam od znalezienia temperatury Kondo uktadu dla zadanych pa-
rametréw, ktora w rozwazanym przypadku dla 7' = 0 mozna oszacowaé z szerokosci
potowkowe]j odpowiadajacej polowie maksymalnej wartosci rezonansu Kondo [225,237].
Za punkt odniesienia przyjatem krzywa dla J = 0, uzyskujac wartos¢ Tx = 0.00066 — dla
uproszczenia w ramach tego podrozdzialu zaktadam, ze kg = 1, a energie sa wyrazone
w jednostce polowy szerokosci pasma przewodnictwa 2, ktora reprezentuje najwiek-
szg skale energetyczna w ukladzie. Na rys. 6.3 oraz 6.4 przedstawiona jest zaleznosé
catkowitej funkcji spektralnej A(w) od wielkosci sprzezenia pomiedzy spinem poziomu
LUMO a wewnetrznym spinem molekuly dla obu typow sprzezenia (tj. ferromagne-
tycznego, J > 0, oraz antyferromagnetycznego, J < 0), zaréwno dla antyréwnolegtej
(rys. 6.3), jak i réwnolegtej (rys. 6.4) konfiguracji magnetycznej elektrod. Widaé, ze
ze wzrostem wartosci J nastepuje stopniowy zanik rezonansu Kondo. Co ciekawe, dla
duzych wartosci sprzezenia, w widmie ujawniaja sie dodatkowe rezonanse, ktérych pow-
stanie mozna jakosciowo wyttumaczy¢ w oparciu o widmo niesprzezonej molekuty. Nalezy
jednak podkresli¢, iz taka analiza ma do$é¢ ogélny charakter, poniewaz zastosowanie pro-
cedury NRG prowadzi do renormalizacji pozioméw energetycznych molekuty. Nastepnie
przechodze do przeanalizowania jak funkcja spektralna, rys. 6.6, oraz wlasnosci trans-
portowe molekuty, a doktadnie wspotczynnik TMR, rys. 6.7, zaleza od potozenia poziomu
LUMO dla wybranej wartosci sprzezenia J. Rysunek 6.7 umozliwia dokonanie jakos-
ciowego poréwnania pomiedzy wynikami uzyskanymi dla przypadku stabego oraz silnego
sprzezenia pomiedzy molekula a elektrodami. Okazuje sie, ze ogolny charakter krzywych
TMR jest podobny w obu przypadkach, z jednym wszakze wyjatkiem. W rozwazanej
obecnie sytuacji TMR moze przyjmowaé¢ wartosci ujemne, co oznacza, ze uktad tatwiej
przewodzi prad dla antyréwnolegtej konfiguracji momentéw magnetycznych elektrod.

Ostatni rozdzial niniejszej pracy (rozdzial 7), poswiecam przedyskutowaniu mozliwosci
wykorzystania swiatta spolaryzowanego kotowo w procesie magnetycznego przetacza-
nia pojedynczych magnetycznych molekut. W minionych latach pokazano bowiem, ze
swiatto spolaryzowane kotowo mozna wykorzysta¢ do zmiany stanu namagnesowania
uktadu [266, 271-274], a uzyskany efekt rownowazny jest temu, jaki mozna by zaob-
serwowac, gdyby przytozy¢ pole magnetyczne w kierunku wektora falowego. Omawiany
efekt nosi nazwe odwrotnego efektu Faradaya i chociaz zostal on zaproponowany [275,276]
oraz pierwszy raz eksperymentalnie potwierdzony [277| ponad pot wieku temu, to dopiero
obecny rozwdj technologii zwiazanych z wytwarzaniem wiazek laserowych daje nadzieje
na pelne wykorzystanie tkwiacego w tym efekcie potencjatu technologicznego. Dotych-

