General information about the project

The rapid progress in miniaturization of electronic devices inevitably brings the current technology closer to a certain natural limit, when the manipulation of individual molecules, atoms or spins will constitute the basis for processing and storing information. Regardless of how distant this perspective seems to be, comprehensive understanding of physics at the nanoscale will certainly be of vital importance. The theoretical studies of transport properties of nanoscale systems, such as molecules, quantum dots or nanowires, due to strong electron correlations, are very demanding and the methods used are very often based on a series of approximations. Consequently, there are relatively few results that can be considered as benchmarks, and which can be directly compared to experiments. The aim of this project is to provide very accurate results and new predictions for problems that have not been studied yet. One of such open problems is undoubtedly the accurate quantitative calculation of transport characteristics in non-equilibrium conditions and the determination of dynamics with exact treatment of correlations. Therefore, the main goal of this project is to develop and adapt advanced numerical methods based on renormalization group techniques to study transport properties of correlated nanoscale systems, with particular emphasis on non-equilibrium and dynamical phenomena.

Realization period: 01.10.2018 - 31.05.2023

Research team:

Faculty of Physics, Adam Mickiewicz University, Poznań, Poland

Prof. Ireneusz Weymann (PI)

Dr. Piotr Trocha,
Dr. Kacper Wrześniewski,
Dr. Piotr Busz,
Dr. Tomasz Ślusarski,
M.Sc. Filip Pawlicki,
M.Sc. Anand Manaparambil,
M.Sc. Patrycja Tulewicz.

List of publications

  1. A. Manaparambil, I. Weymann
    Spin-resolved nonequilibrium thermopower of asymmetric nanojunctions
    Phys. Rev. B 109, 115402 (2024)
  2. A. Manaparambil, I. Weymann
    Giant tunnel magnetoresistance induced by thermal bias
    J. Magn. Magn. Mater. 587, 171272 (2023)
  3. K. Wrześniewski, T. Ślusarski, I. Weymann
    Nonmonotonic buildup of spin-singlet correlations in a double quantum dot
    Phys. Rev. B 108, 144307 (2023)
  4. K. Wrześniewski
    Dynamics of Superconducting Correlations Induced by Hopping in Serial Double Quantum Dot System
    Acta Phys. Pol. A 143, 160 (2023)
  5. A. Manaparambil, I. Weymann
    Nonequilibrium Seebeck effect and thermoelectric efficiency of Kondo-correlated molecular junctions
    Phys. Rev. B 107, 085404 (2023)
  6. A. Manaparambil, A. Weichselbaum, J. Von Delft, I. Weymann
    Nonequilibrium spintronic transport through Kondo impurities
    Phys. Rev. B 106, 125413 (2022)
  7. T. Ślusarski, K. Wrześniewski, I. Weymann
    Numerical renormalization group study of the Loschmidt echo in Kondo systems
    Sci. Rep. 12, 9799 (2022)
  8. K. Wrześniewski, I. Weymann, N. Sedlmayr, T. Domański
    Dynamical quantum phase transitions in a mesoscopic superconducting system
    Phys. Rev. B 105, 094514 (2022)
  9. P. Trocha, E. Siuda, I. Weymann
    Spin-polarized transport in quadruple quantum dots attached to ferromagnetic leads
    J. Magn. Magn. Mater. 546, 168835 (2022)
  10. D. Tomaszewski, P. Busz, J. Martinek
    Kondo effect in the presence of the spin accumulation and non-equilibrium spin currents
    J. Magn. Magn. Mater. 542, 168592 (2022)
  11. P. Tulewicz, K. Wrześniewski, I. Weymann
    Spintronic transport through a double quantum dot-based spin valve with noncollinear magnetizations
    J. Magn. Magn. Mater. 546, 168788 (2022)
  12. C. P. Moca, I. Weymann, M. Werner, G. Zarand
    Kondo Cloud in a Superconductor
    Phys. Rev. Lett. 127, 186804 (2021)
  13. D. Tomaszewski, P. Busz, J. Martinek
    Spin-current Kondo effect: Kondo effect in the presence of spin accumulation
    Phys. Rev. B 104, 125108 (2021)
  14. P. Tulewicz, K. Wrześniewski, S. Csonka, I. Weymann
    Large Voltage-Tunable Spin Valve Based on a Double Quantum Dot
    Phys. Rev. App. 16, 014029 (2021)
  15. R. Taranko, K. Wrześniewski, B. Baran, I. Weymann, T. Domański
    Transient effects in a double quantum dot sandwiched laterally between superconducting and metallic leads
    Phys. Rev. B 103, 165430 (2021)
  16. A. Manaparambil, I. Weymann
    Spin Seebeck effect of correlated magnetic molecules
    Sci. Rep. 11, 9192 (2021)
  17. K. Wrześniewski, B. Baran, R. Taranko, T. Domański, I. Weymann
    Quench dynamics of a correlated quantum dot sandwiched between normal-metal and superconducting leads
    Phys. Rev. B 103, 155420 (2021)
  18. K. Wrześniewski, I. Weymann
    Magnetization dynamics in a Majorana-wire-quantum-dot setup
    Phys. Rev. B 103, 125413 (2021)
  19. I. Weymann, M. Zwierzycki, S. Krompiewski
    Spectral properties of a Co-decorated quasi-two-dimensional GaSe layer
    Phys. Rev. B 102, 075309 (2020)
  20. K. P. Wójcik, I. Weymann, J. Kroha
    Magnetic Kondo regimes in a frustrated half-filled trimer
    Phys. Rev. B 102, 045144 (2020)
  21. K. Wrześniewski, I. Weymann
    Time-dependent spintronic anisotropy in magnetic molecules
    Phys. Rev. B 101, 245434 (2020)
  22. K. Wrześniewski, I. Weymann
    Current cross-correlations and waiting time distributions in Andreev transport through Cooper pair splitters based on a triple quantum dot system
    Phys. Rev. B 101, 155409 (2020)
  23. S. Datta, I. Weymann, A. Polak-Płomińska, E. Flahaut, L. Marty, W. Wernsdorfer
    Detection of Spin Reversal via Kondo Correlation in Hybrid Carbon Nanotube Quantum Dots
    ACS Nano 13, 10029 (2019)
  24. K. Wrześniewski, I. Weymann
    Quench dynamics of spin in quantum dots coupled to spin-polarized leads
    Phys. Rev. B 100, 035404 (2019)
  25. K. P. Wójcik, M. Misiorny, I. Weymann
    Giant superconducting proximity effect on spintronic anisotropy
    Phys. Rev. B 100, 045401 (2019)
  26. P. Trocha
    Cross-Correlations in Transport through a Quantum Dot Cooper Pair Splitter Asymmetrically Coupled to Normal Leads
    Acta Phys. Pol. A 135, 1279 (2019)
  27. A. Polak-Płomińska, I. Weymann
    Magnetoresistive properties of a double magnetic molecule spin valve in different geometrical arrangements
    J. Magn. Magn. Mater. 480, 11 (2019)