W pracy wykorzystuje kod Flexible DM-NRG [255,256].
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czas pokazano, ze odwrotny efekt Faradaya mozna wykorzysta¢ do manipulowania na-
magnesowania w amorficznym stopie magnetycznym GdFeCo [278,280| oraz ferrimagne-
tycznych warstwach granatu [281]. Wazna wlasnoscia odwrotnego efektu Faradaya jest
to, ze wykorzystuje on procesy ramanowskiego spojnego rozpraszania optycznego, a co
za tym idzie, nie wystepuje absorpcja fotonow [278|. Jednakze, mimo, iz ogdlna teor-
ia omawianego zjawiska jest dobrze znana [276, 282-285|, nadal szeroko dyskutowany
jest mikroskopowy mechanizm, gdyz nie jest oczywiste skad dokladnie (tzn. czy z sieci
krystalicznej, czy z fotonéw) pochodzi moment pedu niezbedny do wystapienia magne-
tycznego przelaczenia [286-288|.

Poniewaz zaréwno zwykly jak i odwrotny efekt Faradaya wynikaja z tego samego
wyrazenia na energie swobodna [276,277,290|, z termodynamicznego punktu widzenia
stanowia one pare proceséw odwrotnych [291,292|. Nalezaloby zatem spodziewaé sie,
ze jezeli uktad magnetyczny jest w stanie wymusié obrot plaszczyzny polaryzacji prze-
chodzacej przez niego fali elektromagnetycznej (efekt Faradaya), to réowniez powinno
by¢ mozliwe wystapienie procesu odwrotnego, tzn. fala elektromagnetyczna spolary-
zowana kotowo powinna zmienia¢ stan magnetyczny ukltadu (odwrotny efekt Faradaya).
Powyzsze stwierdzenie uzasadnia moje zainteresowanie zastosowaniem optycznych metod
do kontrolowania magnetycznego stanu pojedynczych magnetycznych molekut, poniewaz
co najmniej jeden typ molekul (grupa molekul Mnjs) wykazuje efekt Faradaya [293].
Nalezy jednakze zauwazy¢, iz nadal niewiele wiadomo na temat wlasnosci optycznych po-
jedynczych magnetycznych molekul w zakresie proceséw zwiazanych z prostym i odwrot-
nym elektem Faradaya. Z drugiej jednak strony, bardziej owocne okazaly si¢ proby
kontroli dynamiki momentu magnetycznego molekuty poprzez absorpcje promieniowa-
nia [294-299]. W zwiazku z tym, w rozdziale 7 skupiam sie na rozwazeniu absorpcji
spolaryzowanego kolowo promieniowania elektromagnetycznego w kontekscie mozliwosci
jego wykorzystania do stymulowania zjawiska CIMS w molekutach w zakresie blokady
kulombowskiej.

W celu opisania oddzialywania miedzy molekulg a promieniowaniem elektromagnety-
cznym, wykorzystuje hamiltonian o postaci typowej dla linowego zjawiska magnetoelek-
trycznego [284,307,308|, row. (7.2), gdzie a;; jest tensorem drugiego rzedu (w ogolnosci
niesymetrycznym), nazywanym tensorem podatno$ci magnetoelektrycznej. Chociaz uzy-
wany przeze mnie hamiltonian (7.2) nie opisuje rzeczywistego mikroskopowego mecha-
nizmu rzadzacego oddzialtywaniem miedzy molekula a promieniowaniem, a stad reprezen-
tuje on czysto fenomenologiczny model, to jednak pozwala on uwzgledni¢ pewne cechy
symetrii uktadu. Jak przedyskutowano w podrozdziale 2.2, w przypadku molekuty umie-
szczonej na podlozu lub dotaczonej do elektrod, efekty zwiazane z symetria molekuty
moga odgrywaé znaczaca role przy opisie transportu przez taka molekute. Aby uproscié
nieco rozwazania, zaktadam, ze promieniowanie ulega propagacji w kierunku sktado-
wej z, rys. 2.2. Nastepnie dokonuje kwantyzacji operatora pola elektrycznego [239, 309,
310], row. (7.6), oraz wykorzystuje przyblizenie dipolowe [239], row. (7.7). W ostatnim
kroku zmieniam baze dla wektoréw polaryzacji fotonow tak, aby wigzka promieniowania
sktadata sie z fotonow spolaryzowanych kotowo lewo- lub prawoskretnie [311], row. (7.9).

128



Streszczenie — Summary of the thesis in Polish

Ostateczna posta¢ hamiltonianu oddzialtywania dana jest row. (7.15).

Czestosci przejs¢ miedzy dwoma sasiednimi stanami magnetycznymi molekuty, wywo-
tanych oddziatywaniem z promieniowaniem elektromagnetycznym, znajduje, podobnie
jak w rozdziatach 3 oraz 4, w oparciu o ztota regule Fermiego, podrozdziat 7.2. Szukane
wyrazenia dane sa row. (7.24) oraz (7.25), gdzie Fy(w) jest funkcja ksztaltu opisujaca
poszerzenie pozioméw energetycznych, pomiedzy ktorymi zachodzi przejscie. Znalezione
czestoscl przej$é wstawiam nastepnie do rownania bilansu prawdopodobieristw (4.11).
Wyniki numeryczne ponownie uzyskuje dla hipotetycznej molekuly o spinie S = 2, ktora
poczatkowo znajduje sie w stanie S; = —2, a jej poziom LUMO pozostaje nieobsadzony.

W ciagu catej pracy przyjmuje zalozenie, ze uktad utrzymywany jest w temperaturze
nizszej niz temperatura blokowania 7T, co wyklucza mozliwo$¢ wystapienia termicznie
aktywowanych procesow relaksacyjnych. Z drugiej jednak strony, w swoich rozwazaniach
biore pod uwage relaksacje wewnetrzng spinu, ktéra na poziomie fenomenologicznym
uwzgledniona jest przez row. (4.9) oraz (4.10). Rysunek 7.2 przedstawia zaleznosé sred-
niej wartosci sktadowej z spinu molekuty od temperatury. Wida¢ na nim, ze ponizej
pewnej charakterystycznej temperatury, kiedy procesy relaksacyjne sa “zamrozone”; spin
molekuty jest unieruchomiony w jednym z dwoéch standéw metastabilnych, odpowiada-
jacych maksymalnej wartosci sktadowej z spinu (obszar [00). Zwiekszajac temperature
wkraczam w obszar [, w ktérym procesy relaksacji wewnetrznej spinu odgrywaja istotna
role, prowadzac do catkowitego rozfazowania spinu molekuty. Celem wykorzystania im-
pulsu promieniowania spolaryzowanego kotowo jest wytworzenie chwilowej nieréwnowagi
w rozkltadzie prawdopodobieristw tak, aby zapoczatkowaé¢ magnetyczne przetaczanie. W
tym kontekscie, duze znaczenie ma czy rozwazam proces w obszarze [, czy U, poniewaz
dla matych napieé¢ (blokada kulombowska) efektywna wielkosé relaksacji spinowej okresla
koricowy stan magnetyczny molekuty.

Na rys. 7.3 pokazana jest zaleznosé¢ éredniej wartosci sktadowej z spinu molekuly od
napiecia transportowego w przypadku, gdy molekuta wystawiona jest na dziatanie im-
pulsu promieniowania elektromagnetycznego. Widaé, ze promieniowanie wywiera trwaly
efekt na stanie magnetycznym molekuty jedynie w zakresie blokady kulombowskiej. Po-
nadto mozna zauwazy¢, ramka na rys. 7.3, ze promieniowanie wplywa na stan magne-
tyczny molekuly jedynie, kiedy jest spolaryzowane kolowo lewoskretnie (linia ciagta).
Natomiast dla polaryzacji kotowej prawoskretnej stan molekut nie ulega zmianie, a
promieniowanie spolaryzowane liniowo prowadzi, dla duzych natezen, do rozmagnesowa-
nia molekuty.

Okazuje sie, ze w omawianym zakresie napie¢, wptyw promieniowania elektromagne-
tycznego na stan magnetyczny molekuty jest wynikiem wspotgrania trzech niezaleznych
proceséw. Po pierwsze, wystepuja procesy wynikajace ze sprzezenia molekuly z pradem
spinowo-spolaryzowanym, ktoére sa gléwnym przedmiotem badan tejze rozprawy. Jed-
nakze, w obszarze blokady kulombowskiej, kiedy napiecie transportowe jest mniejsze
niz jego warto$¢ progowa, przy ktorej nastepuje zapoczatkowanie mechanizmu CIMS,
wspomniane procesy nie sa w stanie zmieni¢ stanu molekuty. Po drugie, w uktadzie
obecne sg procesy wewnetrznej relaksacji spinu. Ostatnig grupe proceséw stanowia pro-
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cesy stymulowane przez impuls promieniowania, ktore dyskutuje w obecnym rozdziale.
Wydaje sig, ze ostatni z wymienionych mechanizméw, pelni funkcje inicjujaca dla bardziej
ztozonego mechanizmu. Absorbujac impuls promieniowania, molekuta ulega czasowemu
wzbudzeniu, a w konsekwencji przez krotki moment zmniejszeniu ulega bariera ener-
getyczna dla zjawiska CIMS, wynikajaca ze zbyt malego napiecia transportowego. W
rozwazanym przypadku, promieniowanie elektromagnetyczne stuzy zatem do stymulowa-
nia proceséw relaksacji wynikajacych z oddzialywania molekuly z elektronami prze-
wodnictwa, a natezenie promieniowania decyduje o koncowym stanie magnetycznym
molekuly, rys. 7.4.

Glownym problemem zwigzanym z zastosowaniem analizowanego przeze mnie mecha-
nizmu jest warto$¢ natezen promieniowania, dla ktorych mozna by obserwowaé zmiane
stanu magnetycznego molekuty. Uzyskane wartosci sa zdecydowanie niemozliwe obecnie
do uzyskania w ramach zaproponowanego eksperymentu i prawdopodobnie doprowadzi-
tyby do zniszczenia probki. Jednoczesnie powyzszy problem mozna by sprobowaé ominaé,
uzywajac, zamiast jednego impulsu o duzym natezeniu, seri¢ impulséw o mniejszym
natezeniu, rys. 7.6. Na koniec, warto zauwazy¢, ze gtéwna réznica pomiedzy wplywem
promieniowania na stan magnetyczny molekuty w obszarze U oraz [J polega na tym, ze w
tym drugim promieniowanie tylko chwilowo moze zmieni¢ stan molekuly, rys. 7.7(a), po
czym molekuta ulega rozmagnesowaniu, ktore jest wynikiem silnej relaksacji spinowej.

Chociaz wyniki powyzszej pracy wydaja sie by¢ zachecajace dla dalszych badan nad
pojedynczymi magnetycznymi molekutami, pod katem ich wykorzystania jako elemen-
tow urzadzen spintronicznych, to jednak nalezy jasno powiedzie¢, ze z doswiadczalnego
punktu widzenia, realizacja przedstawionych w tej pracy pomystow jest dosé odlegta per-
spektywa. Glownym problemem w obecnej chwili sa zbyt niskie temperatury, w jakich
omawiane urzadzenia wykazywalyby oczekiwane wtasno$ci. W zwiazku z tym, podej-
mowane sg ogromne starania w celu zsyntetyzowania nowych molekut, ktére cechowataby
znacznie wyzsza temperatura blokowania, a jednoczesnie rozsadna warto$é bariery e-
nergetycznej dla odwrécenia spinu molekuly. W odniesieniu do teoretycznych aspektow
badan nad wlasnosciami transportowymi pojedynczych magnetycznych molekul, jednym
z wazniejszych zadan to poznanie szczegdélowego mechanizmu, jak osadzenie molekuly
na powierzchni wptywa na wlasnosci molekuty odpowiedzialne za transport elektronow.
Poniewaz wiele na to wskazuje, ze spinowo-spolaryzowany transport przez rozwazane
molekuly zostanie po raz pierwszy zaobserwowany w uktadzie sktadajacym sie z molekuty
umieszczonej na metalicznym, niemagnetycznym podlozu oraz skaningowego mikroskopu
tunelowego o magnetycznym ostrzu, interesujace moze okazac¢ sie rozwazenie jak trans-
port balistyczny elektronéw przez molekule wptywa na jej strukture przestrzenna oraz
stan magnetyczny.
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